
(An Example for)
Formally Modeling Robot Behavior

with UML and OCL

Martin Gogolla1 and Antonio Vallecillo2

1 University of Bremen, Germany gogolla@informatik.uni-bremen.de
2 Universidad de Málaga, Spain av@lcc.uma.es

Abstract. One of the problems that the design and development of
robotic applications currently have is the lack of unified formal modeling
notations and tools that can address the many different aspects of these
kinds of applications. This paper presents a small example of a chain
of robotized arms that move parts in a production line, modeled using
a combination of UML and OCL. We show the possibilities that these
high-level notations provide to describe the structure and behaviour of
the system, to model some novel aspects such as measurement uncer-
tainty and tolerance of physical elements, and to perform several kinds
of analyses.

1 Introduction

Robotic applications are difficult to design, develop and check because of the
inherent properties of these kinds of systems and their multi-faceted character-
istics. For example, they are composed of heterogeneous parts difficult to model
at the same level of abstraction, and to describe with a single notation. Be-
sides, the heterogeneity of the available hardware platforms for robots and the
lack of hardware and software standardization severely hampers cross-product
development. Having to deal with physical components also implies the need
to incorporate some particular properties such as continuous flows, mechani-
cal forces, tolerance and accuracy. Finally, their different nature from software
systems hinders in theory their specification with traditional software modeling
notations and tools.

This paper presents a small example of a chain of robotized arms that move
parts in a production line, modelled using a combination of UML and OCL. We
show how these high-level and platform-independent notations permit model-
ing the system in a formal manner, taking into account novel aspects such as
tolerance and measurement uncertainty, and allow performing several interest-
ing analyses on the system, such as visualization of the system in operation,
simulation of its behaviour, and validation of several properties of interest to
the designer. We claim the importance of having a unified language (e.g., UML
and OCL) for describing the functionality of the different parts within a robotic

2

system in order to understand and analyse the system and its different parts,
at least for the central functionalities. In this respect, our approach is different
from the various domain-specific languages/proposals for robotic applications
that combine specialized languages, since we want to explore the possibilities
that UML and OCL offer to model robotic systems.

The rest of the paper is structured as follows. The next Sect. 2 describes
the example and shows interesting properties using the USE modeling environ-
ment [4,5]. Section 3 discusses related work. The paper ends with a conclusion
and future work.

2 A UML and OCL Model for a Production Line with
Robotized Arms

This section will first discuss structural system elements before we turn to the
behavioral aspects. After that various visual property analysis options and formal
test aspects of our approach are debated.

Structural Elements. To illustrate our approach suppose a system com-
posed of producers and consumers, as shown in Fig. 1. Producer machines
generate Items, which once finished are placed in Trays. When informed that
there is an element ready in a tray, a Consumer takes the generated item from
that tray, performs some further work units on it, and stores it in a second
tray (the storageTray). Assuming we are in a robotized environment, each tray
has a RobotArm in charge of physically moving the items around. When asked
to perform a put operation, the tray asks the arm to go where the item is,
grasp it, move it to the position of the tray, and drop it there. Similarly, a
get(c:Coordinate) operation on a tray makes the arm grasp the item from
the tray, move it to the position that the caller has indicated (therefore the pa-
rameter of this operation), and drop it there. Consumers and producers keep
a counter with the items they have handled, and trays have a limit on their
capacity (attribute cap).

An important characteristic of any system that deals with physical objects is
the associated measurement uncertainty, due to tolerance of the mechanical parts
and the lack of precision of the arm movements. In order to deal with this kind
of uncertainty, we make use of an extension of OCL and UML type Real, called
UReal [15] that permits expressing values of physical quantities as pairs (x, u)
where x represent the value and u the associated uncertainty, following the In-
ternational Guide to the Expression of Uncertainty in Measurement (GUM) [7].
The corresponding operations on this type take also into consideration the prop-
agation of uncertainty when uncertain values are added, multiplied, or other
arithmetical operations are performed [8,15]. This is why all coordinates are
expressed by UReal numbers.

Each robot arm in this system also has an associated tolerance that repre-
sents the deviation that the arm may introduce when performing a movement.
Besides, when the arm is asked to grasp an item, we check whether the position

3

Fig. 1. Class and object diagram for robot arm example.

of the arm coincides with the position of the item. In case it does not (due to
accumulated uncertainty or excessive tolerance), the arm needs to be calibrated
and this is stored in an attribute that keeps track of how many calibrations

each arm has already needed. Note that every calibration introduces a delay in
the system and may have associated costs, and this is why it is important to
know how often they occur.

Finally, the derived attribute /xy is used to facilitate (an approximation of)
the visual representation of the objects’ coordinates in the real world and the
UML diagrams.

Behavioral Elements. The behavior of the system can be expressed in UML
and OCL by different means. First, pre and postconditions can be specified on
the operations, as shown here for grasp() and drop() operations of a RobotArm.

4

grasp (i : Item)
pre notWithItem : graspedItem . oclIsUndefined ()
post withItem : graspedItem=i
post calibrationsCount : not self . position@pre . coincide (i . position)

implies calibrations = calibrations@pre + 1
post reposition : self . position . coincide (i . position)

drop ()
post notWithItem : graspedItem . oclIsUndefined ()

State machines can also be specified on objects. For example, the following
listing shows the specification of the state machine of a Tray.

psm PutGet
states

init : initial
Empty [self . items−>size () =0]
Normal [0< self . items−>size () and self . items−>size ()<self . cap]
Full [self . items−>size ()=self . cap]

transitions
init −> Empty { create }
Empty −> Normal { [self . cap>1] put () }
Normal −> Normal { [self . items−>size ()<cap−1] put () }
Normal −> Full { [self . cap>1 and self . items−>size ()=cap−1] put () }
Empty −> Full { [self . cap=1] put () }
Full −> Empty { [self . cap=1] get () }
Full −> Normal { [self . cap>1] get () }
Normal −> Normal { [self . cap>1 and self . items−>size () >1] get () }
Normal −> Empty { [self . items−>size () =1] get () }

end

On top of that, USE also permits to specify the behavior of operations us-
ing a simple executable language called SOIL [2]. For instance, the behavior of
Tray::put() and RobotArm::moveTo() operations can be specified as follows.

put (p : Item)
begin

insert (self , p) into IsIn ;
self . arm . moveTo (p . position) ;
self . arm . grasp (p) ;
self . arm . moveTo (self . position) ;
self . arm . drop () ;

end
pre notFull : self . items−>size ()<cap
pre armNotWithItemAtPre : arm . graspedItem=null
post ElementAdded : self . items=self . items@pre−>append (p)
post armNotWithItemAtPost : arm . graspedItem=null

moveTo (c : Coordinate)
begin

declare aux : Coordinate ;
aux := new Coordinate ;
aux . x := c . x . add (self . tolerance) ;
aux . y := c . y . add (self . tolerance) ;
self . position := aux ;
i f self . graspedItem−>size () > 0 then

self . graspedItem . position := self . position ;
end

end

Expressing and Proving Properties. Once we have the specifications, there
are different kinds of analyses that we can perform on the system that show
some of the potential advantages of developing model-driven robot descriptions
with UML and OCL, such as:

5

Fig. 2. Sequence diagram displaying the behavior of the system.

6

• visualization of complex structures and processes
• execution and simulation of scenarios (operation call sequences)

− different scenarios with different structural properties e.g. trays with
different capacities

− variations of a single scenario with equivalence checking by analysing
different operation call orders

• checking structural properties within states by OCL queries
− e.g. calculating the number of currently produced items

• checking behavioral properties
− e.g. testing the executability of an operation by testing its preconditions

• checking for weakening or strengthening model properties (invariants, con-
tracts, guards) by executing a scenario with modified constraints

• proving general properties within the finite search space with the USE model
validator [5]
− structural consistency, i.e. all classes are instantiable
− behavioral consistency, i.e. all operations can be executed
− checking for deadlocks, e.g. construction of deadlock scenarios due to

inadequate tray capacities

For example, based on the specifications above we are able to simulate the
system, by creating an initial model of the system and invoking the start()

operation to the producer. Then, if we have created a system with one producer
and one consumer, and the producer just generates one item, the behavior of the
system is recreated as shown using the UML sequence diagram in Fig. 2. The
sequence diagram shows lifelines for objects and called messages. The evolution
of a Tray object can also be traced by checking the statechart states that are
placed on the lifelines. The behavior can also be displayed as a communication
diagram (Fig. 3). As one detail, we emphasize that the RobotArm1 with the sec-
ond moveTo call moves to Coordinate2 (displayed in the shown object diagram).
Coordinate2 is close to the TrayTPosition but not the exact TrayTPosition.
This is possible in our approach that allows for uncertain real values.

Similarly, for every step we obtain the state machines of the Tray objects,
which can be shown as depicted in Fig. 4.

Finally, the last object diagram in Fig. 6 shows the resulting system state
after the system has gone through an iteration. We can see the final positions
of the item and the arms. We can also see how the high tolerance that we have
indicated for the two robot arms has caused two calibrations.

Figures 5 and 6 pictorially show a filmstrip of the behavior of the system as
a sequence of snapshots after every robot arm operation. One can trace in the
figures the movements of the Item, the RobotArm1 and the RobotArm2. These
two figures show two different aspects: a time dimension (through the sequence
of diagrams) and a space dimension (within the single object diagrams). The
physical placement of the objects is captured by their position in the diagrams:
some objects have a fixed position (e.g. the producer, consumer and trays) while
others ‘move’ from object diagram to object diagram as in the real process, e.g.
the Item1 and the two robot arms. Uncertainty is captured through UReal values.

7

Fig. 3. Communication diagram.

Fig. 4. State Machine for Tray objects.

Aggregation associations are used to visualize ‘ownership’ between objects (e.g.
a robot arm has an item, or an item is placed on a tray).

Another interesting representation of the system behavior is shown in Fig. 7.
It depicts a communication diagram showing the operation calls involving an
Item object. We have also included the associations in which the Item engages
during the execution of the system (IsIn, Grasp) as a result of the operations.

8

Fig. 5. Object diagram sequence displaying the behavior of the system (Part 1).

9

Fig. 6. Object diagram sequence displaying the behavior of the system (Part 2).

10

Fig. 7. Communication diagram showing operation calls involving an Item object.

This diagram is very useful to check the order in which operations are called,
and their effects. One can trace that the item Item1 is first created, then put in
the first tray, and finally put in the second tray.

Validation and Verification through Testing. Finally, we want to highlight
the importance of running structural tests on the metamodels. One of them
concerns their instantiability and their ability to faithfully represent the appli-
cation domain. For example, we decided to ask the USE model validator [5] to
generate a producer-consumer-tray constellation using the system metamodel.
The resulting object diagram is shown in Fig. 8, together with the model val-
idator configuration that we employed (e.g., optional minimum and mandatory
maximum number of instances per class; analogous specifications for associa-
tions and datatypes). Interestingly, the produced system is wrong! For example,
the producer and consumer are disconnected, sharing no tray between them.
This motivates the need to develop additional, currently missing invariants (on
the structural system constellation level) and demonstrates the potential useful-
ness of this approach for validating this kind of properties which are normally
overlooked for being considered obvious.

Figure 9 shows another generated test case indicating missing constraints.
This time an additionally loaded invariant guarantees a proper Producer-Consu-
mer-Tray constellation. However, erroneously robotarm2 can grasp an item from
the storage tray, and robotarm1 can grasp an item from the producer output
tray. Furthermore, the test case reveals that constraints on the coordinates of
machines and trays are missing. The underlying model validator configuration
basically looks like the one presented in Fig. 8.

11

Fig. 8. Generated test case for Producer-Consumer-Tray configuration.

12

Fig. 9. Test case showing missing constraints for IsIn and Grasp associations.

Another analysis option in our approach with regard to behavioral aspects
is, that the developer can check in a system state for the applicability of an
operation, for example for the operation Tray::get(c:Coordinate). One can
check whether the preconditions of an operation when applied on a particular
object together with appropriate parameters are satisfied. One can also construct
a respective set of tuples with possible objects to apply the operation to and
corresponding parameters.

get (c : Coordinate) : Item
pre notEmpty : self . items−>size ()>0
pre armNotWithItem : self . arm . graspedItem=null

Tray . allInstances−>
select (self | self . items−>size ()>0)−>

select (self | self . arm . graspedItem=null)−>
collect (t | Tuple{ TRAY : t , COOR : t . position })−>asSet ()

Set{ Tuple{ TRAY=S , COOR=storageTrayPosition }} :
Set (Tuple (TRAY : Tray , COOR : Coordinate))

The above OCL query retrieves from the last object diagram in Fig. 6 the
possible operation calls by returning tuples with a tray TRAY whose item set
is not empty and whose robot arm is not grasping an item (as required in the
preconditions of the operation get) together with the coordinate COOR of the tray:
the result is constructed in such a way that the preconditions of the operation
call TRAY.get(COOR) would be satisfied for all elements of the returned tuple

13

set, a singleton in this case. Concerning the object diagram in Fig. 9, the query
would show that the operation get is not applicable there.

3 Related Work

There are different kinds of works that use MDE techniques for modeling robotic
applications, depending on their purpose. One set of works focuses on the au-
tomatic generation of components, control logic and other artefacts for the im-
plementation of robotic systems [17,16,3]. Other works focus on transformations
between models of different analysis tools that serve as bridges between the sep-
arate semantic domains [9,6]. And there are those works that propose models
for describing at a high-level and in a platform- and technology-agnostic man-
ner the algorithms and choreography that robotic systems composed of several
cooperating agents have to perform to achieve their goals [19,14].

Our paper is more closely related to those works that focus on the specifi-
cation of the robotic systems themselves. Here the discussion happens between
those that propose the use of separate (related) views of the system, using in-
dependent domain-specific languages, and those that try to use general purpose
modeling languages. One of the major problems with the former approach is
the combination of the languages, both horizontally (i.e., at the same level of
abstraction—see, e.g. [20]) and vertically (one example of this kind of verti-
cal combination for robotic systems is [1], that uses deep metamodeling [18] to
combine system descriptions at different levels).

We have explored in this paper the option of using a widely used general-
purpose modeling language, such as UML, augmented with OCL for the speci-
fication of integrity constraints, and pre- and postconditions of operations. On
top of them we have used some extensions and tools: (a) to be able to exe-
cute the specifications we have used SOIL [2]; (b) the USE model validator has
been employed to generate instances of the model; finally, we have shown how
the UML/OCL type system can be easily extended to account for some spe-
cific features—namely measurement uncertainty, by defining type UReal as an
extension of type Real. We wanted to follow this path to study its feasibility
and expressive power, departing from other approaches that enrich UML with
Profiles (such as MARTE [13] or SysML [11]) and make use of action languages
like Alf [10] for executing fUML [12] specifications.

A comparison with the pros and cons of our approach with regard to those
others is part of our future work, now that we have seen that we are able to get a
relevant set of meaningful and workable specifications of these kinds of systems.

4 Conclusions and Future Work

In this paper we have illustrated the possibilities that UML and OCL offer to
model robotic systems at a high-level of abstraction but still providing some key
benefits to the system designer. In particular, we are able to describe in a formal

14

manner its structure and behaviour; to incorporate some physical characteris-
tics such as measurement uncertainty; to validate of some of the structural and
behavioural properties of the system, and to perform simulation.

There are several lines of work that we plan to address next. First, we want to
explore the limitations of our approach due to the type of notations employed.
For example, both UML and OCL can handle discrete quantities but are not
naturally devised to deal with continuous variables. Some of them are difficult
to overcome, but others could have relatively easy solutions. For example, we
want to add randomness and other types of uncertainty into our OCL models—
e.g., the fact that up to 5% of the generated parts can be defective. We also want
to be able to conduct performance analyses about the production time of the
system, using e.g. model attributes that specify the time each machine needs to
process a part—adding probability distributions to the description of the types
of the attributes.

Finally, given that our models just represent early prototypes of the system
to study the feasibility of the solution, we want to connect our models to the
different analysis and simulation tools currently used in industry, each one able to
conduct more fine-grained and precise validations, but of a more heterogeneous
nature. In this way, we expect our high-level models to play a pivotal and unifying
role that permit connecting the modeling and simulation tools needed for the
complete design and validation of these systems.

References

1. Atkinson, C., Gerbig, R., Markert, K., Zrianina, M., Egurnov, A., Kajzar, F.:
Towards a Deep, Domain Specific Modeling Framework for Robot Applications.
In: Proc. of MORSE’14). Number 1319 in CEUR WS Proceedings (2014) 1–12

2. Büttner, F., Gogolla, M.: On OCL-Based Imperative Languages. Science of Com-
puter Programming 92 (2014) 162–178

3. Djukić, V., Popović, A., Tolvanen, J.P.: Domain-Specific Modeling for Robotics:
From Language Construction to Ready-made Controllers and End-user Applica-
tions. In: Proc. 3rd WS Model-Driven Robot Software Engineering. MORSE’16,
ACM (2016) 47–54

4. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Science of Computer Programming 69 (2007)
27–34

5. Gogolla, M., Hilken, F.: Model Validation and Verification Options in a Contem-
porary UML and OCL Analysis Tool. In Oberweis, A., Reussner, R., eds.: Proc.
Modellierung (MODELLIERUNG’2016), GI, LNI 254 (2016) 203–218

6. Hinkel, G., Groenda, H., Vannucci, L., Denninger, O., Cauli, N., Ulbrich, S.: A
Domain-Specific Language (DSL) for Integrating Neuronal Networks in Robot Con-
trol. In: Proc. 2015 Joint MORSE / VAO WS Model-Driven Robot Software En-
gineering and View-based Software-Engineering, ACM (2015) 9–15

7. JCGM 100:2008: Evaluation of measurement data – Guide to the expression of
uncertainty in measurement (GUM). Joint Committee for Guides in Metrology.
(2008) http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.
pdf.

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

15

8. Mayerhofer, T., Wimmer, M., Vallecillo, A.: Computing with Quantities. (2016)
https://github.com/moliz/moliz.quantitytypes.

9. Morozov, A., Janschek, K., Krüger, T., Schiele, A.: Stochastic Error Propagation
Analysis of Model-driven Space Robotic Software Implemented in Simulink. In:
Proc. 3rd WS Model-Driven Robot Software Engineering. MORSE’16, ACM (2016)
24–31

10. Object Management Group: Action Language for Foundational UML (FUML),
version 1.0.1. (October 2013) OMG Document formal/2013-09-01, http://www.

omg.org/spec/ALF/1.0.1/PDF/.
11. Object Management Group: OMG Systems Modeling Language (SysML), version

1.4. (January 2016) OMG Document formal/2016-01-05.
12. Object Management Group: Semantics Of A Foundational Subset For Executable

UML Models (FUML), version 1.2.1. (January 2016) OMG Document formal/2016-
01-05, http://www.omg.org/spec/FUML/1.2.1/PDF/.

13. OMG: UML Profile for Modeling and Analysis of Real-time and Embedded Sys-
tems (MARTE). Object Management Group. (June 2008) OMG doc. ptc/08-06-08.

14. Opfer, S., Niemczyk, S., Geihs, K.: Multi-Agent Plan Verification with Answer
Set Programming. In: Proc. 3rd WS Model-Driven Robot Software Engineering.
MORSE’16, ACM (2016) 32–39

15. Orue, P., Morcillo, C., Vallecillo, A.: Expressing measurement uncertainty in soft-
ware models. In: Proc. of QUATIC’16. (2016) 1–10

16. Ringert, J.O., Rumpe, B., Wortmann, A.: Tailoring the MontiArcAutomaton
Component & Connector ADL for Generative Development. In: Proc. 2015 Joint
MORSE / VAO WS Model-Driven Robot Software Engineering and View-based
Software-Engineering, ACM (2015) 41–47

17. Ringert, J.O., Roth, A., Rumpe, B., Wortmann, A.: Code Generator Composition
for Model-Driven Engineering of Robotics Component and Connector Systems. In:
Proc. of MORSE’14). Number 1319 in CEUR WS Proceedings (2014) 63–74

18. Rossini, A., de Lara, J., Guerra, E., Rutle, A., Wolter, U.: A formalisation of deep
metamodelling. Formal Asp. Comput. 26(6) (2014) 1115–1152

19. Ruscio, D.D., Malavolta, I., Pelliccione, P.: A Family of Domain-Specific Languages
for Specifying Civilian Missions of Multi-Robot Systems. In: Proc. of MORSE’14).
Number 1319 in CEUR WS Proceedings (2014) 13–26

20. Vallecillo, A.: On the combination of domain specific modeling languages. In: Proc.
of ECMFA’10. Volume 6138 of LNCS., Springer (2010) 305–320

Appendix

This version of the paper includes an appendix showing additional material. In
future versions of the paper the appendix will be available as a separate web
document and will be reachable from the references.

https://github.com/moliz/moliz.quantitytypes
http://www.omg.org/spec/ALF/1.0.1/PDF/
http://www.omg.org/spec/ALF/1.0.1/PDF/
http://www.omg.org/spec/FUML/1.2.1/PDF/

(An Example for) Formally Modeling Robot Behavior
with UML and OCL - Additional Material

Martin Gogolla, University of Bremen, Germany
Antonio Vallecillo, Universidad de Malaga, Spain

1. Textual model specification in USE
2. Soil commands for object diagram generation
3. Configuration for model validator
4. Sequence and object diagram series describing system behavior
5. Object diagram series with coordinates describing system behavior

model RobotArm
class Coordinate
attributes
 x : UReal
 y : UReal
 xy : Tuple(x:Real,y:Real) derived: Tuple{x:x.x,y:y.x}
operations
 coincide(c:Coordinate):Boolean =
 self.x.equals(c.x) and self.y.equals(c.y);
end

abstract class Element
attributes
 position : Coordinate
 xy : Tuple(x:Real,y:Real) derived: Tuple{x:position.x.x,y:position.y.x}
end
class Item < Element
end
abstract class Machine < Element
attributes
 counter:Integer init: 0
end
class Producer < Machine
operations
 start()
 begin
 declare it:Item;
 it:=self.generate();
 it.position:=self.position;
 self.output.put(it);
 if not self.output.output.oclIsUndefined() then
 self.output.output.elementReady();
 end
 end
 generate():Item
 begin
 result:=new Item;
 self.counter:=self.counter+1;
 end
end
class Consumer < Machine
operations
 elementReady()
 begin
 declare it: Item;
 it:=self.input.get(self.position);
 self.storageTray.put(it);
 self.counter:=self.counter+1;
 end
end

class RobotArm < Element
attributes
 tolerance: UReal
 calibrations: Integer init:0
operations
 moveTo(c:Coordinate)
 begin
 declare aux:Coordinate;
 aux := new Coordinate;
 aux.x := c.x.add(self.tolerance);
 aux.y := c.y.add(self.tolerance);
 self.position := aux;
 -- if the arm has an item grabbed, change its position
 if self.graspedItem->size() > 0 then
 self.graspedItem.position:=self.position;
 end
 end
 grasp(i:Item)
 begin
 declare b:Boolean, dummy:String;
 insert(self,i) into Grasp;
 -- maybe the movement has not been precise enough
 b:=self.position.coincide(i.position);
 if not b then -- if not, we calibrate the position
 self.position:=i.position;
 -- and then count that there was an error
 self.calibrations:=self.calibrations+1;
 end
 end
 pre notWithItem: graspedItem.oclIsUndefined()
 post withItem: graspedItem=i
 post calibrationsCount: not self.position@pre.coincide(i.position)
 implies calibrations = calibrations@pre + 1
 post reposition: self.position.coincide(i.position)
 drop()
 begin declare dummy:String;
 if self.graspedItem->size() > 0 then
 delete (self,self.graspedItem) from Grasp;
 end
 end
 post notWithItem: graspedItem.oclIsUndefined()
end
class Tray < Element
attributes
 cap:Integer -- capacity
operations
put(p:Item)
 begin declare dummy:String;
 insert(self,p) into IsIn;
 self.arm.moveTo(p.position);
 self.arm.grasp(p);
 self.arm.moveTo(self.position);
 self.arm.drop();
 end

pre notFull: self.items->size()<cap
pre armNotWithItemAtPre: arm.graspedItem=null
post ElementAdded: self.items=self.items@pre->append(p)
post armNotWithItemAtPost: arm.graspedItem=null
get(c:Coordinate):Item
 begin declare dummy:String;
 result:=self.items->at(1);
 delete(self,result) from IsIn;
 self.arm.moveTo(result.position);
 self.arm.grasp(result);
 self.arm.moveTo(c);
 self.arm.drop();
end
pre notEmpty: self.items->size()>0
pre armNotWithItemAtPre: self.arm.graspedItem=null
post FirstElementRemoved:
 result=self.items@pre->at(1) and
 self.items@pre=self.items->prepend(result)
post armNotWithItemAtPost: arm.graspedItem=null
size():Integer = self.items->size()
statemachines
psm PutGet
states
 init: initial
 Empty [self.items->size()=0]
 Normal [0<self.items->size() and self.items->size()<self.cap]
 Full [self.items->size()=self.cap]
transitions
 init -> Empty { create }
 Empty -> Normal { [self.cap>1] put() }
 Normal -> Normal { [self.items->size()<cap-1] put() }
 Normal -> Full { [self.cap>1 and self.items->size()=cap-1] put() }
 Empty -> Full { [self.cap=1] put() }
 Full -> Empty { [self.cap=1] get() }
 Full -> Normal { [self.cap>1] get() }
 Normal -> Normal { [self.cap>1 and self.items->size()>1] get() }
 Normal -> Empty { [self.items->size()=1] get() }
end
end
association Production between
 Producer [0..1] role input
 Tray [0..1] role output
end
association Consumption between
 Tray [0..1] role input
 Consumer [0..1] role output
end
association Storage between
 Machine [0..1] role consumer
 Tray [0..1] role storageTray
end

aggregation IsIn between
 Tray [1] role tray
 Item [*] role items ordered
end
aggregation Robot between
 Tray [1] role controller
 RobotArm [1] role arm
end
aggregation Grasp between
 RobotArm [0..1] role arm
 Item [0..1] role graspedItem
end
constraints
context Tray inv AtLeastOneElem:
 self.cap > 0
--
class UReal
attributes
 x : Real
 u : Real
operations
add(r : UReal) : UReal
 begin
 declare aux : UReal;
 aux := new UReal;
 aux.x := self.x + r.x;
 aux.u := (self.u*self.u + r.u*r.u).sqrt();
 result := aux;
 end
minus(r : UReal) : UReal
 begin
 declare aux : UReal;
 aux := new UReal;
 aux.x := self.x - r.x;
 aux.u := (self.u*self.u + r.u*r.u).sqrt();
 result := aux;
 end

mult(r : UReal) : UReal
 begin
 declare aux : UReal;
 aux := new UReal;
 aux.x := self.x*r.x;
 aux.u := (r.u*r.u*self.x*self.x + self.u*self.u*r.x*r.x).sqrt();
 result := aux;
 end

divideBy(r : UReal) : UReal
 begin
 declare aux : UReal;
 aux := new UReal;
 aux.x := (self.x/r.x + (self.x*r.u*r.u)/(r.x*r.x*r.x));
 aux.u := ((self.u*self.u/r.x) +
 ((r.u*r.u*self.x*self.x)/(r.x*r.x*r.x*r.x))).sqrt();
 result := aux;
 end
abs() : UReal
 begin
 declare aux : UReal;
 aux := new UReal;
 aux.x := (self.x).abs();
 aux.u := self.u;
 result := aux;
 end

neg() : UReal
 begin
 declare aux : UReal;
 aux := new UReal;
 aux.x := -self.x;
 aux.u := self.u;
 result := aux;
 end
floor() : UReal
 begin
 declare aux : UReal;
 aux := new UReal;
 aux.x := self.x.floor();
 aux.u := self.u;
 result := aux;
 end

round() : UReal
 begin
 declare aux : UReal;
 aux := new UReal;
 aux.x := self.x.round();
 aux.u := self.u;
 result := aux;
 end
inverse() : UReal
 begin
 declare aux : UReal;
 aux := new UReal;
 aux.x := 1.0;
 aux.u := 0.0;
 result := aux.divideBy(self);
 end

power (s : Real) : UReal
 begin
 declare aux : UReal;
 aux := new UReal;
 aux.x := self.x.power(s) +
 ((s*(s-1))/2)*self.x.power(s-2)*(self.u*self.u);
 aux.u := s*self.u*self.x.power(s-1);
 result := aux;
 end

sqrt() : UReal
 begin
 declare aux : UReal;
 aux := self.power(0.5);
 result := aux;
 end

-- comparison operations
equals(r : UReal) : Boolean
 = (self.x - self.u).max(r.x - r.u) <=
 (self.x + self.u).min(r.x + r.u)

distinct(r : UReal) : Boolean = not self.equals(r)
compareTo(r : UReal) : Integer
 = if self.equals(r) then 0
 else if self.lessThan(r) then -1
 else 1
 endif
 endif
lessThan(r : UReal) : Boolean
 = (self.x<r.x) and ((self.x + self.u)<(r.x - r.u))
lessEq(r : UReal) : Boolean
 = self.lessThan(r) or self.equals(r)

max(r : UReal) : UReal
 = if r.lessThan(self) then self else r endif

min(r : UReal) : UReal
 = if r.lessThan(self) then r else self endif
end
constraints -- precondition on operations
context UReal::divideBy(r : UReal) : UReal
pre: (r.x - r.u).max(0) > (r.x + r.u).min(0) -- not r.equals(0,0)
context UReal::sqrt() : UReal
pre: (self.x + self.u)>=0.0
context UReal::inverse() : UReal
pre: (self.x - self.u).max(0) > (self.x + self.u).min(0)
-- not self.equals(0.0)

Soil commands for object diagram generation
!new UReal('x1')
!new UReal('x2')
!new UReal('x3')
!new UReal('x4')
!x1.x :=10.0
!x1.u :=0.001
!x2.x :=30.0
!x2.u :=0.001
!x3.x :=20.0
!x3.u :=0.001
!x4.x :=40.0
!x4.u :=0.001
!new UReal('y1')
!new UReal('y2')
!new UReal('y3')
!new UReal('y4')
!y1.x :=10.0
!y1.u :=0.001
!y2.x :=10.0
!y2.u :=0.001
!y3.x :=0.0
!y3.u :=0.001
!y4.x :=0.0
!y4.u :=0.001
!new UReal('tolR1')
!tolR1.x :=0.01 --- 0.01
!tolR1.u :=0.001
!new UReal('tolR2')
!tolR2.x :=0.01 --- 0.01
!tolR2.u :=0.001
!new Coordinate('producerPosition')
!producerPosition.x:=x1
!producerPosition.y:=y1
!new Coordinate('consumerPosition')
!consumerPosition.x:=x2
!consumerPosition.y:=y2
!new Coordinate('TrayTPosition')
!TrayTPosition.x:=x3
!TrayTPosition.y:=y3
!new Coordinate('storageTrayPosition')
!storageTrayPosition.x:=x4
!storageTrayPosition.y:=y4
!new Producer('P')
!P.position:=producerPosition
!new Consumer('C')
!C.position:=consumerPosition
!new Tray('T')
!T.position:=TrayTPosition
!T.cap:=3

!new RobotArm('RobotArm1')
!RobotArm1.position:=TrayTPosition
!RobotArm1.tolerance:=tolR1
!new Tray('S') -- storage tray
!S.position:=storageTrayPosition
!S.cap:=3
!new RobotArm('RobotArm2')
!RobotArm2.position:=storageTrayPosition
!RobotArm2.tolerance:=tolR2
!insert(P,T) into Production
!insert(T,C) into Consumption
!insert(T,RobotArm1) into Robot
!insert(C,S) into Storage
!insert(S,RobotArm2) into Robot
!P.start()

Configuration for model validator
Integer_min = 0
Integer_max = 15
Real = Set{1.1, 2.2, 3.3, 4.4}
--- Coordinate
Coordinate_min = 0
Coordinate_max = 4
--- Item
Item_min = 0
Item_max = 1
-- Machine
Storage (consumer:Machine, storageTray:Tray) - - - - - - - - - - - - -
Storage_min = 0
Storage_max = -1
--- Producer
Producer_min = 1
Producer_max = 1
Production (input:Producer, output:Tray) - - - - - - - - - - - - - - -
Production_min = 0
Production_max = -1
--- Consumer
Consumer_min = 1
Consumer_max = 1
--- RobotArm
RobotArm_min = 0
RobotArm_max = 1
Grasp (arm:RobotArm, graspedItem:Item) - - - - - - - - - - - - - - - -
Grasp_min = 0
Grasp_max = -1
--- Tray
Tray_min = 0
Tray_max = 1
Consumption (input:Tray, output:Consumer) - - - - - - - - - - - - - -
Consumption_min = 0
Consumption_max = -1
IsIn (tray:Tray, items:Item) -
IsIn_min = 0
IsIn_max = -1
Robot (controller:Tray, arm:RobotArm) - - - - - - - - - - - - - - - -
Robot_min = 0
Robot_max = -1
--
UReal
UReal_min = 0
UReal_max = 4

	(An Example for)Formally Modeling Robot Behaviorwith UML and OCL

