Towards a More Effective Coupling of Reflection and Runtime
Metamodels for Middleware *

Fabio M. Costa, Lucas L. Provensi, Frederico F. Vaz

"nstitute of Computing — Federal University of Goias (UFG)
74690-815 — Goidnia — GO — Brazil

fmc|lucas|frederico@inf.ufg.br

Abstract. Reflection plays an important role
in the flexibilisation of middleware platforms.
Through dynamic inspection, middleware inter-
faces can be discovered and invoked at runtime,
and through adaptation the structure and be-
haviour of the platform can be modified on-the-
fly to meet new user or environment demands.
Metamodeling, on the other hand, has shown
its value for the static configuration of middle-
ware (and other types of system in general).
Both techniques have in common the pervasive
use of meta-information as the means to provide
the self-representation of the system. However
similar they are, these two techniques usually
fall on different sides of a gap, namely develop-
ment time and runtime, with little interplay be-
tween them. In this position paper, we review
an approach for the combination of reflection
and metamodeling, as well as the main applica-
tions we envisage in the context of middleware
platforms. The main goal is to highlight the im-
portance of such combination, contributing to a
wider discussion of the topic during the work-
shop.

1. Introduction

Meta-information is at the core of both reflection
[Maes 1987] and metamodeling [Odell 1995] techniques. It
is the means through which the reified features of a base-
level system (such as a middleware platform) are repre-
sented in reflective architectures. It is also the reason for
metamodeling techniques to exist, that is, to represent meta-
information in a consistent way. Although metamodeling
usually deals with meta-information in a well-structured
way, reflection typically handles it in an ad hoc fashion.
On the other hand, while metamodeling is traditionally lim-
ited to the static (cf. design time) representation of meta-
information, reflection enables its dynamic use and evo-
lution. It thus seems natural to combine the two tech-
niques, enabling the dynamic use of well-structured meta-
information.

*This work was funded by CNPq-Brazil (the Brazilian Gov-
ernment’s agency for the promotion of scientific and technological
development), grants number 478620/2004-7 and 506689/2004-2.

In the approach advocated in this paper, the structures
of meta-information represented in a metamodel are kept
accessible at runtime. As such, they can be used both at
static configuration time, before the system is put to run,
and at runtime, as the basis for the reflective meta-objects to
construct the representation of the reified base-level system.
While other approaches can be found in the literature for
the combination of metamodeling and reflection, such as
in [Yoder and Razavi 2000] and [Bencomo et al. 2005], we
believe that the approach discussed here is a more natural
fit, besides its potential to be applied in conjunction with
those other approaches.

This position paper discusses the basic ideas of our ap-
proach and presents some of its concrete applications in the
context of middleware platforms. It also discusses current
work aiming to refine the metamodeling technique in use,
as well as some areas of application. A brief comparison
with other approaches from the literature is also presented,
aiming at future collaborations with those research efforts
in order to further advance the state of the art in the field.

2. Basic Approach
2.1. Reflection

The adopted approach to reflective middleware is based on
the Lancaster Open ORB project [Blair et al. 2001]. The
architecture is clearly divided into a base-level, which con-
tains the usual middleware functionality (such as remote
binding, remote method execution, and object references),
and a meta-level, which provides the reification of the base-
level features. Both the base- and meta-level are defined
in terms of a uniform component model, which facilitates
the identification, at runtime, of the several functional ele-
ments of the platform. The meta-level is accessed through
meta-interfaces that expose a well-defined meta-object pro-
tocol for both inspection and modification (a.k.a. adapta-
tion) of the base-level. Furthermore, in order to cope with
complexity, the meta-level is further divided into four meta-
space models: interface (for the discovery of an interface’s
methods and attributes, as well as for dynamic invocation);
interception (for interposing extra behaviour in the pre/post-
processing of interactions); architecture (for the manipula-
tion of the component configuration of the platform); and
resources (which allow the underlying resources, such as
memory and processor, to be inspected and reconfigured).
Critically, all these meta-space models are concerned with

particular kinds of meta-information about the features of
the base-level system, although not necessarily in a struc-
tured or unified way.

2.2. Metamodeling

Metamodeling is achieved through the four-level approach
of the Meta-Object Facility (MOF) [OMG 2000]. The first
level (level 0) represents the actual system entities, while,
level 1 contains the model from which those entities were
instantiated. Level 2 then consists of the meta-model, which
defines a language for describing models, while Level 3
is the core language for describing meta-models. In the
context of metamodeling for middleware, we are particu-
larly interested in levels 2 and 1, which represent, respec-
tively, the platform’s type system and the actual definitions
of the (types and templates of the) entities that comprise par-
ticular middleware configurations. Using a metamodeling
tool such as the MOF or, more recently, the Eclipse Mod-
eling Framework (EMF) [Budinsky et al. 2004], a middle-
ware metamodel can be defined and customised, allowing
the automatic generation of tools (such as a repository) that
facilitate the definition and storage of types and templates.
Finally, from the type and template meta-information items
that are kept in the repository, generic factories can be used
to instantiate concrete platform configurations (level 0).

The implementation of this meta-information manage-
ment tool in EMF is currently under work. When using
EMEF, it is worth noting that this technology is mainly meant
for model-driven development, where a model of a system
is defined and tools are used to automatically generate code
for the system. That is, metamodeling is not a main intent of
EMEF. However, the distinction between a model and a meta-
model is only a matter of reference point, that is, a model
can be taken as the model of a another model, instead of di-
rectly modeling a level O system. In our case, thus, the meta-
model of a middleware platform is defined as a usual core
model in EMF. Then, the code that is generated from this
model (extended with a few customisations) is actually the
implementation of a meta-information repository to store
definitions of custom middleware components. This repos-
itory contains facilities for creating, accessing, deleting and
evolving (see below) such meta-information. The interpre-
tation and use of this meta-information is outside the scope
of EMF and is performed, as described above, by external
component factories, which are provided in the form of mid-
dleware core services. In addition, although EMF is mainly
meant to be used within Eclipse, with the exception of the
Ul editor the generated implementation can be used by stan-
dalone applications. Indeed, the generated EMF.edit plug-in
can be customised with extensions and used as a true repos-
itory of model-related meta-information, which can be ac-
cessed by standalone Java applications (such as by the fac-
tories mentioned above) through a programmatic interface.

3. Combining Reflection and
Metamodeling

The reflection and meta-information approaches described
above have been combined in a reflective middleware ar-
chitecture called Meta-ORB [Costa 2001]. This architec-
ture was first prototyped in Python [Costa 2002] as a ref-
erence implementation. It was later reimplemented in
Java, using both J2SE and J2ME, aiming at its deployment
in portable devices. This latter implementation is called
MetaORB4Java [Costa and Santos 2004]. Although a com-
plete description of this platform is outside the scope of this
position paper, in the following we describe its main fea-
tures in what concerns the combination of reflection and
metamodeling.

3.1. Building the platform meta-model

The Meta-ORB architecture is actually a meta-architecture
for middleware. Its core consists of a type system defining
a language of constructs that can be used to define special-
purpose entities used to build custom middleware configu-
rations. The main constructs are components (which encap-
sulate functionality) and binding objects (which encapsulate
interaction behaviour). A particular middleware configura-
tion can be built in terms of a composition of components
interconnected by binding objects (which are, themselves,
defined in terms of component and binding compositions).

This type system is represented as a metamodel in UML
and the EMF Eclipse plug-in was used to generate a ba-
sic repository implementation. This basic repository con-
sists of the implementation of model elements, with the
standard EMF accessor methods, plus editting functions
(both programmatic and Ul-based). This repository is cur-
rently being extended with more elaborate accessor meth-
ods, in a way that resembles the CORBA Interface Repos-
itory [OMG 2003]. For instance, the lookup_name and
lookup_id methods were introduced which enable the search
for type/template definitions based on their short names or
fully qualified names, respectively.

3.2. Using the model to instantiate platform
configurations

As a representative example of the use of the repository,
component and binding definitions are expressed as in-
stances of their corresponding metamodel elements and
stored in the repository. This can be easily done using the
generated Ul-based editor plug-in. Two generic factories
were implemented, respectively for the creation of compo-
nents and binding objects. These factories obtain the nec-
essary meta-information elements from the repository (us-
ing the lookup-like methods described above) and use them
as the blueprint to create concrete, customised, middleware
configurations composed of components interconnected by

binding objects. Note that a single type definition can be
used to define the whole platform configuration. This can
be the definition of a distributed binding object composed
of internal components and other, lower-level, bindings. Al-
though this recursive structure is mirrored in the repository
(in terms of separate type definitions that contain or refer-
ence other type definitions), the factories (the binding fac-
tory in this case) only needs to be given the name (or id) of
the outermost type definition; the type definitions for the in-
ternal components and bindings are implicitly obtained by
the factories without the intervention of the middleware de-
veloper.

3.3. Using the model to instantiate reflective
meta-objects

From the moment particular middleware configurations
have been instantiated and put to run, they can also be
subject to the reflection mechanisms of the platform (see
Section 2.1). This means that the components and bind-
ing objects that make up a configuration can be inspected
and adapted at run time. In order to enable this, the meta-
objects that perform the reflection mechanisms need pre-
cise meta-information about such components and bind-
ings in order to reify them. The meta-objects obtain this
meta-information from the respective component and bind-
ing definitions stored in the repository. For instance, in
order to reify the internal configuration of a binding ob-
ject, the architecture meta-object needs to obtain the part of
that binding’s definition that describes the component graph
(where the nodes are component types and the edges are
either local or distributed bindings) used to instantiate the
binding.

The above subsections illustrate one side of the combina-
tion of reflection and metamodeling proposed in this work.
The other side is related to the use of reflection to build new
component and binding types that are persisted in the repos-
itory, and is described next.

3.4. Creating new model elements using
reflection

This side of the combined approach refers to the evolution
of a model’s elements as a result of reflection. More specif-
ically, architectural reflection can be used to dynamically
change a component or binding object so that it becomes
more suitable to varying operating conditions or user re-
quirements. Often, this process leads to new component
and binding definitions that might be useful in other con-
texts. Therefore, there is a case for making such evolved
definitions persistent so they can be reused later. In our ap-
proach, these evolved definitions take the form of versions
of the original component or binding definitions (so as to
avoid potential conflicts with other existing definitions) and
are stored in the repository alike. Later, they can be re-
trieved by factories in order to generate new instances of

components and bindings that incorporate, from the begin-
ing, the adaptations that were made through reflection.

4. Other Applications of the Approach

The integrated management of middleware configuration
and dynamic adaptation is a direct benefit of the uniform
treatment given to meta-information. More precisely, the
same constructs used to statically configure a middleware
platform also constitute the primitives through which dy-
namic adaptation is achieved. Resuts in this respect have
already been published elsewhere.

More recently, we are investigating the use of this tech-
nique to model other aspects of middleware platforms, in
particular: resource management in grid computing mid-
dleware, and context-awareness in middleware for mobile
computing environments. In the former, an extension of
the metamodel is being defined to model the several kinds
of resources available in a grid, which will be used as a
flexible way to (re-)configure the allocation of tasks to pro-
cessors. In the latter, a metamodel is being defined to al-
low the representation of context-related meta-information,
which enables context-aware architectural adaptation of
the middleware platform (in a similar way as proposed in
[Capra et al. 2001]). In both cases, the advantage of us-
ing a runtime explicit metamodel is the intrinsic extensi-
bility, which allows new kinds of resource or context meta-
information to be seamlessly integrated into the system in a
dynamic way. In general, we believe that any kind of meta-
information present in a system (such as middleware) can
be leveraged by the ability to represent it as a runtime meta-
model integrated with reflective capabilities.

5. Concluding Remarks

This position paper has reviewed the main ideas and ap-
plications of our approach for the combination of runtime
metamodels with reflection in the context of distributed sys-
tems middleware. The approach focuses on the integration
of the design-time and runtime use of an explicit middle-
ware metamodel and related meta-information with reflec-
tive introspection and adaptation. The main benefit of this
is the uniform treatment given to static configuration and
dynamic reconfiguration of the platform, which are based
on the common constructs and abstractions defined in the
metamodel.

Other approaches have been proposed in the litera-
ture to integrate reflection and metamodeling, such as
[Bencomo et al. 2005], which use metamodels to configure
the reflective capabilities of a middleware platform. The
approach discussed here, however, is different in the sense
that the modeled meta-information provides the actual self-
representation of the reified base-level entities, instead of
being a model of the meta-level. Indeed, we believe that

both approaches can be effectively used in a complemen-
tary way.

Although the core ideas of our approach have been
around for a while [Costa 2001, Costa and Blair 2000], its
potential contribution is still underexploited. We believe
that the exploitation of the proposed ideas in mainstream
middleware platforms, in conjunction with more ellaborate
techniques for architectural reflection and separation of con-
cerns, can be of great benefit for the advancement of flexible
and adaptive middleware technologies. It is our goal to con-
tribute to raise this discussion in both the middleware and
the modeling communities, aiming to identify new research
opportunities in the area of reflective middleware and run-
time metamodels.

References

Bencomo, N., Blair, G. S., Coulson, G., and Batista, T.
(2005). Towards a meta-modelling approach to config-
urable middleware. In 2nd ECOOP2005 Workshop on
Reflection, AOP and Meta-Data for Software Evolution,
Glasgow, Scotland.

Blair, G. S., Costa, F. M., Saikoski, K., and Clarke, N. P. H.
D. M. (2001). The design and implementation of Open
ORB version 2. IEEE Distributed Systems Online Jour-
nal, 2(6).

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., and
Grose, T. J. (2004). Eclipse Modeling Framework. The
Eclipse Series. Addison Wesley.

Capra, L., Emmerich, W., and Mascolo, C. (2001). Exploit-
ing reflection and metadata to build mobile computing
middleware. In Middleware 2001 Workshop on Mobile
Computing Middleware, Dresden, Germany.

Costa, F. M. (2001). Combining Meta-Information
Management and Reflection in an Architecture for
Configurable and Reconfigurable Middleware. Ph.D.
thesis, University of Lancaster, Lancaster, UK.
http://www.comp.lancs.ac.uk/computing/users/
fmc/pubs/thesis.pdf.

Costa, F. M. (2002). Meta-orb: A highly configurable
and adaptable reflective middleware platform. In Pro-
ceedings of the 20th Brazilian Symposium on Computer
Networks, pages 735-750, Buxzios-RJ-Brazil. Brazilian
Computer Society.

Costa, F. M. and Blair, G. S. (2000). Integrating reflec-
tion and meta-information management in middleware.
In Proceedings of the International Symposium on Dis-
tributed Objects and Applications (DOA’00), Antwerp,
Belgium. IEEE, IEEE.

Costa, F. M. and Santos, B. S. (2004). Structuring reflective
middleware using meta-information management: The
meta-orb approach and prototypes. Journal of the Brazil-
ian Computer Society, 10(1):43-58.

Maes, P. (1987). Concepts and experiments in compu-
tational reflection. In ACM Conference on Object-
Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA’87), Orlando, FL. USA. American
Computer Machinery, ACM Press.

Odell, J. (1995). Meta-modeling. In Proceedings of
OOPSLA’95 Workshop on Metamodeling in Object-
Orientation. ACM.

OMG (2000). Meta Object Facility (MOF). Object
Management Group, Needham, MA. OMG Document
formal/2000-04-03.

OMG (2003). The Common Object Request Broker: Archi-
tecture and Specification. Object Management Group,
Needham, MA USA, rev. 3.0 edition.

Yoder, J. W. and Razavi, R. (2000). Metadata and adap-
tive object-models. In ECOOP2000 Workshop Reader,
volume 1964 of Lecture Notes in Computer Science.
Springer-Verlag.

