
A Simulation Framework to Analyze Knowledge
Exchange Strategies in Distributed Self-adaptive

Systems

Christopher Werner, Sebastian Götz, and Uwe Aßmann

Technische Universität Dresden
Software Technology Group, Dresden, Germany

{christopher.werner,uwe.assmann}@tu-dresden.de

sebastian.goetz@acm.org

https://tu-dresden.de/ing/informatik/smt/st

Abstract. Distributed self-adaptive systems are on the verge of beco-
ming an essential part of personal life. They consist of connected subsys-
tems which work together to serve a higher goal. The highly distributed
and self-organizing nature of the resulting system poses the need for run-
time management. Here, a particular problem of interest is to determine
an optimal approach for knowledge exchange between the constituent
systems. In the context of multi-agent systems, a lot of theoretical work
investigating this problem has been conducted over the last decades, sho-
wing that different approaches are optimal in different situations. Thus,
to actually build such systems, the insights from existing theoretical
approaches need to be validated against concrete situations. For this
purpose, we present a simulation platform to test different knowledge
exchange strategies in a test scenario. We used Siafu as a basis. The des-
cribed platform enables the user to easily specify new types of constituent
systems and their communication mechanisms. Moreover, the platform
offers several integrated metrics, which are easily extensible. We evalu-
ate the applicability of the platform using three different collaboration
scenarios.

Keywords: Distributed self-adaptive systems, simulation, multi-agent
systems, role-oriented programming.

1 Introduction

Mobile devices with the ability to sense and adapt themselves to a changing
environment are getting omnipresent in our society. Among them are smart
watches, fitness trackers, (cleaning) robots, and wearables, to name but a few.
To fully utilize these devices, they need to be integrated, which leads to complex
systems, where different subsystems have to communicate with one another and
establish different kinds of collaborations on the fly. For example, in a future
(smart) office with two or more cleaning robots, where some are specialized
on dry cleaning and others on wet cleaning, there is a need for coordination

2 Christopher Werner et al.

among them. The highly distributed nature of such systems demands runtime
management of each individual subsystem and optimization of the system as a
whole to assure user-specified higher goals.

A promising approach for such systems is to develop them as self-adaptive
systems by using self-organization and self-optimization techniques [13]. Such sy-
stems can be characterized as distributed self-adaptive systems (D-SAS). What
implies, that each subsystem is autonomous and makes decisions based on its
own knowledge. But, in addition, each subsystem has to take into account the
invariants of the system as a whole and its environment. To ensure that actions
of one subsystem do not negatively impact another subsystem, a coordination
mechanism is required. To realize this coordination, a spectrum of approaches
can be used. At one extreme, a single, central system can be used to collect the
knowledge from all subsystems and to influence them. At the other extreme, all
systems directly exchange their knowledge in a peer-to-peer manner and, thereby
are enabled to reason about the effects of their decisions on other subsystems.
An approach for systems with vast amounts of subsystems is a hierarchic coor-
dination, where the children of a node are coordinated by their parent node.

In either case, the central research question, which we partially addressed in
our previous work [8], is: which knowledge distribution strategy is the best for
the current collaboration in a D-SAS.

The answer to this question heavily depends on (a) the environment, (b) the
characteristics of constituting self-adaptive systems, and (c) the goals imposed
on the system as a whole. Among these parameters, the trade-off to negotiate can
be characterized as follows. The less knowledge individual subsystems exchange
with each other, the less are the implied costs, but the higher is the probability
of them to make decisions having a negative effect on other subsystems. To
practically decide which knowledge exchange strategy is the best, a more detailed
specification of the costs, which are usually domain-specific, is required. For
the case study, presented in this paper, we used the following properties as
cost/quality:

– Q1 Performance. The performance of the system will decrease if there is
unnecessary knowledge exchange. This means more network communication
and more computational work for the system.

– Q2 Real-Time. Systems can have time restrictions (deadlines), which are
not to be missed.

– Q3 Energy Consumption. The more knowledge is exchanged, the more
energy is spent on it, but the capacity of the participating subsystems is
often restricted.

– Q4 Memory Consumption. Small devices are often limited in terms of
their memory. Thus, gathering all available knowledge on a single device can
be impossible.

– Q5 Privacy. If the system comprises devices from different owners, policies
to prevent unauthorized knowledge exchange are required.

Simulation Framework to Analyze Knowledge Exchange Strategies 3

The goal of this paper is to enable system developers to identify the optimal
strategy before deploying it and researchers to investigate novel algorithms and
approaches for knowledge exchange in D-SAS.

The research questions addressed in this paper are:

– RQ1: How to analyze the quality of a knowledge exchange strategy in a
D-SAS?

– RQ2: How to identify which knowledge exchange strategy in a D-SAS is the
best among several alternatives?

Therefore, in this paper we present a reusable simulation framework called
SAKE which allows to test different strategies in concrete test scenarios. The
framework is easily extensible w.r.t. new system types, knowledge exchange stra-
tegies and cost/quality characterizations (i.e., metrics). The simulator framework
uses Siafu [11] as a basis and is accessible on GitHub1.

As evaluation, we show three experiments made using the simulation fra-
mework, where different knowledge exchange strategies for a fleet of specialized
cleaning agents are investigated on different maps.

The remainder of this paper is structured as follows. The next section provi-
des an in-depth discussion on the concepts provided by the simulation framework,
its extensibility, and its metrics. The three case studies we conducted are pre-
sented in Section 3. We demarcate our approach from related work in Section 4.
Finally, in Section 5, we conclude the paper and discuss possible lines of future
work.

2 A Simulation Infrastructure for Knowledge Exchange
Strategies

In this section, we introduce Siafu (cf. Section 2.1) which is used as time simu-
lation framework and front-end for SAKE and we provide an overview of our
proposed simulation framework in terms of its key concepts (cf. Section 2.2), its
metrics (cf. Section 2.3), and its extensibility (cf. Section 2.4).

2.1 Siafu Simulator

The open source context simulator Siafu [11] acts as user interface and controller
part for each SAKE simulation. Siafu is implemented in Java and works on two
dimensional maps and models a few agents and places which are located in
the map. The concept of the model is shown in Figure 1 and contains in the
middle the World which holds several Agents, Places, and Overlays. The Agents
and the Places have a Position to specify the location in the map, whereas the
Overlays hold information about the context of the world like the temperature,
sun intensity, and dirt level. To create the start information, Siafu reads the
data from images, which must have the same size as the map. The input data is

1 http://github.com/sgoetz-tud/sake

4 Christopher Werner et al.

Agent

World

Place

*

Overlay

**

has

has has

Fig. 1. Concept-Model from Siafu

transferred over an interface to an external simulation. This part represents the
connection between Siafu and SAKE and can connect also other simulations.

The advantages of Siafu for our approach are the open Java source code, the
fast start up time, and the good documentation and examples, but Siafu besides
has some disadvantages. It is not possible to start more than one simulation at
the same time only the opportunity to start the entire tool more than one time
exists. In addition, the last commit in the GitHub repository of Siafu was two
years ago which means it is not under development anymore. As well Siafu uses
Eclipse SWT as user interface environment which only support Mac Os cocao
and all Linux and Microsoft operating systems.

For our evaluation, it was important to run multiple simulation in parallel,
which means each simulation run in one thread. Therefore, we extend Siafu to
get a configuration file as input and create as much simulations in parallel as
configured.

2.2 Concepts

The central concept of the SAKE framework is depicted in Figure 2. All system
constituents have a physical and a virtual part. The physical part comprises an
ensemble of hardware components (e.g., computers or engines). The virtual part
of the system comprises its roles, goals, and behaviors. Each agent plays different
roles aiming to reach specified goals using available behaviors, which, in turn,
are determined by the present hardware components.

Simulation Framework to Analyze Knowledge Exchange Strategies 5

Hardware-Components

Computer Wiper Wifi Engine

Goals

Behaviors

Agent

reachable

uses

instance of

have
physical

reach Roles play

Fig. 2. Concept of the Agent Representation

Figure 3 depicts an overview of the framework as UML class diagram. At
the top level, the framework is comprised of four packages: SiafuSimulator,
AgentFactory, AgentCore and GoalBehaviorsHardware.

The SiafuSimulator package shows, which classes of the Siafu simulator we
reuse and specialize to create a framework focusing on evaluating knowledge
exchange strategies. We reuse the World class, which represents the world model
of the Siafu simulator, i.e., denotes the common global environment of all system
constituents and is the same for all SiafuAgents. We specialize the Agent and
BaseAgentModel classes, where the second comprises a method to create the
former and specifies how the simulation proceeds iteration-wise.

The AgentFactory package is represented by three classes in the UML class
diagram: AgentModel, AgentFactory, and SiafuAgent. The first is a speciali-
zation of Siafu’s BaseAgentModel and realizes the creation of agents using the
factory method design patter [7, pp. 107].

Next, the AgentCore package applies the role-object pattern [1] to enable a
dynamic management of agent goals and related behaviors. The pattern com-
prises the abstract Agent class and the two classes AgentCore and AgentRole,
where the first contains the implementations of management methods to add
and remove roles and the second only delegates to the former. Besides such
management methods, the Agent class defines a property newInformation to
indicate, whether the agent has collected information since its last exchange. The
AgentCore class specifies, e.g., a property name, localModel, and shutdown for
the agent and contains the only accumulator component of an agent.

6 Christopher Werner et al.

AgentCore

GoalBehaviorHardware

AgentFactory

SiafuSimulator

AgentModel

+createAgents(): Agent[0..*]
+doIteration(agent: Agent[0..*])

AgentFactory

+createAgents(world: World): Agent[0..*]

«interface»
ISimulatorAdapter

+isWall(row: int, col: int): boolean
+getPosition(): Position
+setPosition(position: Position)
+getNearAgents(radius: int): Agent[0..*]
+getAllAgents(): Agent[0..*]

0..*

0..*

0..*

0..*

0..*

1

BaseAgentModel World Agent

Goal

+preCondition(): boolean
+postCondition(): boolean
+run()
+isOptional(): boolean

SubGoal

Behavior

#agentRole: AgentRole

+action(): boolean
+getSupportedStates(): State[0..*]
+isHardwarecorrect(): boolean

SiafuAgent

+isFinish(): boolean
+getAgentCore(): AgentCore

Demand

+addDemandPair(comp: Component, count: int)
+getHardwareComponent(): HardwareComponent
+switchAllOn()
+switchAllOff()
+isCorrect(): boolean

HardwareComponent

-name: String

+isActive(): boolean
+getActualEnergie(): double
+switchOn()
+switchOff()

AgentRole

#core: AgentCore
#goals: Goal[0..1]

+createGoals(): boolean
+initializeGoals()
+getAgentCore(): AgentCore
+addRole(role: AgentRole): boolean
+removeRole(role: AgentRole): boolean
+hasRole(role: AgentRole): boolean

MasterRole

+followers: AgentRole[0..*]

AMerge

+run(from: AgentCore, to: AgentCore, data: T)
#preRun(name1: String, name2: String)
#postRun()
#action(from: AgentCore, to: AgentCore, data: T)

WorldMerge

#MergeMethod 1

MasterMergeBehavior

MergeBehavior

NearMergeBehavior
DestinationMerge

EnergyOn EnergyOff

EnergyState

+switchOn(component: HardwareComponent)
+switchOff(component: HardwareComponent)
+isActive(): boolean

FollowerRole

+leader: MasterRole

ExploreFollowerRole HooveFollowerRole

ExplorerRole

HooveGoal

ExploreGoal

MoveBahavior

ExploreBehavior

1

Accu

+void load(double loadKWh)
+boolean isFull()
+void use(double useKWh)
+double getMinKWh()
+double getMaxKWh()
+double getActualKWh()
+double getRestKWh()

WifiHoover

Computer

HooverRole
AgentCore

-name: String
-localModel: Environment
-shutdown: boolean
-accu: Accu
-loadstation: boolean

+action(): boolean
+getSupportedStates(): State[0..*]
+addRole(role: AgentRole): boolean
+removeRole(role: AgentRole): boolean
+hasRole(role: AgentRole): boolean
+initializeRoles()

Agent

-newInformation

+addRole(role: AgentRole): boolean
+removeRole(role: AgentRole): boolean
+hasRole(role: AgentRole): boolean

Environment +local

1 1

FieldMerge

MeasurementRange

+int getMeasurementRange()

NonOptionalGoal

OptionalGoal LoadAgentGoal

Engine

MergeMasterRole

HooveBehavior

MasterGoal

1..*

Fig. 3. Package Class Diagram of the Simulator

Simulation Framework to Analyze Knowledge Exchange Strategies 7

The Simulator is constructed to work with location data relying on maps to
create a distance value between two agents. The AgentCore package describes
the main structure and the collaborations of all agents, where each agent plays
different roles, e.g., master or follower. These two roles and thereof specialized
roles create a hierarchical structure of the agent (they can be master and follower
at the same time).

The last package is the GoalBehaviorHardware package which contains the
modeling of Goals, Behaviours, and HardwareComponents. The different go-
als will be added to the roles of each agent, if it has appropriate hardware-
components. In every time step, the action method of each goal is executed
once. When the post condition is met, the goal is achieved and deletes itself.
With the composite pattern, it is possible to create a hierarchical structure of
goals for each role. For the representation of a load-station it must be possible
to have goals, which will never be achieved, but also are not hindering the sy-
stem as a whole to finish. Therefore, we distinguish between OptionalGoal and
NonOptionalGoal. With this structure, it is possible to create elements which
are relevant for the end of a scenario and elements which must work without
affecting the highest goal. The structure with some example goals is illustrated
in Figure 3 and further described in [16].

2.3 Metrics

OffOff OnOn

Turn on

Turn off

Out

Work

Fig. 4. Energy States for Hardware Components

For every running example, we collect four different metrics–time, data-
exchange, memory consumption, and energy–to evaluate a strategy. The time
is measured on the one hand as the computing time for each agent. On the other
hand, the simulator saves the number of time steps an agent performs to reach
a specific goal. Energy consumption is measured for each component an agent
consists of. Each hardware element has different energy states which represent
working states. In Figure 4, two exemplary energy states are depicted. Another
example was shown in [6], where a bigger energy state model was used with
respect to the accumulator state representing the probability of working success
of the hardware-component. In our example, we only use the on and off state to

8 Christopher Werner et al.

represent a working component. Notably, besides energy states, the transitions
between states are also annotated with their respective energy demand. With
this strategy every hardware-component can be represent in the simulator.

For the data exchange metric, the whole communication is monitored to
abstract on the network load. To create a representative view of data exchange
metrics, the number of exchanged elements and the data-stream itself are stored
in a specific optimal, save format. The memory consumption is monitored at the
end of each simulation for every agent. This concept works under the assumption
that each agent has its maximal local knowledge and the end of a simulation
and did not delete anything before which would falsify the results.

This four metrics help to measure the cost quality properties as defined
in Section 1. The Performance (Q1) is measured with the computing time
and data exchange metrics. Furthermore, the Real-Time (Q2) arise from the
number of time steps measured for each complete simulation and the Energy
Consumption (Q3) and Memory Consumption (Q4) results from their
corresponding metrics energy and memory consumption. The Privacy (Q5)
property is not measurable by the SAKE simulator, but the more data an agent
want to exchange the less is the privacy of this agent and the entire system.

2.4 Extensibility

To enable reuse, it must be possible to easily extend the simulator and to test
different novel exchange strategies. Our framework provides different points to
modify and add new strategies. The first point is the factory package, which
creates every agent with its own hardware-components and roles. In the Agent-
Core package, new agent roles can be implemented to specify different collabo-
ration structures, goals, and responsibilities for the agents. The goals, behaviors,
and hardware-components are modified like the agent roles, so it is possible to
add new functions and components. The energy states show currently only the
EnergyOn and EnergyOff states and are modeled with the State-pattern. The
State-pattern offers an extension point to create different new states like idle,
busy or standby.

Each agent saves in every time step the metric values of the simulation and
adds them to an evaluation file. For that, the evaluation function is called every
time step and can easily be modified for different metric values. After the com-
plete simulation run, the simulator actual saves every JSON result value in a
document. This documents can be used to load these value-list in a new tool
and create diagrams or tables for analysis.

3 Evaluation

We illustrate the results of our simulator based on a specific running example.
Three different strategies are used to test and get comparable values for the
evaluation. The easiest way is a complete collaboration between each agent.
This mean that, if an agent meet another agent, he will give him his complete

Simulation Framework to Analyze Knowledge Exchange Strategies 9

local model of the world. To get a higher hierarchical collaboration we use in
the other strategies a master agent which handles the communication and makes
work decisions.

The environment of the test scenario includes different parameters, e.g., the
size and the nature of the environment change in a different context. Otherwise
the dependencies of agent types influence the results of each test case. To get
representative results in the test cases we run them five times and use the average
values for the depicted diagrams. This five runs are necessary, because if the agent
has two new destinations with the same distance, it decides randomly where to
drive next.

The first part of this section contains the running example with different start
parameters and agent dependencies and the used strategies. The next two parts
show the evaluation results based on the time measurement and the knowledge
exchange of a strategy for one environment and the last subsection gives an
overview of our insights.

3.1 Running Example

Fig. 5. (left) Labyrinth from Siafu [11] and (right) Computer Science Faculty

The running example is an office cleaning scenario for one floor. In order to
not interfere with office work the cleaning of office spaces has to take place outside
working hours. This creates one important requirement for cleaning robots that
are used in this scenario which is to satisfy deadlines in various different working
spaces. The easiest way is to use one agent, which must do it alone, but it is
possible, that he does not finish in time. In that care, it is important that different
agents share the work and communicate about the areas they already cleaned.
For that, we create three different strategies:

– C1: Complete Collaboration. An agent exchanges his complete model
with a near agent, but with a time delay to avoid exchanges in very short
periods.

10 Christopher Werner et al.

– C2: Communication with Master. A master coordinates and handles
the communication with near agents. The master is located at the load-
station and exchanges the models when the agents are loading. Every agent
computes his drive destinations based on its own information. This approach
reduces the locally needed memory and minimizes the knowledge exchange.

– C3: Communication and Coordination with Master. The master al-
ways communicates with the agents and tells them what to do. The working
agents need a communication infrastructure to stay connected with the mas-
ter, but also less logic.

In Figure 5 we show two of three different maps on which we tested the three-
strategies. The gray points in the maps represent the load station and with it
the location of the master agent. The first map represents a labyrinth which is
predefined in Siafu [11]. This is the biggest map we use with a lot of dead ends
and narrow ways. The second map represents a floor of the computer science
faculty of the TU Dresden. It gives the best real world example with little rooms
and big corridors which is why we only show the results from this map in the
following subsections. At last we also used a quadratic hall map, which is not
depicted in Figure 5. The results of the other maps and agent types are shown
in [16]. In the maps, each white pixel represents a point which should be cleaned
and the black walls show the borders.

To create dependencies between the agents, we used three different types
of them. Before, e.g., a hoover (vacuum) agent can clean the world he needs
a map of the area. To realize that a hierarchical structure is used. A master
agent communicates with explore agents about the world and exchanges his
knowledge with the hoover agents. This three stage pyramid visualizes the agent
dependencies. The three steps of the cleaning process are now (a) create the map
with explore agents, (b) vacuum the area with (hoover) agents and (c) wipe the
environment after vacuuming it with (wiper) agents. This step dependencies
mean that every agent needs parts of the information from an agent one step
before to start with his work. This part creates waiting periods for agents from
a higher level in the hierarchy and has an influence on the deadline.

The number of agents influences the deadline, too. Because of that, we first
increase the number of explore agents from one to ten and then add hoover
agents and increase them from one to ten, too. This creates a usable set of data
for analysis.

3.2 Time Measurement

In this subsection, we present the time measurement result from the faculty map
and three strategies. In Figure 6 the average number of time steps is shown with
first one to ten explore agents and then additionally one to ten hoover agents.
A time step is one iteration run in the simulator, where every agent runs one
time all its behaviors. The deviations in the diagram come from the average
values of five runs. Each agent searches randomly the next nearest destination
to work. This background strategy creates the different results in the strategies.

Simulation Framework to Analyze Knowledge Exchange Strategies 11

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#Agents

C1 C2 C2+ C3

Fig. 6. Average Number of Timesteps in the Faculty map.

In Figure 6 one time step is the same like one second in real time. From the tenth
to the eleventh agent a big step arises because of the incoming agent dependency.

As we can see, C3 is the optimal strategy, because the master always has
all information and can make optimal decisions with complete knowledge every
time. In C2, the step is always there and cannot be removed with adding agents.
The strategy that the master gets the information, when one agent comes back
to the load-station, always creates such a step for new types of agents. Also,
the extended C2+ has such a stage. In this strategy, the master defines the first
destination after loading to spread around all agents. C1 can also not remove
the stage by adding new agent types. After five agents of a type the time savings
will get very low. In addition, C2+ gets better and C1 worse in bigger maps
than in smaller ones.

3.3 Knowledge Exchange

In this part, a short overview about the knowledge exchange results is given.
In Figure 7 the results of a test run are shown for a small-quadratic hall map.
The diagram looks the same as for the faculty map only with less accessible
areas. The y-axis shows the number of elements in one run, which are exchanged
between all agents in logarithmic scale. In this diagram one value is either an
integer, string or double value, because all primitive data elements count as one
element. This approach only takes care of the real exchanged knowledge wit-
hout any optimization on input and output agent strategies. C1 has the most
exchanged elements because the agents make a total exchange every time they
meet. The un-optimized C2 has five times less data exchange than C1 and the

12 Christopher Werner et al.

100.000

1.000.000

10.000.000

100.000.000

1.000.000.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#Agents

C1 C2 C2 minimal C3

Fig. 7. Complete Knowledge Exchange Values.

optimized variant (C2 minimal) has ten to twenty times less data-exchange ele-
ments depending on the number of agents. The optimized option uses internal
timestamps and states to reduce the redundant exchange elements. This optimi-
zation raises the memory consumption on the working agents. C3 has the least
knowledge exchange, because the master gets in time the new information from
each agent and only has to send new destinations. With more agents, C3 has
the best results in w.r.t. the overall knowledge exchange.

3.4 Results

In the complete evaluation results, we find different dependencies between input
parameters and the final outcome. With the number of agents and the choice of
a strategy the results can be changed in different ways. If the number of agents
rises, the overall time decreases, but nevertheless the energy consumption rises,
too. This means that the influence of reducing time with more agents is smaller
than the rising energy consumption per time step. The diagrams with the energy
consumption results are presented in [16].

The three maps with their different characteristics have influence on the num-
ber of meetings, because large open spaces increases the probability of meetings.
In a labyrinth with narrow ways an agent rarely meets others and cannot ex-
change his knowledge. In bigger maps the strategy, where the master spreads
the agents, is faster because the probability of same working areas decreases.

The evaluation results of the different strategies show, that a master reduces
the amount of data, which must be exchanged between all agents and creates an
interface for human interaction. In all test cases, we found out, that in a perfect
world the control from a master returns the best results. The requirements for
this C3 however are too far from reality. It is likely, that this configuration will
produce different results in a real-world case study. Strategies with a master

Simulation Framework to Analyze Knowledge Exchange Strategies 13

show that the more control options the master has, the faster the run is, but
the more configurations to test. A master is also every time a bottle neck in the
infrastructure which could be removed with more masters or combinations of
different strategies.

4 Related Work

The problem of a good simulation framework is that there must be a lot of possi-
bilities to modify the simulator for new test case and give evaluation information
as much and detailed output. There are existing much simulators for different
specific scenarios. For example the SUMO [2] simulator simulate traffic in an
urban area. SUMO can be used to test traffic light control algorithms to get
the best light control system for a city. It takes therefore respect to traffic tips
which can be controlled with characteristics. UdelModels [10] is another simu-
lation framework for urban networks. It take care on realistic propagation and
gives a user interface for city creation. The OMNeT++ [15] simulation sweet
includes different tool and simulates network protocols in varying areas.

There are although other simulators like Siafu for example JAS [14]. JAS is
implemented in JAVA and gets his complete functional scope from third party
libraries. It represents agents in components and brings a variety of collections
from components and rules for the simulation, but JAS do not present any new
versions since 2006.

For the knowledge exchange different strategies could be used. For exam-
ple the FIPA [12] produces software specifications for multi-agent systems like
communication protocols to maximize the compatibility of MAS. JADE [3] for
example is an platform for peer-to-peer agent based applications. It describes a
middleware which uses the FIPA specifications for the communication between
agents. Thereby, it provide a graphic tool and facilitate the troubleshooting
and deployment phase of the system. The platform is implemented in JAVA
and could be used to realize different kinds of agent architectures. In the back-
ground for the representation of a agent it uses containers. The commercial tool
is JACK [9] which is although implemented in java. JACK is developed from the
Agent Oriented Software Pty, Ltd. (AOS) and is a progression of the Procedural
Reasoning System (PRS) and the Distributed Multi-Agent Reasoning System
(dMARS). As JADE it helps to create MAS. Every agent works in JACK in ac-
cordance with the BDI (Belief, Desire and Intentions) principle, which say that
every agent can be described with its goals, his knowledge and his social skills
and acts from the environmental input.

For our simulator we use only a simple information exchange based on the
real data objects. To get a some various exchange strategies we look on the
paper of Götz et al. [8] where three different strategies are mentioned. This are
the total exchange strategy where all agents collaborate with each other and
exchange there complete knowledge. Then the partial complete method where
each subsystem exchange his complete knowledge with his direct collaborators
and the third strategy the partial-subset where the agents only change part

14 Christopher Werner et al.

of their own knowledge with her direct collaborators. This strategies give the
template for our strategies and implementations.

Knowledge exchange is important in all kinds of MAS and is therefore often
used in different ways. For example DEECo [5], SeSaMe [4] and DECIDE [6] are
frameworks to create multi agent systems. DEECo is self named as an ensemble-
based component system where an ensemble represents dynamic binding of a
set of components and thus determines their composition and interaction. The
ensemble component describes the collaboration and data connection. Although
when only some data is used in the other component it proactive share all his
information. SeSaMe coordinates distributed components in various selforgani-
zing inter-composed groups based on the types of roles they can play and make
a direct interaction between the supervisors and followers. DECIDE splits the
control-loops on many nodes of a distributed self-adaptive system. This gives
more flexibility and reduces the single point error when a master node fail. The
goal of DECIDE is to proof the system at runtime to guarantee the quality
requirements of critical self-adaptive software.

5 Conclusion and Future Work

In this paper, we present a simulator for different kinds of Multi-Agent Systems
and test it in one test scenario with three configurations on three different maps.
For the simulator, it is important to change different start parameters to create
a wide range of test cases and environments. To analyze the tested strategies, we
demonstrated some predefined metrics to evaluate them and give the possibility
to easily extend them. With our evaluation results, it was possible to find some
basic correlation between the input parameters, the nature of the environment
and the metric results. The simulator is suited to test new systems before the
first real world implementation and to find a good strategy.

As future work, we plan to implement more knowledge exchange strategies
and prove the results for one strategy in the real world. For a real world imple-
mentation and testing, it is important to have changeable environments, which
not yet implemented and realized. This point will be arriving in office scenarios
with new obstacles. In the real world, it is possible that elements fall down or
crash and the system has to create a new structure. For this, a probability to
simulate agent crashes or hardware-component failures should be considered.

Acknowledgments. This work has been funded by the German Research Foun-
dation within the Collaborative Research Center 912 Highly Adaptive Energy-
Efficient Computing and within the Research Training Group Role-based Soft-
ware Infrastructures for continuous-context-sensitive Systems (GRK 1907).

References

1. D. Bäumer, D. Riehle, W. Siberski, and M. Wulf. The role-object pattern. In
Proceedings of the 4th Pattern Languages of Programming Conference (PLoP’97),
1997.

Simulation Framework to Analyze Knowledge Exchange Strategies 15

2. Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. Sumo–
simulation of urban mobility. In The Third International Conference on Advances
in System Simulation (SIMUL 2011), Barcelona, Spain, 2011.

3. Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Jade–a fipa-compliant
agent framework. In Proceedings of PAAM, volume 99, page 33. London, 1999.

4. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying rdf and rdf schema. In Ian Horrocks and
James Hendler, editors, The Semantic Web ISWC 2002, volume 2342 of Lecture
Notes in Computer Science, pages 54–68. Springer Berlin Heidelberg, 2002.

5. Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit,
and Frantisek Plasil. Deeco: An ensemble-based component system. In Proceedings
of the 16th International ACM Sigsoft Symposium on Component-based Software
Engineering, CBSE ’13, pages 81–90, New York, NY, USA, 2013. ACM.

6. Radu Calinescu, Simos Gerasimou, and Alec Banks. Self-adaptive software with
decentralised control loops. In Fundamental Approaches to Software Engineering,
pages 235–251. Springer, 2015.

7. Erich Gamma. Design patterns: elements of reusable object-oriented software. Pear-
son Education India, 1995.

8. Sebastian Götz, Ilias Gerostathopoulos, Filip Krikava, Adnan Shahzada, and Ro-
mina Spalazzese. Adaptive exchange of distributed partial models@run.time for
highly dynamic systems. In Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,
2015.

9. Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas. Jack intel-
ligent agents-summary of an agent infrastructure. In 5th International conference
on autonomous agents, 2001.

10. Jonghyun Kim, Vinay Sridhara, and Stephan Bohacek. Realistic mobility simula-
tion of urban mesh networks. Ad Hoc Networks, 7(2):411 – 430, 2009.

11. Miquel Martin and Petteri Nurmi. A generic large scale simulator for ubiquitous
computing. In Third Annual International Conference on Mobile and Ubiquitous
Systems: Networking & Services, 2006 (MobiQuitous 2006), San Jose, California,
USA, July 2006. IEEE Computer Society.

12. Stefan Poslad. Specifying protocols for multi-agent systems interaction. ACM
Trans. Auton. Adapt. Syst., 2(4):15, November 2007.

13. Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Transactions on Autonomous and Adaptive Systems,
4(2):14:1–14:42, May 2009.

14. Michele Sonnessa. Jas: Java agent-based simulation library, an open framework for
algorithm-intensive simulations. Industry and Labor Dynamics: The Agent-Based
Computational Economics Approach, World Scientific, Singapore, 2004.

15. András Varga and Rudolf Hornig. An overview of the omnet++ simulation environ-
ment. In Proceedings of the 1st International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops, Simutools
’08, pages 60:1–60:10, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering).

16. Christopher Werner. Adaptive knowledge exchange with distributed partial mo-
dels@run.time. Master’s thesis, Technische Universität Dresden, January 2016.

