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Abstract. Robots are found in most, if not all, modern production facil-
ities and they increasingly enter other domains, e.g., health care. Robots
participate in complex processes and often need to cooperate with other
robots to fulfill their goals. They must react to a variety of events, both
external, e.g., user inputs, and internal, i.e., actions of other compo-
nents or robots in the system. Designing such a system, in particular
developing the software for the robots contained in it, is a difficult and
error-prone task. We developed a formal scenario-based modeling method
which supports engineers in this task. In short intuitive scenarios engi-
neers can express requirements, desired behavior, and assumptions made
about the system’s environment. These models can be created early in
the design process and enable simulation as well as an automated formal
analysis of the system and its components. Scenario-based models can
drive the execution at runtime or can be used to generate executable
code, e.g., programmable logic controller code. In this paper we describe
how to use our scenario-based approach to not only improve the quality
of a system through formal methods, but also how to reduce the manual
implementation effort by generating executable PLC code.
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1 Introduction

Robots are found in many domains, e.g., manufacturing, transportation, or
health care. Especially in manufacturing they are ubiquitous. Modern produc-
tion systems implement complex processes, often requiring the cooperation of
many robots to achieve their desired goals. Each robot may even be involved in
several concurrent processes, making the design of its behavior a difficult and
error-prone task. The robot has to react to a multitude of events, both external
events, e.g., sensor inputs, and internal events, i.e., actions of other robots in the
system. The inherent complexities of modern manufacturing processes makes it
difficult to develop robot software which is free of defects, i.e., which, under all
possible circumstances, makes the robot act or react properly. The specification,
from which an implementation is derived, may be inconsistent and the manual
implementation thereof itself may introduce further defects. The task of design-
ing such systems becomes even more difficult when considering non-functional
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requirements such as reducing the total energy consumption of a system, e.g.,
by synchronizing the robots’ movement such that their braking energy can be
leveraged instead of being wasted as heat.

We developed a formal, yet still intuitive scenario-based specification ap-
proach to support engineers with the difficult design of such systems. Our ap-
proach uses short scenarios to model goals/requirements, desired behavior and
assumptions made about the environment. Scenarios are sequences of events,
similar to how engineers describe requirements to each other: “When A and
B happen, then component C1 must do D, followed by C2 doing E.” These se-
quences are used to intuitively describe when events or actions may, must, or
must not occur [1,14]. The formal nature of scenario-based specifications al-
lows applying powerful analysis techniques early in the design process. Through
simulation and controller synthesis, which, if successful, can prove that the re-
quirements defined in the specification are consistent, defects can be found and
fixed early during development. The same techniques used for simulation can be
used to directly execute a specification at runtime [15] and the techniques used
forcontroller synthesis can be used to automatically generate executable code.
This reduces manual implementation effort significantly, thus mitigating some
of the cost of writing a formal specification. With mature enough tool support,
an overall reduction in development costs could even be achieved.

In this paper we present an approach for generating executable code for
Programmable Logic Controllers (PLCs) from aforementioned scenario-based
specifications. This enables engineers to use formal methods, e.g., checking if all
requirements are consistent, to ensure the correctness of the specification and
then to generate code which is correct by construction. A PLC program must
handle two concerns: 1) it must correctly decide when to perform which atomic
action, e.g., when to move which robot arm to which location, and 2) it must
implement each atomic action, e.g., moving a specific robot arm to a specific lo-
cation. Our approach generates code handling the first concern, leaving only the
implementation of atomic actions to engineers. When looking at our approach
from the point of view of Model Driven Architecture [20], a scenario-based spec-
ification would be a Platform Independent Model of a system and the generated
PLC code, after an implementation of each atomic action has been added, would
be a Platform Specific Model of the same system. The later can then be used
directly as the software for an actual physical version of the specified system.

The remainder of this paper is structured as follows. Sect. 2 introduces an
example used for explanation and discussion throughout the paper. Sect. 3 and
4 introduce scenario-based modeling and controller synthesis. Sect. 5 builds on
these foundations to describe how to generate PLC code from such a controller.
The paper finishes with related work and a conclusion in Sect. 6 and 7.

2 Example

To explain and discuss our approach we use a production system example, shown
in Fig. 1. It models a typical manufacturing process. Blank work items arrive via
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a feed belt, which has a sensor telling a controller about the arrival of new work
items. These blanks are then picked up by a robot arm and put into a press,
which will press the blanks into useful items. These pressed items are then picked
up by another robot arm which will put the items on a deposit belt which will
transport the items to their next destination.

feed arm

deposit armdeposit belt

feed belt

press

c:Controller

Fig. 1. A production system consisting of two robot arms, each adjacent to a conveyor
belt, a press, and a software-based controller sending instructions to other component
as well as processing their sensor inputs.

The specification for this example models the following goals G and assump-
tions A:

G1 When a new blank arrives, the feed arm must pick it up when possible.
G2 After picking up an item, the feed arm must move to the press, release the

item into the press (when the press is ready), and finally move back to the
feed belt.

G3 When an item is put into the press, the press must start pressing.
G4 When the press finishes, the deposit arm must pick the pressed item up

when possible.
G5 After picking up an item, the deposit arm must move to the deposit belt,

release the item onto the deposit belt, and finally move back to the press.
A1 The feed arm is able to pick up every blank before the next one arrives.
A2 After being instructed to press an item, the press will eventually finish.
A3 After a robot arm is instructed to move to a new location, it will eventually

arrive at the new location.
A4 After a robot arm is instructed to pick up an item, it will eventually pick

up that item.
A5 After a robot arm is instructed to release an item, it will eventually release

that item.

Goals G1-G5 define the systems desired behavior as described at the begin-
ning of this chapter. They also include additional conditions, e.g., “[...] the feed
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arm must pick it up when possible.” in G1. These conditions express additional
structural conditions required to fulfill certain goals. In the same example, G1,
a new blank may arrive while the feed arm is still delivering the previous blank
or is still on its way back to the feed belt. In these cases the feed arm must only
be instructed to pick up the newly arrived blank when it is waiting at the press.

Assumption A1 specifies that the feed arm is able to pick up arriving blanks
more frequently than the frequency of arrival of new blanks. This assumption
implies that the system is able to handle its workload without a queue of unpro-
cessed blanks forming at the feed belt. Assumptions A2-A5 specify that robot
arms and the press will eventually finish their tasks after being instructed to
perform a certain action. These assumptions are actually important to ensure
that the specification is realizable, since they basically specify that system is
operating normally, i.e., the components are working as intended.

3 Scenario-based Modeling

In this section we introduce our scenario-based modeling approach, which we
use to write formal specifications. It is based on DSL we developed for modeling
scenarios, called the Scenario Modeling Language (SML).

3.1 Scenario Modeling Language

The Scenario Modeling Language (SML) [16] is a DSL we developed to offer
engineers an easy to use way to write formal, scenario-based specifications. It is
a text-based variant of Life Sequence Charts [10,18], offering a similar feature set
with a few extensions. Listings 1 shows the specification of our production system
example. Comments next to each scenario indicate which goal or assumption they
represent. Some lines have been omitted for brevity.

A specification references a domain model (line 1) and has a name (line 2).
The domain model is a class model of the different components in the speci-
fied system. In our example it contains classes such as RobotArm and Press.
Theses classes model each component type’s attributes and possible events it
can receive. Events can be actions it should perform, e.g., a RobotArm can pick
up an item, or sensor events it may be notified of, e.g., the Controller can be
notified of the arrival of a new blank. The specification defines which compo-
nents are software-controllable (line 4) with all other classes automatically being
interpreted as uncontrollable, sometimes also called environment-controllable.
Non-spontaneous events (lines 5-13) are events which cannot occur unless en-
abled, e.g., the event pressingFinished cannot occur unless assumption A2 is
active (lines 51-54) and is in a state in which the second line is expected next.
Other events, sent by uncontrollable objects and being the initializing event of
a scenario (e.g., blankArrived) can occur spontaneously. This then triggers the
creation of an active scenario, i.e., an instance of a scenario. Active scenarios
have one or more references to enabled events, i.e., events which are expected
next. When PressEventuallyFinishes (lines 51-54) is activated by a startPressing
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1 import "../model/productioncell.ecore"
2 specification ProductioncellSpecification {
3 domain productioncell
4 controllable { Controller }
5 non-spontaneous events {
6 Controller.pickedUpItem
7 Controller.arrivedAt
8 Controller.releasedItem
9 Controller.pressingFinished

10 RobotArm.setCarriesItem
11 RobotArm.setLocation
12 Press.setHasItem
13 }
14 collaboration FeedBeltBehavior {
15 static role Controller controller
16 static role ConveyorBelt feedBelt
17 static role RobotArm feedArm
18 static role Press press
19
20 guarantee scenario BlankArrives { // G1
21 feedBelt -> controller.blankArrived()
22 wait [feedArm.location == feedBelt && !feedArm.carriesItem]
23 urgent controller -> feedArm.pickUp()
24 }
25 guarantee scenario ArmDeliversItemToPress { // G2
26 feedArm -> controller.pickedUpItem()
27 urgent controller -> feedArm.moveTo(press)
28 feedArm -> controller.arrivedAt(press)
29 wait [!press.hasItem]
30 urgent controller -> feedArm.releaseItem()
31 feedArm -> controller.releasedItem()
32 urgent controller -> feedArm.moveTo(feedBelt)
33 }
34 // new blanks are picked up before next one arrives (A1)
35 }
36 collaboration PressBehavior {
37 static role Controller controller
38 static role RobotArm feedArm
39 static role RobotArm depositArm
40 static role Press press
41
42 guarantee scenario PressStartsPressing { // G3
43 feedArm -> controller.releasedItem()
44 urgent controller -> press.startPressing()
45 }
46 guarantee scenario PickUpPressedItem { // G4
47 press -> controller.pressingFinished()
48 wait [depositArm.location == press && !depositArm.carriesItem]
49 urgent controller -> depositArm.pickUp()
50 }
51 assumption scenario PressEventuallyFinishes { // A2
52 controller -> press.startPressing()
53 strict eventually press -> controller.pressingFinished()
54 }
55 }
56 collaboration DepositBeltBehavior {
57 // deposit arm transports pressed items (G5); similar to G2
58 }
59 collaboration RobotArmBehavior {
60 dynamic role Controller controller
61 dynamic role RobotArm arm
62 dynamic role Location targetLocation
63 static role Press press
64
65 assumption scenario ArmMovesToLocation { // A3
66 controller -> arm.moveTo(bind targetLocation)
67 strict eventually arm -> controller.arrivedAt(targetLocation)
68 strict committed arm -> arm.setLocation(targetLocation)
69 }
70 // arm picks up item (A4) and arm releases item (A5); both similar to A3
71 }
72 }

Listing 1. Excerpt of a specification for our production system example; some scenarios
have been omitted for brevity
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event, it will point to line 53, indicating that this scenario waits for a pressingFin-
ished event. When an event occurs, which corresponds to an enabled event in an
active scenario, the reference to this enabled event advances to the next event.
When all references advance past the last event in a scenario, it terminates.

Roles (e.g., lines 15-18) are used similarly to lifelines in sequence diagrams.
Static roles are bound when the system is initialized and dynamic roles are
bound when an active scenario is created. Binding a role means assigning an
object from an object model, itself an instance of the same domain model, to
this role. The abstraction through roles allows reusing the same specification for
different object models which model different configurations of the same type of
system, e.g., production systems with varying numbers of robot arms. In lines
60-69 the use of dynamic roles is shown. Any object of the proper class from the
object model can be bound to these roles. E.g., when an object of class Controller
sends the event moveTo to an object of class RobotArm, an active instance of
scenario ArmMovesToLocation (lines 65-69) is created. In this active scenario,
the role controller is played by the object which sent the initial event and the
role arm is played by the object which received the event. Dynamic roles can
even be bound to parameters (line 66) or to an object referenced by an object
already bound to a role (not shown). Multiple copies of the same scenario with
different role bindings can be active concurrently.

Events use different keywords to enforce liveness and safety conditions. Events
flagged as committed, urgent, or eventually must not be enabled forever. Commit-
ted and urgent events must occur immediately, allowing only other committed or
urgent events to occur beforehand. Committed events take priority over urgent
events. An event which must occur eventually can occur at an arbitrary time in
the future, i.e., the system can choose to wait. Strict events enforce a strict order.
Events which occur out of order generally interrupt, i.e., terminate, a scenario.
If line 22 in an active scenario is enabled and blankArrived occurs (line 21; same
active scenario), this active scenario is interrupted, i.e., terminated. However,
if at least one enabled event is strict, an interruption causes a safety violation
instead. Safety violations must never occur.

Additional keywords offer flow control. Wait is used to wait for a certain
condition to be satisfied before the next message is enabled. The keywords inter-
rupt and violation can be used to specify conditions, which are checked when the
event becomes enabled and may cause an interruption or a safety violation. If the
condition is not satisfied, the next event is immediately enabled. Furthermore,
there are while (repeat an event sequence while a condition holds), alternative
(branching within a scenario), and parallel (concurrent event sequences). Col-
laborations are used to group scenarios together and do not have any semantic
implications beyond roles only being usable within the collaboration in which
they are defined.

3.2 ScenarioTools

We implemented SML and algorithms for simulating and analyzing SML specifi-
cations as a collection of Eclipse plug-ins called ScenarioTools. Scenario-
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Tools is built on top of the Eclipse Modeling Framework (EMF) [27] and lever-
ages this fact to integrate other powerful tools, e.g., OCL [30] and Henshin [3].
This enables engineers to enhance SML specification with tools they are already
familiar with while still being able to use ScenarioTools’ simulation and anal-
ysis features, e.g., checking if a specification is realizable.

4 Controller Synthesis

In this section we give an overview of how controller synthesis works. We briefly
explain the play out algorithm, which gives our specifications execution seman-
tics used for simulation, analysis, and controller synthesis, and how it induces a
state space. Furthermore, we briefly explain controller synthesis, i.e., generating
a strategy for the system to behave so that it fulfills a specification.

4.1 Play out

The play out algorithm [18,19] defines how scenarios can be interwoven into valid
event sequences. Basically, the algorithm waits for the environment to choose an
event, activates and progress scenarios accordingly, and then picks a reaction
which is valid according to all active scenarios. Environment events can either
be spontaneous events or enabled non-spontaneous events and are events sent
by uncontrollable objects. When at least one system event, i.e., an event sent
by a controllable object, with a liveness condition, e.g., urgent, is enabled, play
out will pick one of these events. It honors particular priorities (e.g., picking
committed events first). In case all such events are flagged as eventually, the
play out may also choose to wait for the environment to act first. Events, which
due to strictness of an enabled event would directly lead to a safety violation, are
considered to be blocked. The play out algorithm never picks blocked messages.
A sequence of events sent by system objects enclosed by one environment event
on either end is called a super step.

For any given set of scenarios and a given object model the play out al-
gorithm generally has different valid events to choose from at any point. It is
non-deterministic. This properties induces a state space or graph as shown in
Fig. 2, an excerpt of the graph of our production system example (cf. Sect. 2
and 3). Each node represents a state, characterized by its active scenarios and
the attribute values of all objects, and each edge/transition represents an event.

This state space is a game graph. Each state is either controllable by the sys-
tem (= has only controllable outgoing transitions) or by the environment (= has
only uncontrollable outgoing transitions). These two players play against each
other. The system tries to fulfill its goals infinitely often given the assumptions
hold. I.e., it always tries to reach states in which no liveness condition must be
fulfilled and to reach them via a sequence of events which do not cause a safety
violation of the goals. The environment aims for the opposite. It tries to fulfill all
assumptions the same way the system fulfills its goals. But at the same time it
tries to force the system to violate at least one of its goals. This type of game is
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controller→feedArm.moveTo(press)

150 5

6

381 7

feedBelt→controller.blankArrived()

depositArm→controller.arrivedAt(press)

feedArm→controller.arrivedAt(press)

controller→feedArm.releaseItem() feedArm→controller.arrivedAt(press)

Fig. 2. Excerpt of a game graph induced by our example specification. Controllable
events, i.e., events send by controllable objects, are represented by solid arrows. Uncon-
trollable events are represented by dashed arrows. Set-events, e.g., setLocation, have
been omitted for brevity.

called a GR(1) game. We impose an additional goal on the system, in particular
we enforce the condition that each super step must be finite, i.e., the system
must eventually wait for external events again.

4.2 Synthesis

Our controller synthesis is an implementation of Chatterjee’s attractor-based
GR(1) game solving algorithm [9].

A General Reactivity of rank 1 (GR(1)) condition is based on assumptions
and guarantees. Formally, as Linear Temporal Logic [25] formula, it is(∧

i

�♦ai

)
=⇒

∧
j

�♦gi


with ai = “assumption i is satisfied” and gj = “guarantee j is satisfied”. In-
formally, this formula is true iff at least one assumption can only be fulfilled
finitely often (i.e., goal states of this assumption are only visited a finite num-
ber of times in any infinite run of the system) or all guarantees can be fulfilled
infinitely often.

We map our specifications to a GR(1) condition by mapping active assump-
tion scenarios to assumptions ai and by mapping active guarantee scenarios to
guarantees gj . The goal states ai of an active assumption scenario all states,
in which this scenario has no liveness condition to fulfill and has never been
violated (tracked via a Boolean flag). Guarantee scenarios are mapped analo-
gously. Additionally, we introduce an extra guarantee whose goal states are all
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environment controlled to ensure that all super steps are finite for well-separated
specifications. In a well-separated specification [24], the system cannot force the
environment into a violation of the assumptions by any action it takes. Well-
separation is a desirable property of a good specification.

Chatterjee’s aforementioned game solving algorithm uses the assumptions’
and guarantees’ goal states to calculate attractors. Attractors of a conditions are
all states from which a player can guarantee reaching a goal state of this condi-
tion. E.g., a system attractor of gj is a state from which the system can ensure
to visit a goal state of gj regardless of the environment’s behavior. Chatterjee’s
algorithm iteratively removes environment dominions from the game graph. En-
vironment dominions are subsets of the game graph in which the environment
can fulfill all assumptions but the system cannot fulfill at least one guarantee.
Environment dominions are identified by finding states which are not system
attractors for at least one gj . Using the environment attractors of all ai, Chat-
terjee’s algorithm determines if the environment can fulfill all assumptions in
the subgraph defined by the non-attractor states of aforementioned gj . These
iterations are performed until the game graph cannot be reduced further.

The states retained after the algorithm finishes are called winning states.
They contain a strategy in which the system can guarantee to fulfill the GR(1)
condition defined by all assumptions and guarantees. If the initial state of the
game graph is a winning state, the specification is realizable, i.e., the requirements
and behavior defined by the scenarios are consistent. Using the same attractor
approach, we can extract a strategy (also: controller) from the winning states. A
strategy is similar to a game graph but contains exactly one outgoing transition
for each controllable state (Fig. 2 happens to be a strategy). It deterministically
specifies what the system must do for any valid environment. These strategies
serve as the basis for generating Structured Text to execute on a PLC.

5 Generating Executable Code

In this section we describe how to generate Structured Text from a synthesized
controller. Using a controller synthesized from a scenario-based specification as
a basis implies that the generated code fulfills all requirements as intended and
that the requirements are consistent. A synthesized controller contains events
which are only necessary for defining and checking a GR(1) condition but which
serve no purpose in the generated PLC code. Thus, we explain a pre-processing
step of the controller to reduce it to events of interest for code generation. After
that, we describe how to generate executable PLC and finish the section with a
discussion of possible extensions to our approach.

5.1 Pre-processing the Controller

Fig. 3 shows an excerpt of a synthesized controller including a setLocation event
which is required to be able to express conditions such as the wait condition in
line 48 of Listing 1. However, this event is not useful for code generation and



10

thus should be removed, as shown in Fig. 2. In general, expert knowledge of the
domain is necessary to identify events to remove and thus an engineer should be
able to provide a list of such events. A tool can still provide helpful suggestions
for removal based on heuristics, though. We propose two heuristics, 1) events
sent by uncontrollable objects to other uncontrollable objects, and 2) set-events.
Either of these two heuristics would be sufficient to propose the proper list of
events to remove to the engineer in our example specification. When removing
events, transitions have to be updated, such as the outgoing transition of state
150 in Fig. 3 which must point directly to state 6 after removal of 151, which is
no longer necessary after removing setLocation(*).

150 6

depositArm→controller.arrivedAt(press)

151

depositArm→depositArm.setLocation(press)

Fig. 3. Variant of Fig. 2 including a setLocation event previously omitted.

In Structured Text, components are controlled by setting the appropriate
input attributes of function blocks, e.g., a block representing a specific robot arm
of the system, and waiting for the output attributes to be set to values signaling
that the desired action has been performed. The paradigm is: a component is
instructed to do something (setting of input attributes) and it signals when it
is done (setting of output attributes). In our approach, we adopt this paradigm
by having the engineer define event pairs which correspond to “do X” and “X
is done”. Such a pair is shown in Fig. 2: moveTo(press) (transition from 5 to 6)
and arrivedAt(press) (transition from 6 to 381; also outgoing transition of 7).
These event pairs are characterized by a controllable object S, e.g., controller,
sending an event to an uncontrollable object E, e.g., feedArm, instructing E
to perform an action, e.g., moveTo(press). Later, E signals back to S that is
now done performing this action. Again, heuristics can be used to support the
engineer in defining these pairs. We observed that these pairs often occur in
adjacent lines in scenarios, e.g., lines 27-28 and 30-31 in Listing 1. These event
pairs are necessary in the next step, which is to actually generate code from the
reduced controller.

5.2 Generating Structured Text

We use the pre-processed controller and event pair definitions provided by the
engineer to generate Structured Text, which is executable on PLCs. For simplic-
ity, we assume that there is exactly one controllable object in the system, e.g., the
controller shown in the center of Fig. 1. Our generated code consists of multiple
state machines. We translate the pre-processed controller to one state machine
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representing the controllable object. We call this the primary state machine, as it
governs the whole process: it tells each component, via the other state machines,
when to perform which action. We furthermore generate one state machine for
each uncontrollable object which receives events, i.e., represent components hav-
ing to perform an action. These state machines, called secondary state machines,
are much simpler. They consist of an idle state, which is their initial state, and
one additional state for each action that must be performed. Listing 2 shows an
example of the generated code.

1 CASE controllerState OF // primary state machine
2 0:
3 // perform start up; initialize components
4 1:
5 // ...
6 5:
7 feedArmState := 1;
8 controllerState := 6;
9 6:

10 IF feedBelt_controller_blankArrived THEN
11 feedBelt_controller_blankArrived := FALSE;
12 controllerState := 7;
13 ELSIF feedArm_controller_arrivedAt_press THEN
14 feedArm_controller_arrivedAt_press := FALSE;
15 controllerState := 381;
16 END_IF
17 7:
18 // ...
19 END_CASE
20 CASE feedArmState OF // secondary state machine for feed arm
21 0:
22 // idle
23 1:
24 // controller->feedArm.moveTo(press)
25 feedArmFB.xMoveRelExecute := TRUE; // perform example action
26 IF feedArmFB.xFunDone THEN // is example action done?
27 feedArmFB.xMoveRelExecute := FALSE; // clean-up after example action
28 feedArm_controller_arrivedAt_press := TRUE;
29 feedArmState := 0;
30 END_IF
31 2:
32 // controller->feedArm.moveTo(feedBelt)
33 // ...
34 END_CASE
35 CASE depositArmState OF
36 // ...
37 END_CASE
38 CASE pressState OF
39 // ...
40 END_CASE
41 // function blocks
42 feedArmFB(...);
43 depositArmFB(...);
44 pressFB(...);

Listing 2. Generated PLC code (Structured Text; excerpt)

Events sent by uncontrollable objects are mapped to Boolean variables, e.g.,
feedBelt controller blankArrived which corresponds to the sensor event triggered
by the arrival of a new blank item. These variables are used by the primary
state machine (lines 1-19) to decide when to switch to which state (lines 10-16).
This state machine instructs the secondary state machines to perform actions as
called for by the synthesized controller, e.g., lines 7-8 correspond to the transition
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from state 5 to 6 in Fig. 2. The previously defined event pairs are used to gener-
ate this code. Based on the knowledge that controller→feedArm.moveTo(press)
and feedArm→controller.arrivedAt(press) are a pair, line 7 can be generated
to instruct the feed arm’s state machine (lines 20-34) to switch to the proper
state to perform this action. The same pair definition is used to generate line
28, in which the feed arm state machine informs the primary state machine via
a Boolean variable that is done performing the desired action. This separation
into primary and secondary state machines allows any arbitrary combination of
actions to be performed concurrently by different components.

The primary state machine is fully generated and does not need to be mod-
ified, unless specific operations need to be performed during start up (state 0,
which is empty by default; lines 2-3). The secondary state machines are however
actually only stubs after generation. Listing 2 shows an example after an engi-
neer manually added the code in lines 25 and 27 and the condition in line 26.
In general, after generating the Structured Text from a synthesized controller,
each state in the secondary state machines contains some boiler plate code, in
particular the if-statement with an empty condition but a body that already
sets the appropriate Boolean and state variables (lines 28-29), and some com-
ments telling the engineer which atomic action should be performed in this state.
These stubs can then easily be extended by an engineer by setting and checking
the inputs and outputs of the appropriate function block. The proper function
block definitions (lines 42-44) have to be added manually as they are platform-
specific. Additionally, code for checking sensor events which are not part of an
event pair, e.g., when to set feedBelt controller blankArrived to TRUE, has to
be added manually as well.

5.3 Extensions

We assumed that there is only one controllable object in the system. As an
extension to support multiple controllable objects, i.e., multiple software con-
trollers, multiple variants of the specification can be generated, each modeling
only one software controller as controllable and treating the other controllers as
environment objects. We are looking into algorithms supporting engineers with
this step. Keeping a distributed system properly synchronized is a difficult task.

Event pairs are defined during pre-processing. This implies that only the
success case, i.e., the action can actually be performed, can be modeled. In-
stead, defining a mapping from controllable events (instructions) to sets of un-
controllable events (outcomes of the instructions) can easily rectify this. Different
outcomes for each action can be defined and the specification can include ap-
propriate reactions to each possible outcome, e.g., reacting differently when an
error is detected.

By including checks of the Boolean variables of environment events, which are
not expected to occur in a given state of the primary state machine, violations
of the assumptions can be detected. These could be used to put the system into
an emergency state which performs a shut down procedure.
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6 Related Work

There exists previous work on synthesizing controllers from LSC/SML-style sce-
narios [17,6,29,8], and other forms of scenarios [31,22]. Most of these approaches
produce finite state controllers or state machines as output, from which code can
be generated. Some consider code generation from such synthesized controllers
in particular for robotics/embedded applications [4,21].

The novelty of our synthesis procedure w.r.t. to the above is, first, that it sup-
ports scenario-based specifications with a greater expressive power—assume/-
guarantee specifications with multiple liveness objectives (GR(1)). Second, we
describe a scenario-based modeling and code generation methodology that specif-
ically targets the typical structure and nature of PLC software.

There is work on generating PLC code from state machines [26] or Petri
nets [12,28], and formal methods are used also for verifying PLC code [13,5].

Related is also other work on controller synthesis based on temporal logic
specification, such as LTL and its GR(1) fragment; some specifically consider
synthesis and code generation for robotics applications [7,23,11,2]. In contrast
to temporal logics based approaches, LSCs/SML aims to be more intuitive.

In previous own work, we considered the direct execution of SML specifica-
tions as scenarios@run.time [15]. Here, the scenarios are executed without the
prior synthesis of a finite-state controller. Such an approach has advantages and
disadvantages. For example, the prior synthesis does not only detect specifica-
tion flaws, but a synthesized controller can also contain the solution for resolving
issues related with under-specification. On the other hand, controller synthesis,
due to its computational complexity, may not be possible for bigger specifica-
tions, and then direct execution is a valuable option.

7 Conclusion

In this paper we presented an approach for generating Structured Text exe-
cutable on PLCs commonly found in the industry. We generate this code from
scenario-based specifications written in an intuitive DSL we developed. Using
this DSL, called Scenario Modeling Language (SML), engineers can easily define
requirements, desired behavior, and environment assumptions of a system. These
are defined in the form of assumption and guarantee scenarios, which have to be
fulfilled infinitely often. I.e., SML specifications express GR(1) conditions, giving
engineers a powerful class of conditions to express their goals in. The generated
code, which is correct by construction, uses multiple state machines to separate
the decision “when to perform which atomic action” from the implementation
of each atomic action. After code generation, engineers only need to implement
the atomic actions, with their complex interleaving into an implementation of
the desired process having already been generated.
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