
1

Model-driven Development of Self-managing
Software Systems

Matthias Rohr, Marko Boskovic, Simon Giesecke, Wilhelm Hasselbring
{rohr|marko.boskovic|giesecke|hasselbring}@informatik.uni-oldenburg.de

Graduate School TrustSoft
Software Engineering Group

University of Oldenburg
26111 Oldenburg, Germany

Abstract— The promise of self-management is to in-
crease the dependability of complex software systems
and its quality-of-service. However, self-management is
a very complex task if implemented manually at code
level. It introduces high risks to the system’s maintain-
ability and dependability. Model-driven development of
self-management at the architectural level is a promising
alternative to manual low-level approaches.

This paper outlines a model-driven approach for the
model-driven realisation of self-management. The core of
the approach are meta-models to specify constraints (based
on architectural views), monitoring, and reconfiguration
operations. These models can be used to generate self-
management consisting of (1.) the monitoring instrumen-
tation, (2.) the runtime model that reflects the current
state of the system in causal connection to architectural
entities, (3.) the automatic checking of the conformance of
the current runtime model to the given constraints, and
(4.) the mapping to the reconfiguration operations that are
provided by the employed middleware platforms.

I. INTRODUCTION

Self-management is a concept to cope with the in-
creasing complexity and dependability requirements of
software systems. For example, a self-managing system
could improve the availability by automatically diag-
nosing failures and performing the reconfiguration that
is required for the repair of the fault. Although self-
management and other self-* terms (e.g., self-healing,
self-configuration, self-protection) are buzzwords of the
last years, the concept is not new [1]. For instance, al-
ready the SIFT system [2] had a fault tolerance capability
that can be called “self-healing”, as it can automatically
perform failure detection and reconfiguration.

The pure technical problems of self-management have
been largely solved, as standard middleware already
provides such self-management functionality (e.g., late
binding, architectural reconfiguration, or service mon-
itoring). However, the major challenge in developing

This work is supported by the German Research Foundation
(DFG), grant GRK 1076/1

self-management of complex systems is to develop an
efficient design method for self-managing systems, i.e.
to put the technical self-management solution fragments
together in a systematic way.

Former approaches to designing self-managing sys-
tems (such as SIFT mentioned above) were specific to
single applications. Such specific solutions are usually
very expensive, lack in maintainability, and introduce
new risks to dependability, as many aspects have to
be realised from scratch. Although some special pur-
pose systems have successfully demonstrated promising
healing abilities, fundamental research and experience
with general self-management concepts are still missing,
so that conceptual progress is difficult and risks arise
from applying self-management techniques. Reusable
architectural concepts are a more promising way to
achieve higher dependability and trustworthiness through
self-management with low risks.

Runtime Models as a Key Aspect of Systematic Self-
management

Runtime models provide a view on (primarily static)
parts of software architecture in combination with op-
erational data observed from the running system. For
instance, a particular runtime model could be a view on
the internal service architecture of a system and connect
it to current response times. Using runtime models as the
basis for systematic self-management has two benefits:

1) it isolates the system aspects that are relevant to the
self-management functionality from the primary
system,

2) it provides a reusable, application-independent in-
terface for self-management functions such as re-
configuration, monitoring, and diagnosis.

3) it enables model-driven development and tool sup-
port for the integration of self-management func-
tionality into software systems.

2

Fig. 1. The self-management cycle

Overview

We describe the general design elements of self-
managing software systems in Section II. Section III
describes the generation of runtime models from the
specifications of constraints, monitoring, and reconfig-
uration operations. Section IV proposes a partitioning of
the overall design of a self-managing software system
into different sub-models, and sketches an approach for
generating self-management from these models.

II. DESIGN ELEMENTS OF SELF-MANAGING

SOFTWARE SYSTEMS

Self-management comprises the activities monitoring,
checking and diagnosis, and reconfiguration (see Figure
1). This first activity is monitoring, which observes
the system under management, which we denote as
primary system. The monitoring is performed via sensors
which collect relevant operational characteristics. Next,
the monitoring data is aggregated and checked. Under
certain conditions, the diagnosis will identify the need to
trigger reconfiguration operations to change the system.

A. Monitoring

Monitoring is a process of collecting runtime data
(operational data) through measurement. This includes
the computation of data from primary metrics (e.g., time
stamps) to the level of secondary metrics (e.g., average
response times). A complete documentation of software
monitoring (e.g., to enable model-driven instrumenta-
tion) requires a monitoring model that specifies (1.) what
has to be measured in terms of detailed metrics, (2.)
where to measure (connection to software architecture),
and (3.) when to measure.

B. Checking and Diagnosis

Checking and verification of the system behaviour
requires a specification that describes acceptable and
unacceptable behaviour.

There are several architectural viewpoints, commonly
used in software engineering, which can be used to

organise the system architecture in different views (com-
pare [3]):

• data view (i.e., current values variables or
databases),

• structural view (i.e., class, object, component, or
process configuration models),

• dynamic view (e.g., interaction models such as
(timed) protocol specifications), and

• deployment view that maps architectural entities to
resources (deployment contexts).

These views are defined in an abstract sense, the
information from the views is manifested in different
models. A model may cover multiple views, which
is indeed necessary to relate the views to each other.
For example, UML Sequence Diagrams lay a strong
emphasis on the dynamic view, but need to refer to
classes and objects which belong to the structural view.

Constraints can be defined for any model, and thus
they can refer to any view. The UML, e.g., pro-
vides the Object Constraint Language (OCL) to spec-
ify constraints that refer to the entities defined in the
UML Metamodel and their attributes and operations.
A typical way to specify operational goals or require-
ments is to define constraints in languages based on
first order predicate logics, e.g., employee.salary <
40; 2 ≤ number_of_peers_per_super_peer ≤ 5;
maximum_end_to_end_response_time < 500ms;
max_clients_per_server ≤ 500.

C. Reconfiguration

Checking and diagnosis is followed by the selection
and execution of reconfiguration operations. The strategy
for selecting a particular operation will depend on the
system property that is under self-management and might
involve the use of a prediction method in order to
select a suitable reconfiguration operation and an optimal
reconfiguration time [4]. For load balancing, queueing
models could be used to change routing strategies, for
example.

III. RUNTIME MODELS AS ABSTRACTION LAYER FOR

SELF-MANAGEMENT

A runtime model is a causally connected [5] rep-
resentation of a software system under operation, i.e.
changes in the system are propagated to the model
and vice versa (see Figure 2). Therefore, there have
to be mechanisms for maintaining (weak) consistency
between the system and its representation. Changes in
the (state, structure, or behaviour) of primary system are
automatically propagated via monitoring into the runtime

3

Fig. 2. The runtime model reflects both the current state of
the system and provides reconfiguration functionality by a causal
connection to architectural entities. The structure of the runtime
model is given by the parts of the development model that are
instrumented by monitoring, and on the parts of the development
model that are involved in reconfiguration operations. The values in
the runtime model are provided by monitoring.

model, and changes to the runtime model, i.e. reconfig-
urations via the self-management controller, enact the
corresponding changes in the primary system.

The characterisation conforms to recent work on dy-
namic and self-adaptive software architectures. Oreizy
et al. [6] have used a runtime model, that reflects the
current structural state of the system architecture. An
architectural reconfiguration operation (e.g., adding or
removing software components) is first preformed on the
runtime model, and afterwards this change is propagated
into the primary system. The aim was to allow system
maintenance without the need to restart the system.
Garlan et al. [7] extended Oreizy et al.’s approach by
using the runtime model as a simplified (role-based)
abstraction of the system, which is used for constraint
checking, diagnosis, and reconfiguration. They model
mainly the structural view for representing the primary
system. Failure detection is implemented by verification
of constraints defined in the ADL Armani [8].

The general advantages of using a simplified runtime
model for self-management are (1.) that it simplifies
constraint checking, diagnosis, and the selection of repair
operations, and (2.) the decoupling of self-management
from the primary software system allows to develop
reusable self-management strategies independently from
a concrete software architecture.

IV. AN APPROACH FOR THE SPECIFICATION AND

GENERATION OF SELF-MANAGEMENT

FUNCTIONALITY

A. Specification of self-management

A constraint model is a specification of constraints
(using the different views). As pointed out above, the
different architectural views provide the subjects to con-
strain. The constraint model has to reference a mon-
itoring model to establish the connection to system
characteristics such as response times. The constraint
model and the monitoring model share the references
to architectural entities.

The monitoring model can be used to generate the
instrumentation for collecting (and aggregating) data
about the system behaviour. The constraint model could
be directly used to check the collected data for confor-
mance. No code generation is required for this, as the
logic required for checking can be encapsulated into a
component that is independent from the concrete system.

Reconfiguration is the last step of self-management.
A reconfiguration model specifies what should happen
under certain conditions. This could be expressed in
terms of if-then rules, where the “if”-clause would often
references to constraints from the constraint model. If
further runtime information about the primary system
would be required, then this should be done by refer-
ences to the monitoring model. For the “then” clause,
implementation-independent reconfiguration operations
are specified.

B. A model-driven development approach for self-
management and runtime models

The specifications of the constraints, monitoring, and
reconfiguration completely define platform-independent
self-management. To make self-management operational,
several elements have to be realised: (1.) monitoring
instrumentation, (2.) constraint checking functionality,
(3.) a runtime model, (4.) management instrumentation.
However, all these elements can be either be generated
or can be reused for different applications (as indicated
by the horizontal arrows in Figure 2).

Current research on model-driven monitoring (e.g.,
[9]) suggests that it is feasible to efficiently generated
the monitoring instrumentation.

The constraint checking functionality is not
application-dependent and could be provided by
reusable middleware components. The constraint
checking functionality connects constraints formulated
as described before using a predicate logic based on the
four architectural view, in reference to the monitoring
model. So it is the challenge to define a suitable

4

meta-model for monitoring and constraint models.
Existing constraint languages such as Armani [8] or
the Object Constraint Language (OCL) [10] provide a
promising basis, but lack support for timed constraints,
for example.

There is much existing research that can already
be used to realise (and generate) a runtime model as
a runtime artifact. For instance, using object oriented
data-structures, existing reflection mechanisms from lan-
guages such as Java, or data-structures that base on
existing ADLs such as Acme [11] (as used by [7]).
A remaining challenge will be to define a meta-model
for runtime models for specific concerns to reduce the
complexity for managing them during runtime.

Many different kinds of reconfiguration operations
can be distinguished and some might just involve the
change of single values of the business data, while others
affect the structure or behaviour of the system. A large
class of adaptation operations (e.g., adding and remov-
ing software components) might be already provided
by the component platform (see [4]), so that only a
mapping from the platform-independent reconfiguration-
model to the platform-specific functionality would have
to be generated. A remaining challenge is to enable
additional reconfiguration operations by the middleware,
such that model-driven development of self-management
functionality will be limited to a high level mapping.

V. SUMMARY AND OUTLOOK

The technical building blocks for self-managing soft-
ware systems are already available. Anyhow, the last
decades have shown that the manual development of
such systems is very complex. We outlined an approach
for the model-driven development of a self-managing
software system that can simplify the realisation task
by the specification of self-management on the model
level. A key aspect of the approach are runtime models,
which reflect the system aspects that are relevant for
self-management. We have discussed that the structure
of the runtime models can be generated from the self-
management models and the development model of the
primary system.

The complete realisation of our (or a similar) approach
includes the open challenge to design (and generate)
suitable runtime models based on the needs given by
specifications of monitoring, constraint checking and
diagnosis, and (for enabling self-management) reconfig-
uration operations. The concrete relations, and properties
of the languages for expressing these specifications are
largely unexplored and a major topic for future research,
with the potential to build a conceptual bridge between
development models and runtime models.

REFERENCES

[1] Rohr, M., Giesecke, S., Hasselbring, W., Hiel, M., van den
Heuvel, W.J., Weigand, H.: A classification scheme for self-
adaptation research. In: International Conference on Self-
Organization and Autonomous Systems in Computing and
Communications (SOAS06) Poster Session, Erfurt, Germany.
(2006)

[2] Wensley, J.H., Lamport, L., Goldberg, J., Green, M.W., Levitt,
K.N., Melliar-Smith, P.M., Shostak, R.E., Weinstock, C.B.:
SIFT: Design and analysis of a fault-tolerant computer for
aircraft control. Proceedings of the IEEE 66(10) (1978) 1240–
1255

[3] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J.,
Little, R., Nord, R., Stafford, J.: Documenting Software
Architecture. Addison-Wesley, Boston (2002)

[4] Matevska-Meyer, J., Olliges, S., Hasselbring, W.: Runtime
reconfiguration of J2EE applications. In: Proceedings of
DECOR’04 - 1st French Conference on Software Deployment
and (Re)Configuration, Grenoble, France, University of Greno-
ble (2004) 77–84

[5] Maes, P.: Concepts and experiments in computational reflection.
In: Conference proceedings on Object-oriented programming
systems, languages and applications (OOPSLA ’87), New York,
NY, USA, ACM Press (1987) 147–155

[6] Oreizy, P., Gorlick, M., Taylor, R., Heimhigner, D., Johnson,
G., Medvidovic, N., Quilici, A., Rosenblum, D., Wolf, A.: An
architecture-based approach to self-adaptive software. Intelli-
gent Systems and Their Applications 14(3) (1999) 54–62

[7] Garlan, D., Cheng, S.W., Schmerl, B.: Increasing system
dependability through architecture-based self-repair. In: Archi-
tecting Dependable Systems. Volume 2677 of Lecture Notes in
Computer Science., Springer (2003) 23–46

[8] Monroe, R.T.: Capturing software architecture design expertise
with Armani. Technical Report CMU-CS-98-163, School of
Computer Science, Carnegie Mellon University (2000) Version
2.3.

[9] Boskovic, M., Warns, T., Hasselbring, W.: Model Driven
Instrumentation for Relational Event Traces. Radioelektronic
and Computer Systems 6(18) (2006) 124–129

[10] OMG Object Management Group: UML 2.0 object constraint
language (OCL) specification (2003)

[11] Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural
description of component-based systems. In Leavens, G.T.,
Sitaraman, M., eds.: Foundations of Component-Based Sys-
tems. Cambridge University Press, New York, NY (2000) 47–67

