
1

M@RT 2006 – Genova, Italy

Modeling and Analyzing Dynamically
Adaptive Software

Betty H.C. Cheng

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering

Michigan State University

web: http://www.cse.msu.edu/SENS
email: chengb@cse.msu.edu

Acknowledgments

 Software Engineering and Network Systems Lab
– Faculty and students

– RAPIDware project team

– Ji Zhang

– Philip McKinley

 Daniel Berry

•This work was supported in part by the U.S. Department of the Navy, Office of Naval
Research under Grant No. N00014-01-1-0744, and in part by National Science
Foundation grants CCR-9901017, EIA-0000433, EIA-0130724, CCF-0541131, and
CNS-0551622, and ITR-0313142, and by Siemens Cooperate Research, and a
Michigan State University Quality Fund Concept Grant.

2

M@RT 2006 – Genova, Italy

High Assurance Computing Systems…

Designed to tolerate failures,
even direct attack,

in order to continue operation and
preserve system integrity

Two Ongoing Revolutions

 Pervasive (or ubiquitous) computing
– Dissolves boundaries for how when and where

humans and computers interact

 Autonomic computing
– Focuses on developing systems that can manage and

protect themselves with only high-level human
guidance

3

Pervasive Computing

 Driving Factors
– Convergence of advanced electronic technologies (wireless, handheld,

sensors, etc) and the Internet.
– Promises anywhere, anytime access to data and computing.

 Need for assurance
– Heterogeneity of hardware, network, software.
– Dynamics of the environmental conditions, especially at the wireless

edge of the Internet
– Limited resources (such as battery lifetime).

Military ApplicationsHandheld/Wearable Computing Sensor Networks

Autonomic Computing
 Promises self-managed and long-running

systems that require only limited human
guidance.

 Key driving force: Needed to manage and protect
critical infrastructure: financial networks,
transportation systems, and water and power
systems.

 Systems must continue to operate correctly
during exceptional situations, upgrades, and
evolution

 Need for assurance
– hardware component failures
– network outages
– software faults
– security attacks

 Prediction: Autonomic will be essential to
every future computing system.

4

Physical Cyberinfrastructure

Network-
Centric

Battlefield
Homeland Security

Ecosystem Monitoring

Disaster
Relief

Secure Information SystemsDigital Supply Chain

Remote
Safety-
critical
Real-time
All the above
Privacy
Adaptable

 Wired
Internet

The Software Crisis

 Our increasing reliance on computing technology often
fails to recognize that software is:
– Brittle
– Insecure
– Continuously evolving

 Occasional wake-up calls…
– Telephone service failure in 1990
– Cell phone service on 9/11
– Power outage of 2003
– Breaches of credit card company databases…
– Etc.

5

The Evolving Cyberinfrastructure

 First Generation (proof-of-concept)
– Driven by applications in science and engineering
– Advanced sensor hardware
– Efficient systems software, network protocol
– Understanding issues, brittle prototypes

 Second Generation (sustainable infrastructure)
– Driven by applications in science and engineering
– Advanced sensor hardware
– Efficient systems software, network protocols
– High-assurance (generated) adaptable software
– Intelligent systems that can learn how to respond and adapt
– Designing and building robust, self-healing (autonomic) systems for

deployment

Related Work

 Where adaptations are applied
– Programming languages [Adve01,Kasten02,Redmond02]
– Adaptive frameworks [Fickas97,Sousa00]
– Adaptive middleware [Blair98,Kon00]
– Extensible operating systems [Bershad94, Appavoo03]

 Aspects in adaptation
– Adaptation enabling techniques
– Condition-monitoring techniques
– Decision-making techniques
– Assurance techniques

6

Related Work

 Behavioral modeling approaches (process algebra)
– CSP in Dynamic Wright [Allen08]
– π-calculus in LEDA [Canal99]
– FSP in Darwin [Kramer98]

 Architectures for dynamic systems
– Darwin [Kramer98]
– C2 Style [Taylor95]
– Dynamic Wright [Allen98]
– LEDA [Canal99]

Related Work

 Safe adaptation protocols
– Hot swapping in K42 [Appavoo03]
– Graceful adaptation process in Cactus [Chen01]
– Distributed safe adaptation [Kulkarni03]
– Safe adaptation protocol [WADS04,ADS05]

 None of the above provides a software (or model-
driven) development process that crosscuts
requirements, design, and implementation to
provide assurance in adaptive software

7

Model-Based Development of
Adaptive Software

 Objective: A software development process that
provides assurance to dynamically adaptive software

 Approach: Focus on the design and analysis of formal
design models and their relationships to requirements
and implementations.

Outline

 Requirements analysis

 Design models (focus)

 Implementation

 Discussion and conclusions

8

What Is Dynamic Adaptation

 Program that changes its behavior at runtime
– A set of programs P1, P2, …, PN (FSA)
– Changing from running in source program Pi to target

program Pj

– May involve intermediate states and transitions

Audio-Streaming Case Study

Packet loss-rate in the wireless communication is dynamic
•High loss-rate
•Low loss-rate

Adaptive error correction protocols
•High loss-tolerant and low performance
•Low loss-tolerant and high performance

9

RAPIDware Approach

 Gain assurance in adaptive software through
– A systematic software development process

– Application of formal methods at every stage
Requirements

Specify adaptation properties, including local
global, and transitional properties

Design
Create design models and model check against
adaptation requirements

Implementation
Develop adaptive system that ensures consistency
before, during, and after adaptation

Overall Process

Φi

Goal

Ri

Di
Di

… … Ri

Mi

Φi

Mi

MAji

MAij

INV

Goal

Requirements

Design models

Implementation

Φij

10

Goal – Requirements

 Four Level requirements engineering [REFSQ05]
– Adaptive program is running in a set of domains D

– Each domain Di is a set of inputs

– Level 1 RE: Determine Di and software’s reaction to each
input in Di

 Goal-driven models (Mylopolous, van Lamsweerde,
et al)
– Use goal-driven model to analyze possible execution

conditions and requirements in each condition

Goal

Φi

Goal

Ri

Di
Di

… … Ri

Mi

Φi

Mi

MAji

MAij

INV
Requirements

Design models

Implementation

Transmit data packets at
low loss-rate and
high performance

11

Goal to Domains and Requirements

Φi

Goal

Ri

Di
Di

… … Ri

Mi

Φi

Mi

MAji

MAij

INV

Goal

Requirements

Design models

Implementation

Φij

Requirements Stage

Use temporal logics to specify
adaptation semantics
– Developed A-LTL to specify adaptation

semantics. [WADS05, JSS06]
– Developed TA-LTL to express real-time

constraints in DASs (dynamically
adaptive systems). [EASe06]

– Precise specification
– Enable automated analysis

12

Requirements: Temporal Logic

 We have investigated using temporal logic to specify
critical properties in adaptive programs
[WADS05,JSS06,EASe06]

– Local properties: Use LTL to specify program properties in each
execution domain

– Global invariants: Use LTL to specify properties of the adaptive
program

– Transitional properties: Use A-LTL to specify adaptations from
one domain to another

Goal to Requirements

Φi

Goal

Ri
Di Dj

… … Rj

Mi

Φi

Mi

MAji

MAij

INV
Requirements

Design models

Implementation

• Low loss-rate domain
– Tolerates low packet loss
– Use low loss-tolerant,
high performance protocol

• High loss-rate domain
– Tolerates high packet loss
– Use high loss-tolerant, low
performance protocol.

• Loss-rate increase
– Change from using low loss-tolerant to
high loss-tolerant protocol

13

Formal Properties

Φi

Ri

Di
Di

… … Ri

Mi

Φi

Mi

MAji

MAij

INV
Requirements

Design models

Implementation

Goal

High loss-rate domain:
Should tolerate high packet
loss-rate.

Sender liveness: The sender should read and send
packets until the data source is empty:

Adaptation integrity constraint: If the sender’s adaptive
transition is fired, then the receivers' adaptive
transition will also eventually be fired.

Low loss-rate domain: Should
tolerate low packet loss-rate

Design Stage

 Model-based design technique

– Use finite state machine to model DAS
[ICSE06]

– Non-adaptive models are separated from
adaptive models.

– Support state transfer

– Support analyses

• Simulation

• Model checking

14

Design to Implementation

Φi

Ri

Di
Di

… … Ri

Mi

Φi

Mi

MAji

MAij

INV
Requirements

Design models

Implementation

Goal

Model-Based Development

 Model adaptive system using Petri Nets
– Steady-state models Mi for each Di
– Adaptation models MAij from Di to Dj

• Model check against global invariants

• Automatically generate adaptive programs

pubic class sender extends…{
 readData(){...}
 encode() {…}
 sendData(){…}
 …
}

Petri Nets Java program

control

[ICSE06]

15

Objectives

 Separation of concerns
– Separate adaptive behavior from non-adaptive

behavior
 General

– Can be used for other state-based formalisms
 Flexible

– Support state transfer.
 Formal

– Amenable to analysis, e.g., model checking,
simulation, etc

Requirements to Design

 Requirements vs Design
– Requirements: declarative
– Design: operational

 State-based model design
– Petri nets
– graphical (intuitive)
– Formal
– Numerous analysis tools e.g. Renew, Maria

 Two types of models
– Steady-state models Mi for each Di
– Adaptation models MAij from Di to Dj

 Verify the models against local properties and global
properties

16

Local Requirements-Steady-State Models

Φi

Goal

Ri

Di
Di

… … Ri

Mi

Φi

Mi

MAji

MAij

INV

Goal

Requirements

Design models

Implementation

Φij

Steady-State Models

1. Build a design model for each domain.

2. Run simulation to validate the requirements
of each domain

3. Model check the models against local
properties

Φi

Ri

Di Di

… … Ri

Mi

Φi

Mi

17

Global Invariants-Adaptation Models

Φi

Goal

Ri

Di Di
… … Ri

Mi

Φi

Mi
MAji

MAij

INV

Goal

Requirements

Design models

Implementation

Φij

Adaptation Models

1. Build an adaptation design model MAij for each
adaptation from one steady-state program Mi to
another Mj

2. Run simulation to validate the adaptation

3. Model check the adaptation models against global
invariants and transitional properties.

18

Types of Design Models

Φi

Ri

Di
Di

… … Ri

Mi

Φi

Mi

MAji

MAij

INV
Requirements

Design models

Implementation

Goal

Steady-state model
Mi: for each domain Di

Adaptation model MAij:
for adaptation from Di to Dj

Design Models

Sender Receiver

Source
(low loss-tolerant)

Target
(high loss-tolerant)

Adaptation

dataSource read

encode

send

network

dataSource read

encode

send

network

Source sender

SKIP

19

Design Models

Sender Receiver

Source
(low loss-tolerant)

Target
(high loss-tolerant)

Adaptation

receive output sink

decode -Index

decodeComp

network

receive output sink

decode -Index

decodeComp

network

Source receiver

Design Models

Sender Receiver

Source
(low loss-tolerant)

Target
(high loss-tolerant)

Adaptation

dataSource read

encode

send

network

dataSource read

encode

send

network

receive output sink

decode -Index

decodeComp

network

receive output sink

decode -Index

decodeComp

network

Overall source

merge

20

Design Models

Sender Receiver

Source
(low loss-tolerant)

Target
(high loss-tolerant)

Adaptation

• Run simulation using Renew to validate the requirements
 [Kummer00]
• Run model-checking to verify the current model against local
 properties of the source using Maria [Mäkelä02]

– It should tolerate low loss-rate

Analysis

Design Models

Sender Receiver

Source
(low loss-tolerant)

Target
(high loss-tolerant)

Adaptation

dataSource read

encode

send

network

dataSource read

encode

send

network

Target sender

21

Design Models

Sender Receiver

Source
(low loss-tolerant)

New
(high loss-tolerant)

Adaptation

Target receiver

Design Models

Sender Receiver

Source
(low loss-tolerant)

New
(high loss-tolerant)

Adaptation

dataSource read

encode

send

network

dataSource read

encode

send

network

Overall target

22

Design Models

Sender Receiver

Source
(low loss-tolerant)

New
(high loss-tolerant)

Adaptation

• Run simulation using Renew to validate the requirements
• Run model-checking to verify target model against local
 properties of the source

– It should tolerate high loss-rate

Analysis

Design Models

Sender Receiver

Source
(low loss-tolerant)

Target
(high loss-tolerant)

Adaptation

(1) restrict

source sender

sender restricted

target sender (2) adapt

Sender adaptation

23

Design Models

Sender Receiver

Source
(low loss-tolerant)

Target
(high loss-tolerant)

Adaptation

Receiver adaptation

adapt

Design Models

Sender Receiver

Source

Target

Adaptation

adapt

Receiver adaptation

(1) Receive
a packet

(2) Perform
adaptation

24

Design Models

Sender Receiver

Source
(low loss-tolerant)

Target

Adaptation

adapt

dataSource read inputData

encode

index

encodedData send

network

dataZshiftdataYshiftdataX

dataSource read inputData

encode

index

encodedData send

network

dataZshiftdataYshiftdataX

source sender

dataSource read inputData

encode

index

encodedData

network

dataZshiftdataYshiftdataX

dataSource read inputData

encode

index

encodedData

network

dataZshiftdataYshiftdataX

restricted sender

index

dataSource read inputData

encode

encodedData send

network

dataZshiftdataYshiftdataX dataTshift

index

dataSource read inputData

encode

encodedData send

network

dataZshiftdataYshiftdataX dataTshift

target sender

receive inputData output sink

seq3

bufferedData

decodeindex

seq3

seq3

decode

network

[i,x,y,z]

[i,x,y,z]

[k,r];[k1,r1]

[k,s];[k1,s1]

[i,x,y,z] [i,x,y,z]

[i,x,y,z]

[0,x0,y0,z0]

k+1

k k+r

k+s

receive inputData output sink

seq3

bufferedData

decodeindex

seq3

seq3

decode

network

[i,x,y,z]

[i,x,y,z]

[k,r];[k1,r1]

[k,s];[k1,s1]

[i,x,y,z] [i,x,y,z]

[i,x,y,z]

[0,x0,y0,z0]

k+1

k k+r

k+s

target receiver

receive inputData output sink

seq3

bufferedData

decodeindex

seq3

seq3

decode

network

[i,x,y,z]

[i,x,y,z]

[k,r];[k1,r1]

[k,s];[k1,s1]

[i,x,y,z] [i,x,y,z]

[i,x,y,z]

[0,x0,y0,z0]

k+1

k k+r

k+s

receive inputData output sink

seq3

bufferedData

decodeindex

seq3

seq3

decode

network

[i,x,y,z]

[i,x,y,z]

[k,r];[k1,r1]

[k,s];[k1,s1]

[i,x,y,z] [i,x,y,z]

[i,x,y,z]

[0,x0,y0,z0]

k+1

k k+r

k+s

 source receiver

Overall Adaptation Model

restrict

adapt

send packet

25

adapt

source sender

restricted sender

target sender

source receiver

target receiver

Design Models

Analysis

• Run simulation using Renew to validate the requirements
• Run model-checking to verify the adaptation model against global
invariants

• Sender liveness
• Adaptation integrity constraint

Design to Implementation

Φi

Goal

Ri

Di
Di

… … Ri

Mi

Φi

Mi

MAji

MAij

INV

Goal

Requirements

Design models

Implementation

26

Reifying the Models
 Prototyping (supported by Renew)

– Petri net models can be integrated in Java programs to
drive Java function calls.

pubic class sender extends…{
 readData(){...}
 encode() {…}
 sendData(){…}
 …
}

Petri Nets Java program

control

Reifying the Models

 Model-based testing (supported by Renew)
– Java program can invoke corresponding Petri net transitions.

– Use Petri nets to test allowable execution paths.

pubic class sender extends…{
 readData(){...}
 encode() {…}
 sendData(){…}
 …
}

Petri NetsJava program

control

27

Discussion and Conclusions

 A model-based adaptive software development
process.
– Crosscuts requirements, design, and implementation
– Steady-state programs requirements and models are

specified separately from those for adaptations
– Identify quiescent states to be a property of the

adaptation, rather than properties of each steady-
state program

– Support flexible state transfer

Future Work

 Integrate our approach with ADL approaches
 Explore modular model-checking of global

invariants [Modular06]
 Explore run-time model checking
 Further validation

– Apply to other adaptation domains
– Apply to other formalisms

28

Acknowledgements
 Faculty and students in the Software Engineering and Network Systems

Laboratory at Michigan State University

 ICSE reviewers

 Grants: This work was supported in part by the U.S. Department of the Navy,
Office of Naval Research under Grant No. N00014-01-1-0744, and in part by
National Science Foundation grants CCR-9901017, EIA-0000433, EIA-
0130724, CCF-0541131, and CNS-0551622, and ITR-0313142, and by
Siemens Cooperate Research, and a Michigan State University Quality Fund
Concept Grant.

