
Evaluating a Graph Query Language for
Human-Robot Interaction Data in Smart

Environments

Norman Köster1, Sebastian Wrede12, and Philipp Cimiano1

1 Cluster of Excellence Center in Cognitive Interactive Technology (CITEC)
2 Research Institute for Cognition and Robotics (CoR-Lab),

Bielefeld University, Bielefeld Germany
{nkoester,swrede,cimiano}@techfak.uni-bielefeld.de,

Abstract. Solutions for efficient querying of long-term human-robot in-
teraction data require in-depth knowledge of the involved domains and
represents a very difficult and error prone task due to the inherent (sys-
tem) complexity. Developers require detailed knowledge with respect to
the different underlying data schemata, semantic mappings, and most im-
portantly the query language used by the storage system (e.g. SPARQL,
SQL, or general purpose language interfaces/APIs). While for instance
database developers are familiar with technical aspects of query lan-
guages, application developers typically lack the specific knowledge to
efficiently work with complex database management systems. Addressing
this gap, in this paper we describe a model-driven software development
based approach to create a long term storage system to be employed in
the domain of embodied interaction in smart environments (EISE). The
targeted EISE scenario features a smart environment (i.e. smart home)
in which multiple agents (a mobile autonomous robot and two virtual
agents) interact with humans to support them in daily activities. To
support this we created a language using Jetbrains MPS to model the
high level EISE domain w.r.t. the occurring interactions as a graph com-
posed of nodes and their according relationships. Further, we reused and
improved capabilities of a previously created language to represent the
graph query language Cypher. Lastly, in a third language we compose
the other languages, extend them where necessary, perform the required
model-to-model transformations and finally perform the desired artifact
generation. As a result, we present the EISE Query-Designer, a fully in-
tegrated workbench to facilitate data storage and retrieval by supporting
and guiding developers in the query design process and allowing direct
query execution without the need to have prior in-depth knowledge of the
domain at hand. To validate our approach we are currently conducting
an usability experiment to quantify the advantage of using the proposed
approach workbench in comparison to a baseline environment. In this
paper we report in detail on the study design, execution, first knowledge
gained from our experiments, and lastly the lessons learned from the
development process up to this point.



2

1 Introduction

Smart home technology is gaining more and more popularity and becomes in-
creasingly widespread. The most prominent implementations target support for
private households and are available in various complexities from a full system,
such as a KNX 3 system or a Apple Home Kit4, to rather simple personal assis-
tants, such as Alexa5 or the Amazon Dash Button. Beyond the deployment of
smart home technology in private homes, one can observe an increased adoption
in elderly care settings. Work in this area often further additionally incorporates
personal robots to support humans in their daily living and provide an embodied
interaction for them[1][2]. Our laboratory setup, the Cognitive Service Robotics
Apartment (CSRA), provides such an embodied interactive smart environment
(c.f. Figure 1)[3]. It is a fully equipped apartment that is extended with various
sensors (e.g. depth sensors, cameras, capacitive floor, light/temperature sensors)
and actuators (e.g. screens, colorable lights, audio). Besides two virtual agents
which allow users to interact verbally, there is a bi-manual mobile robot named
Floka operating autonomously within the apartment that allows embodied in-
teraction.

Fig. 1: An example picture from within the CSRA from the living room showing
an interaction with Floka in the apartment.

The Cognitive Service Robotics Apartment is used to develop new smart
home technology systems as well as to study man-machine interaction in the
context of smart environments. One central aspect of the CSRA project is con-
cerned with interaction relevant data/knowledge storage, retrieval and transfer
between agents and/or robots. Additionally to the robot eco-system, this envi-
ronment consists of multiple devices that provide data (motion sensors, cameras,
microphones, etc.), software components that generalise (person tracking, situ-
ation recognition, etc.), and other components that all employ different (and

3 https://www.knx.org
4 https://www.apple.com/ios/home/
5 https://developer.amazon.com/alexa

https://www.knx.org
https://www.apple.com/ios/home/
https://developer.amazon.com/alexa


3

often multiple) protocols (KNX, RSB, REST, etc.). Given the afore mentioned
amount of sensors and actuators employed, there is hence a large amount of data
of various modalities available which needs to be stored in a fashion that it can
be readily queried by application developers. Further, with the goal of long-term
applications the requirements for storage, retrieval and useful incorporation in
applications become a non trivial tasks - even for the application developers
themselves. The developers creating applications in this domain need to have
detailed knowledge with respect to the different underlying data schemata, se-
mantic mappings, etc. In addition, extensive knowledge about the query language
used by the storage system (e.g. SPARQL, SQL, or general purpose language
interfaces/APIs) is a requirement and depends on the chosen storage solution.
While database developers are familiar with the required details, application de-
velopers typically lack the specific knowledge to efficiently work with complex
database management systems.

Applying model-driven software development (MDSD) techniques can pro-
vide a variety of advantages, for instance the ability for code generation, analy-
sis/checking, or platform independence [4]. A core advantage for the application
in the EISE domain is to give application developers feedback at query de-
sign time rather than after design and execution (e.g. current query outcome,
expected query run duration, possible query improvements, etc.). Further, we
think that the extensive modeling accompanying MDSD will be a helpful tool
to handle the accidental complexity of the EISE domain and facilitate the task
of data exploration and querying for application developers and end and end
usersusers. Hence we applied a model-driven approach to create a data system
to be employed in the domain of embodied interaction in smart environments
with the primary goal to support and ease data retrieval. As a basis for the
approach we previously presented an ontology for modelling human machine in-
teraction in smart environments [5]. Using this declarative specification of the
EISE domain as a starting point we created multiple external domain specific
languages (DSLs). Generally there are clear benefits of DSL applications, such
as increased productivity, quality, validation and verification, and lastly pro-
ductive tooling [4]. In our application domain the latter can especially provide
developers with helpful functionality such as static analysis, code completion,
visualisations, or debugging at design time.

In particular, our model-driven approach provides implemented artifacts (e.g.
a specific IDE and access APIs) to support the query design and execution
for application developers. One central tool in this context is the EISE Query-
Designer, a full IDE that allows developers to design and execute queries against
the database setup within the fully integrated CSRA environment. This tool is
the result of a composition of multiple individual models designed independently
following a model-driven software development approach. While there are many
direct advantages of such a tool for developers (e.g. reduction of complexity,
static analysis, etc.), we still think there is a need for proper evaluation of the
usefulness and usability for developers. In this paper we hence report on our
approach for evaluating and quantifying the advantage of this specific IDE.



4

The remainder of this paper is structure as follows. In Section 2 we briefly
describe the created and reused languages and solutions as well as their composi-
tion that allows to produce a standalone IDE. In Section 3 we present a detailed
description of the study design and implementation we plan to use to evaluate
our work and present preliminary results from a small pilot study in Section 4.
Section 5 then discusses the results and lessons learned during the development
process. Lastly, after giving a short overview about related work in Section 6,
we end with a brief conclusion in Section 7.

2 Language Modeling

In the following we briefly describe the modelling approach and present the re-
sulting implementations. We chose Jetbrains MPS - one of the most feature rich
integrated DSL development platforms - over other tools (e.g. Eclipse Xtext6)
to implement our work for the following reasons[6][7]. From our point of view
the general design of languages is supported well within MPS as it provides an
integrated support for the development of structure, syntax, type systems, IDE,
and model-to-model transformations. The differentiation of languages, solutions
(more specifically: runtime solutions and build solutions), and their interoper-
ability allow for complex but yet flexible and easily extensible constructs. Fur-
ther, MPS supports the generation standalone IDEs and specific workbenches
tailored to individual specific requirements. Another very important feature is
the possibility to easily have multiple projections of our language(s) allowing
us to design different views for various roles in the development cycle. For ex-
ample, a database developer will have to make changes to the lowest levels of
the modeling using read-write queries while an application developer only needs
to execute simple read-only queries without write access to the database. This
difference can be addressed by providing multiple projections within the same
artifact or alternatively by generating different role specific artifacts based on
the individual needs.

We make explicit use of language extension and language embedding (meant
as a special case of language reuse) to model the domain in our framework (c.f.
Figure 2)[4]. Architecturally, we hence separate the framework into a total of
three languages and seven solutions (refer to Table 1 for a full listing). We chose
this level of abstraction as we intend to expand and add in further functionality
to allow for example annotation and grounding for data types, time (intervals),
and database back-ends. In this paper we only briefly describe three core lan-
guages of the framework: (1) the SecondLevelInstance (SLI) language, (2) the
Cypher language, and (3) the CypherSLI language. A full overview is presented
in Table 1, which lists all additional currently present languages and solutions
alongside their function in our architecture.

6 http://eclipse.org/xtext
7 https://github.com/corlab/mps-second-level-instance
8 https://github.com/corlab/Neo4jCypher

http://eclipse.org/xtext
https://github.com/corlab/mps-second-level-instance
https://github.com/corlab/Neo4jCypher


5

Fig. 2: Minimal architectural overview of the individual MPS languages, solu-
tions and their connections required to generate the artifacts for our user study.
Central languages are SecondLevelInstance (SLI), Cypher, and CypherSLI.

SecondLevelInstance (SLI)
The Second level instance (SLI) language supports the representation of an
application domain as a graph by providing nodes and edges alongside their
properties and according data types. The main reason to implement this
meta language is the fact that we perceive the application domain descrip-
tion as a dynamic and changing process. When using a MPS language to
model this sub-domain, domain experts would have to undergo changes in
this rather strict and complex environment. Defining this meta language
allows us to model the application domain as a solution which can easily
undergo variation while being easy to understand and require less detailed
knowledge about language design using MPS. We used this language to cre-
ate the EISE solution which models the embodied interaction in smart en-
vironments domain.



6

Table 1: List of languages and solutions alongside their functionality.

Name Function
L
a
n
g
u
a
g
e
s

SecondLevelInstance
(SLI)7

Language designed to model an application domain
by representing their concepts via nodes and edges
that compose a graph. The nodes and edges can have
properties with base data types.

Cypher8

Language to model the Cypher graph query lan-
guage. Also adds required concepts and function-
ality to execute queries against a database from
within the language. Further also allows embedding
of Cypher constructs within Java.

CypherSLI
Composing language that extends the SLI and
Cypher languages and allows to embed SLI solution
instances within Cypher queries

S
o
lu
ti
o
n
s

EISE
Actual application domain description of the EISE
domain that uses the SLI language to model the used
entities

Cypher.runtime
Runtime solution that models the required Neo4j
libraries to allow Cypher query execution

Cypher.build
Build solution to generate a MPS plug-in, language-
pack and standalone IDE of the Cypher language

CypherSLI.build
Build solution to generate a MPS plug-in, language-
pack and standalone IDE of the CypherSLI language

QueryDesigner.runtime
Runtime solution that models all further needed
Java libraries that are not covered by the
Cypher.runtime

QueryDesigner.build
Build solution to generate a general Query-Designer
MPS plug-in, language-pack and standalone IDE

EISEQueryDesigner.build

Build solution to generate the EISE Query-Designer,
a standalone IDE that fuses the Cypher CypherSLI
language together with the EISE domain descrip-
tion solution in order to generate an EISE domain
specific workbench.

Cypher
We decided to represent interaction relevant data as a graph and chose
Neo4j9 as our database back end. One important factor is Neo4j’s query lan-
guage Cypher, which is currently trying to gain further adoption with the
openCypher initiative10[8]. We think this language provides a good interface
for non domain experts to abstract and formulate their queries. The Cypher

9 http://neo4j.com
10 http://www.opencypher.org

http://neo4j.com
http://www.opencypher.org


7

language hence provides the Cypher graph query language as a MPS lan-
guage. It adds all required concepts to provide the functionality to compose
and execute queries against a database. Further, this language also allows
to embed Cypher constructs within Java programs. An initial approach was
already available as an open source language11 so we adopted the language
and extended it where necessary.

CypherSLI
Describing the application domain as a SLI solution requires us to create a
composing language that allows to combine any SLI solution with the Cypher
language. The CypherSLI language embeds SLI concepts within the Cypher
language and therefore provides this functionality. The language itself is
very simple and is mainly concerned with providing the correct scoping for
individual concepts of the extended languages. As a result, an according build
solution can combine this language with any application domain description
defined as a SLI solution. For our study we hence created the EISE Query-
Designer that uses the CypherSLI language and embeds the EISE solution
concepts (as depicted in Figure 2).

3 Workbench Evaluation

Generally speaking, evaluation of DSLs and IDEs represents a challenge as as-
sessment of their advantage requires to analyse various properties. Especially
due to their complexity the evaluation of a full integrated workbench is not
as straightforward and may requires long term observation of target users. Case
studies which draw lessons learned are an option for evaluation - especially when
the benefit is obvious and the user base is large [9]. A good alternative is to follow
an iterative testing approach and focus on clear defined metrics (such as lines of
code or perceived usability).

To properly evaluate our work we therefore decided to conduct a full user
study with potential application developers in an early phase of the development
to be able to feed back the results into the development. We let the target
audience use the EISE Query-Designer to solve several tasks and compare their
performance against a group which uses a baseline default environment (i.e. the
default Neo4j web interface). Our primary supporting hypothesis for this study
is that programmers formulate queries of various complexities easier and quicker
when using the extended Cypher Query language embedded in a specific IDE
compared to the normal condition. Secondary, we expect programmers who use
the provided tool to exhibit an improved learning curve when solving similar
tasks during the study (even though they have to familiarise themselves with
the tool first).

11 https://github.com/rduga/Neo4jCypher

https://github.com/rduga/Neo4jCypher


8

3.1 Study Design

We employ a between-group design with the following two distinct conditions
(c.f. Figure 3):

(A) Normal condition: Participants have no IDE support. Instead they use
the default web interface provided by Neo4j which will allow them to write
plain text Cyper queries to solve the four sets. The comprehension tasks
present queries to the participants using the default syntax highlighting in
the web interface (c.f. Figure 4 (a))

(B) Extended condition: Participants will use the EISE Query-Designer and
benefit from the IDE support. The IDE provides a custom projection of the
Cypher language and incorporates the EISE domain knowledge. Compre-
hensions tasks are presented directly within the IDE and therefore use the
custom projection (c.f. Figure 4 (b)).

Fig. 3: We chose a between-group study design setup with two conditions: (A)
Users use the default Neo4j interface, and (B) users use the EISE Query-
Designer. Both conditions have to create and execute the same queries (Set
1 - Set 1*). Before and afterwards users have to describe the meaning of queries
presented to them in the comprehension task (Comprehension 1 and 2).

3.2 Tasks

As an introduction and to support the participants during the study we pro-
vide three information sheets. First, the ”Cypher Cheat Sheet” provides basic
knowledge about the Cypher query language and its constructs relevant to com-
pose the queries. This is the same across conditions. Second, a ”Tool Sheet” is
provided describing the basic usage of the tools used in the according condi-
tion (web interface or IDE) together with basic examples, shortcuts, language
reference and explanations. Third and last, the ”EISE Domain Sheet” contains
a graph describing the overall schema of the prepared dataset and is identical
across the conditions. It represents a simple visualisation of the EISE solution
named in Section 2. Given this material, participants have to solve a total of
6 sets of tasks that are divided into two types: comprehension and work tasks.
The following briefly explains each of the task type.



9

(a) Screenshot of the Neo4j web interface which allows to write and execute
the queries. Results can be inspected as a graph or table.

(b) Screenshot of the EISE Query-Designer which allows to write and
execute the queries. Results can be inspected as a table at the bottom.

Fig. 4: Screenshot of the tooling used by each condition.



10

Comprehension Tasks
Comprehension tasks present the participants with example queries in their
environment of their condition to investigate their level of understanding
of existing queries. The goal is investigate the ability to read and interpret
existing queries without prior domain knowledge of the underlying graph
structure. A set is each presented each before and after the work tasks
(c.f. Figure 2, Comprehension 1 and 2) to investigate our second hypothesis.

Work Tasks
Work tasks are presented to the participants in natural language text and
describe a question to be answered by a query (c.f. Figure 5 for an exam-
ple). The participants have to write a Cypher query based on this provided
question. Each question is annotated with a time to give an estimate on the
expected required effort. Based on pre-study tests we also provide textual
hits as an additional support to elaborate on the query and avoid misunder-
standings. Further the expected result is also listed so that participants can
easily spot correct and incorrect queries. In total there are four sets of work
tasks: Set 1 (3 questions), Set 2 (2 questions), Set 3 (2 questions), and Set
1* (3 questions). The difficulty rises from Set 1 to 3 and each set introduces
new concepts of the Cypher language the participants have to use to write
successful queries. The last work task (Set 1*) is a modified Set 1 question
group with the goal to quantify the expected user learning effects. There
is also a Set 0 (omitted in the graphical representation) which is used to
present the task-questionnaire procedure to the participants and to foreclose
eventual execution errors. For each condition we use the same pre-populated

Set 2 (S2)

Query 2 (S2Q2) [5 minutes]

How many conversations are in the database in which persons and
agents were active together?

Hint: 1. Refers to the amount of conversations to which persons had an
involved_in relationship and at the same time agents also have
an involved_in relationship to.

2. Use multiple relationships within a MATCH clause (alternatively
it is also possible to use multiple MATCH clauses).

Expected result: 243

Fig. 5: Exemplary work task as presented to the study participants.

EISE dataset which we gathered within our laboratory setup and refined for



11

this study. This allows us to formulate a gold standard for each question
against which results of the participants can be compared.

3.3 Participant Preconditions

With study participants having to actually use the query language and the ac-
cording tools for each condition, they have to fulfill certain (rather demanding)
criteria. We require participants to have a certain basic knowledge concerning
databases and database access (e.g. SQL, SPARQL, etc.). However, they are
not required to have strong programming skills as both conditions do not re-
quire to write any surrounding source code and allow direct query execution.
Their understanding and knowledge about the tools (Neo4j and MPS), query
language (Cypher) and overall domain (the EISE domain) for the experiment
should however be on a similar level and not differ significantly to allow us to
draw conclusions for a representative group. We ensure this by adding according
items to our questionnaires asking the participants about their knowledge about
the involved elements.

3.4 Questionnaire

To quantify the usability we let users fill in several questionnaires on a separate
computer[10]. Between each set of tasks participants have to answer the 6 item
Task Load Index (TLX) to measure their cognitive load during each set[11]. Be-
sides measuring the TLX metric this also allows us to gather durations for each
set of tasks independent from the condition. Once finished, the last questionnaire
will ask the user to fill in the System Usability Scale (SUS) as well as the User
Experience Questionnaire (UEQ) in order to assess the tool usability[12][10].
Further properties are recorded on the executing computer allowing us to in-
vestigate metrics such as time per task set, key strokes, correct and incorrect
queries against the database and as a quality measure a screen recording. The
targeted sample size is 15 to 20 participants per condition.

3.5 Expectations

With this given study setup we have certain expectations towards each groups
performance. As participants in the extended condition (B) will use the IDE
to compose queries we expect them to perform better compared to the normal
condition (A). We expect a higher accuracy and lower error rates due to syntax
and error checking that is provided by the IDE. A similar assumption we hold
is that the overall duration for each task and the keystrokes required will be
higher for the normal condition as they receive fewer feedback and support when
writing the queries. With the separation in multiple sets we expect participants of
condition (B) to learn how to create queries faster - even though they will have to
familiarise themselves with a more complex tool. We expect this familiarisation
step to be a constant that will impact the initial sets but otherwise will not be
present in later more difficult tasks.



12

Table 2: Average perceived usability of pilot study.

Metric Condition (A) Condition (B)

SUS Score 75 63.33

UEQ

Attractiveness 1.111 0.944

Perspicuity 1.417 1.083

Efficiency 0.917 0.833

Dependability 1.500 0

Stimulation 0.833 0.917

Novelty -0.083 0.667

4 Pilot Study Results

In a pilot study we applied the study design to a total of six participants (three
per condition). Preliminary results of the user SUS and UEQ questionnaires are
listed in Table 2. It shows that the SUS score for condition (B) ranks within
an average level while condition (A) is slightly above average [13]. Further, we
observed that for all UEQ questionnaire based usability metrics the web interface
(condition (A)) scores slightly higher with stimulation and novelty being the
exceptions. The pilot study results regarding the actual time the participants
required per task set is depicted in Figure 6. It shows that the baseline condition

Set 1 Set 2 Set 3 Set 1*
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

Web Interface (Condition A) EISE Query-Designer (Condition B)

Task

Ti
m

e
 (

s)

Fig. 6: Average time it took participants to finish each set of tasks.



13

(A) allowed participants to finish easier tasks (Set 1, Set 2, and Set 1*) faster
when compared to condition (B). However, the set with more difficult tasks
(Set 3) demanded more time investment form participants in condition (A). An
analogous result is observable for the cognitive load participants felt during each
set (c.f. Figure 7).

Set 1 Set 2 Set 3 Set 1*
0

10

20

30

40

50

60

70

Web Interface (condition A) EISE Query-Designer (condition B)

Task Set

Pe
rc

ie
v
e
d

 C
o
g

n
it

iv
e
 L

o
a
d

Fig. 7: Average cognitive load participants perceived per task set.

5 Discussion & Lessons Learned

Though the preliminary study has only few participants, its results shows recog-
nisable trends. In the first two sets the participants in the baseline condition
(condition A) were faster and had less cognitive load. We think this is due to the
steep learning curve projectional editors (i.e. the EISE Query-Designer) have.
Participants did not use any comparable projectional editing software before and
had to familiarise themselves with the concept of direct abstract syntax tree ma-
nipulation. Compared to this the baseline participants could directly begin their
work with common source editing. Once participants of condition (B) overcome
this initial difficulty we can see that more complex tasks (i.e. Set 3) begin to
show the advantages They require less time while at the same time perceive less
cognitive load when compared to the base line condition. Further, for all condi-
tions a learning effect seems to be present: In both conditions the participants
finish Set 1 (a permuted Set 1) faster than the initial Set 1 itself. The significance
of this effect will have to be proven once an adequate sample size is collected.

Qualitatively we realised that presenting participants with an unknown do-
main, tools and DSLs requires well written introduction material. This leads to



14

on average 20 minutes that are necessary to fully read the provided material. As
a result we had to reduce the amount of tasks per set and removed the compre-
hension tasks completely to stay within planned 1 hour maximum duration.

The development of the tool and all corresponding individual languages and
solutions left us with several lessons learned. Language design is a difficult task
- especially with a small team size. This leaves us with a recommendation for
good prioritisation of sub tasks in the development life cycle. Feedback from
target IDE users is very valuable and their acceptance is influenced by multi-
ple factors of the tool. The provided editor/projection is an important element
in this context as it is the first entry point for users. It will impact user per-
formance and acceptance when simple functionalities (e.g. auto completion of
simple data types) do not work as expected. These rather marginal properties
can overshadow the valuable actual modeling of the domain the tool provides.

Another issue we encountered is concerned with the reuse of existing lan-
guages. As mentioned by Voelter, the DSL Hell (creating half-baked DSLs in-
stead of reuse) should be avoided and reuse is one a key features of in DSL
development [4]. This in mind we reused an existing MPS Cypher language and
could reduce our workload significantly. However, a reused language can have its
own problems which can include possible unfinished design decisions, require-
ments/dependencies on legacy languages or software, abandonment, or others.
To avoid mitigating workarounds in the surrounding new languages the only
option is to improve the reused language itself and feedback the improvements.
Lastly, along goes the need for language versioning, which is a key discipline to
be employed from the start in the language engineering process as it will oth-
erwise hinder the development. With a recent update Jetbrains even addresses
this issue and provides build-in support in MPS.

6 Related Work

While usability is a well researched and standardised field in software engineering
the benefits of specific IDEs or workbenches are often difficult to be evaluated.
Improvement claims can be supported either formally, automatically, heuristi-
cally, or empirically. Bari et al. therefore proposed an evaluation process for
the usability of DSLs that is applied during the development life cycle via vari-
ous metrics, including questionnaires targeting the subjective measures such as
cognitive load or perceived usability [14]. Further, others propose an integrated
iterative testing approach that focuses on clear defined metrics [15][16][17]. The
core idea is to let evaluation span the entire DSL life cycle by assessing motiva-
tion, qualitative interviews, a validation of DSL design, and quantifying benefits.
According to Wegeler et al. a mix of quantitative and qualitative criteria is re-
quired as simple metrics cannot cover all advantages and risks. However each
measure is important and should impact the DSL development process.

Evaluation on created tools in practice with is often carried out with domain
experts. For example, Karna et al. used and evaluated their finished developed
solution in product development [18]. They let six users familiar with their target



15

domain develop an application using the created tool and compared the outcomes
w.r.t. the three factors of developer productivity, product quality and the general
usability of the tooling.

An alternative approach is in the form of providing in depth case study
analysis. This is a valid evaluation approach especially when the presented tool
already has a big user base that makes extensive use of the provided functional-
ities. Voelter et al. recently provided an excellent example case study providing
great insight into the mbeddr platform [9]. This extensive review evaluates the
language engineering process using Jetbrains MPS as a language workbench and
provides valuable lessons learned. From their point of view language modularity
while handling the domain complexity is feasible and their conclusion is that
useful large scale system design using MPS is possible.

Lastly, on a meta layer benchmarks for language workbenches themselves are
being researched. In this context the annual Language Workbench Challenge was
instantiated in 2011 to provide an opportunity to quantitatively and qualitatively
compare approaches [7]. They compared 10 workbenches an provide a great
overview presenting the state of the art options for developers.

7 Conclusion and Outlook

In this paper we present our current work to support query design and execu-
tion for application developers in the domain of embodied interaction in smart
environments. Following a model-driven approach we created multiple MPS lan-
guages and solutions with the goal to support developers at programming appli-
cations that are depending on long term interaction data. We make explicit use
of a multitude of features provided by MPS, most notably the generation of a
domain specific IDE to be used by application developers. With the difficulty of
evaluation of generated IDEs we presented the study design we decided to pur-
sue for an early assessment. First study runs yield promising results, however
continued further work and research is required. For example, not all described
architectural decisions could be implemented as planned due to time and re-
source constraints. As a result some functionalities have been implemented in
different languages contrary to the original plan.

Further, all languages require polish and fine tuning, especially the entry
points for users (i.e. the language editors/projections). Additionally the planned
extension points (such as data type mapping) have to be integrated into the
architecture. Lastly, we plan to further include the complete approach in the
CSRA project and hence create stronger dependencies. Along with this plan
goes the idea of a long term study and evaluation of the generated artifacts.

Acknowledgements

This research/work was supported by the Cluster of Excellence Cognitive Inter-
action Technology ’CITEC’ (EXC 277) at Bielefeld University, which is funded
by the German Research Foundation (DFG).



16

References

1. Adair, B., Miller, K., Ozanne, E., Hansen, R., Pearce, A.J., Santamaria, N., Viegas,
L., Long, M., Said, C.M.: Smart-home technologies to assist older people to live
well at home. Journal of aging science (2013)

2. Cavallo, F., Aquilano, M., Bonaccorsi, M., Limosani, R., Manzi, A., Carrozza,
M.C., Dario, P.: Improving domiciliary robotic services by integrating the astro
robot in an ami infrastructure. In: Gearing Up and Accelerating Cross-fertilization
between Academic and Industrial Robotics Research in Europe:. Springer (2014)
267–282

3. Holthaus, P., Leichsenring, C., Bernotat, J., Richter, V., Pohling, M., Carlmeyer,
B., Köster, N., Meyer zu Borgsen, S., Zorn, R., Schiffhauer, B., et al.: How to
adress smart homes with a social robot? a multi-modal corpus of user interactions
with an intelligent environment. In: Proceedings of the 10th Language Resources
and Evaluation Conference. (2016)

4. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.,
Visser, E., Wachsmuth, G.: DSL engineering: Designing, implementing and us-
ing domain-specific languages. dslbook. org (2013)

5. Köster, N., Wrede, S., Cimiano, P.: An Ontology of Human Machine Interaction
Data in Smart Environments. In: SAI Intelligent Systems Conference 2016, IEEE
(2016)

6. Voelter, M., Pech, V.: Language modularity with the mps language workbench. In:
Software Engineering (ICSE), 2012 34th International Conference on, IEEE (2012)
1449–1450

7. Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Meinte
Boersma, Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto
Pohjonen, Eugen Schindler, J.v.d.W.: Evaluating and Comparing Language Work-
benches. Computer Languages, Systems and Structures 44(A:2447) (2015) 1–38

8. Neo Technology Inc.: openCypher (2015)

9. Voelter, M., Kolb, B., Szabó, T., Ratiu, D., Deursen, A.V.: Lessons learned from
developing mbeddr : a case study in language engineering with MPS. Software &
Systems Modeling (2017)

10. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experi-
ence questionnaire. In: Symposium of the Austrian HCI and Usability Engineering
Group, Springer (2008) 63–76

11. Hart, S.G., Staveland, L.E.: Development of nasa-tlx (task load index): Results of
empirical and theoretical research. Advances in psychology 52 (1988) 139–183

12. Brooke, J., et al.: Sus-a quick and dirty usability scale. Usability evaluation in
industry 189(194) (1996) 4–7

13. Sauro, J.: A practical guide to the system usability scale: Background, benchmarks
& best practices. Measuring Usability LLC (2011)

14. Barǐsic, A., Amaral, V., Goulao, M., Barroca, B.: Recent advances in multi-
paradigm modeling (mpm 2011). Electronic Communications of the EASST 50
(2011)

15. Wegeler, T., Gutzeit, F., Destailleur, A., Dock, B.: Evaluating the Benefits of
Using Domain-Specific Modeling Languages - an Experience Report Categories
and Subject Descriptors. In: Proceedings of the 2013 ACM Workshop on Domain-
Specific Modeling. (2013)



17

16. Bariic, A., Amaral, V., Goulao, M.: Usability Evaluation of Domain-Specific Lan-
guages. 2012 Eighth International Conference on the Quality of Information and
Communications Technology (2012) 342–347

17. Barǐsić, A.: Iterative evaluation of domain-specific languages. CEUR Workshop
Proceedings 1115 (2013) 100–105

18. Kärnä, J., Tolvanen, J.P., Kelly, S.: Evaluating the use of domain-specific modeling
in practice. In: Proceedings of the 9th OOPSLA workshop on Domain-Specific
Modeling. (2009)


	Evaluating a Graph Query Language for Human-Robot Interaction Data in Smart Environments

