
Experiments in Run-Time Model Extraction

Frédéric Jouault, Jean Bézivin, Régis Chevrel
ATLAS Group (INRIA & LINA, University of Nantes)

{ f.jouault | jbezivin | chevrel.regis }@gmail.com

Jeff Gray,
University of Alabama at Birmingham

gray@cis.uab.edu

Abstract

Reverse engineering and software evolution are probably
today among the most challenging research areas in software
engineering. They are also very rich fields for applying
model engineering techniques. However, in order to define a
sound model-driven reverse engineering framework, we need
to understand more clearly the conditions under which
various abstract models may be extracted from legacy
systems and from other various software assets. The
operation of extracting a model from a system is still very
poorly understood. As part of several projects that have been
performed in the INRIA ATLAS team, we have been
extracting various kinds of models from various kinds of
legacy systems like COBOL, Java, Smalltalk, Visual Basic,
etc. Taking stock on this, we study in this paper some of the
conditions that would allow partial automation of model-
based reverse engineering. More precisely we propose a
method for metamodel-driven model extraction. The proof of
concept is based on a recent experiment using Visual Basic
9.0 and several previous experiments done with the Squeak
version of the Smalltalk language. Besides metamodel-driven
model extraction, one of the research contributions of this
work is to show the feasibility of extracting models not only
from static systems but from dynamic systems as well. In
certain ideal conditions, the models extracted from both
situations may also be jointly used.

General terms
Reverse engineering, model extraction

Keywords
Parametric metamodel, tagged metamodel, dynamic
model, MDRE

1. Introduction

Model Driven Engineering (MDE) promotes the usage
of models as first class entities. Any model conforms
to a precise metamodel. Some models may be obtained

from other models by chains of transformations but the
first ones (initial models) have to come from some
specific place. In forward engineering, many initial
models are created by a human operation. A given
situation (for example a business system) is observed
by a human agent and the result of this may later be
subject to full automation (by the way of model
transformations), possibly leading to executable code
production. However, mainly in reverse engineering,
initial models may sometimes be produced by
automatic means. This is for example the case when a
model is created from legacy code by a text to model
extraction operation.
In order to reach conclusions as advanced as possible,
we base our experiments on the ideal context of a
legacy written in a language with good reflective
capabilities. When there are no introspection
capabilities available, the possibilities are obviously
much reduced but the general extraction objectives
may be partially met by other means.
Besides metamodel-driven model extraction, one of the
research contributions of this work is to show the
feasibility of extracting models not only from static
systems but from dynamic systems as well. In certain
ideal conditions, the models extracted from both
situations may also be jointly used. To this end it is
necessary to have a clear and clean definition of
system, model, and model extraction. One contribution
of this work is to propose a very general definition of
the model extraction operation that could be usable
through different contexts and situations.

2. Systems and models
We base our work on the definition proposed in [3]. A
terminal model represents a system and conforms to a
metamodel. The corresponding relations of
conformance and representation are illustrated in
Figure 1. The left part of the figure represents the real

world (or world of discourse). The right part of the
figure represents the modeled world. Entities of the
real world are systems and we represent them by
circles. Entities of the modeled world are models and
we represent them by rectangles.

Figure 1 The two basic relations of representation
and conformance
The relation of conformance itself may be defined in
term of a function μ associating metaelements to
elements as illustrated in Figure 2. The relation of
representation is related to ontology engineering and
more difficult to characterize.

Figure 2 Relations between models and metamodels

A model may be used as a blueprint to produce a

system. This is what we may call the operation of
system construction from a model. We are not
interested by this operation in the context of this paper.
Conversely a model may also be extracted from the
observation of a system. The common property of
these two operations (system construction and model
extraction) is that they have a similar post-condition.
At the end of both operations the representation
relation repOf (M,S) holds. As illustrated in Figure 3,
the observation of a given system (here a farm)
produces a model of this system (here a UML class
diagram).
What is not made explicit in Figure 3 is the importance
of the metamodel. Here the main features of the
modeling languages are classes and attributes but with

another metamodel they could have been as well event,
constraints, functions, etc.

Figure 3 The operation of model extraction and its

postcondition
As stated before, many operations of model extraction
are made by human operators and are not very well
understood. However in some cases it is possible, at
least partially, to automate the operation of model
extraction. This paper proposes an initial investigation
in this area.
There are many categories of models based on their
metamodels. But there are also different categories of
systems and this is very important for the
characterization of the model extraction process. Most
systems are dynamic, i.e. they evolve in time. Some
systems are static, i.e. they stay always similar.

3. Model extraction from legacy systems

We are going in this section to apply the presented
notions to the problem of legacy extraction. The main
idea is the following: the code Ps of a program (i.e. of
a COBOL program) may be considered as a static
system. We make no difference here whether the code
is printed code or is a file on a hard disk. Its main
characteristic is that it is composed of structured static
text. Now we may consider as a different system, one
particular execution Px of this program, in a given
context, with specific conditions and input data.
Typically this is a dynamic system. It may have a start
time and end time of be of indeterminate duration.

Figure 4 A program and one execution of this

program

The classical way to extract a model from legacy is to
consider the code as a static system and to apply a
model extraction operation to build a model of the
code. This has been done in various contexts, with
various tools, for several languages like COBOL, Java,
C#, etc. A metamodeling system to extract models
from COBOL source programs is described in [2] for
example. A syntactical analyzer (TGen) was used to
build an abstract representation (model) of the source
COBOL. Views could be extracted from the resulting
model by model transformations in order to locate
Y2K or Euro conversion problems. The metamodels
used were mainly variants of COBOL metamodels
including control structure and data structures. This
allowed for example applying slicing algorithms at the
model level.

There is another interesting possibility, which is
extracting a model from the execution of a legacy
program. Let's suppose we have a running Java
program, and we would like to extract an execution
trace from this particular execution (trace of method
calls, of exception risings, of thread activations, etc.).
We may consider the (possibly infinite) execution trace
of this program as a model. The model extracted from
the executing program should conform to a given
metamodel. Obviously there are plenty of metamodels
that could be used here for example trace metamodels
based on different kinds of events.

The illustration of Figure 4 shows that the static
source program and one execution of the program may
be considered as two different phenomenon of the real
world. Obviously we know that they are constrained in
the sense that the execution follows the pattern of the
source program itself. In the modeled world, there are
two models that have also some relation together. In
the static legacy model extraction we have only used
the upper part of the figure. The lower part can also be
used by itself. Many applications will also find
convenient to use jointly Mx with Ms.

4. The case of reflective languages

Figure 5 Variable metamodel run-time analysis

Now we are going to consider one more specific kind
of system: dynamic execution of a program written in a
reflective language. If we refer to Figure 4, the new
situation here is that Ps can be totally inferred from Px.
We fully use here this capability of introspection.
The initial scheme that has been implemented in [5]
was to use the Squeak variant of Smalltalk to build the
first demonstrator. The principle is illustrated in Figure
5. A Squeak execution Px is launched and starts by
reading the XMI-serialized form of a metamodel MMi.
Then, on a given signal (immediately by default), the
program writes out the XMI-serialized form of a model
Mi conforming to the metamodel MMi.

Figure 6 Non decorated Smalltalk metamodel
In this initial experiment, the goal was to use execution
Px mainly to have access to source program Ps. Our
original intention was to use introspection instead of
syntactical analysis for model extraction from legacy
code. Very soon we discovered that the potential was
much higher if we could extract run-time models as
well.
The effort mainly concentrated on the technical
difficulties of XMI reading and writing and finishing
the proof of concept prototype. The result of this
project was to demonstrate that introspection
techniques could be jointly used with metamodeling
techniques to allow code to model extraction in a way
completely different from classical syntactical analysis
techniques.
Of course there was no magic in this solution. If the
Squeak program was able to produce a model of itself,
according to an arbitrary metamodel, this was because
all the information were available. A typical Smalltalk
metamodel is presented in Figure 6 with classes,
variables, methods, etc. What we wanted was that the
Smalltalk program could discover by itself all its
classes, all their variables and methods, etc. The
solution was to decorate the elements of the metamodel
with special comments (like OCL assertions) giving
the exact code necessary to discover the corresponding
entities. This code was Smalltalk code using the

reflective API of the language. Obviously the
decorations were produced beforehand as was the
exploration order of the metaentities.
The advantages of this scheme are very numerous
since it is quite easy to define a new decorated
metamodel.

Since this first experiment many improvements
have been made and a new prototype started. The
present state of this new prototype has been presented
in [6]. The main process is illustrated in Figure 7. It
uses another reflective language (Visual Basic Version
9.0) on top of Dotnet. It allows dealing with static and
dynamic models of an execution of VB. The
metamodels are now expressed in KM3 [1] which is
much more readable. The decorations of the
metamodels are going to be handled by the technique
of model weaving as available in the Eclipse AMW
project.

InspectionEngine

Metamodel

Deco1(...) : …
Deco2(...) : ...
.
.
mainDeco(…)
 : DSModel

Generated
code

1

2

0
DSModel

DSModel

3

4

ModelsExporter

MetamodelsLoader
Steps:

0 : The MetamodelsLoader
load in memory the DSModel
corresponding to the ecore files
given

1 : The InspectionEngine looks
down to the metamodel,
discovers somes decorations and
produces a compilable source
code

2 : The InspectionEngine
instanciates a VisualBasic
compiler and compiles the
resulted code

3 : Then, the InspectionEngine
run the method mainDeco on the
in assembly, what produce a
DSModel conforms to the
metamodel

4 : The ModelsExporter is now
charge to export this model in
ecore format

repOf : represention of.
C2 : conformsTo.

assembly

c2

repOf

 decorations

Figure 7 VB Model Extraction mechanism steps

5. Conclusion

In this paper we have seen the power of combining

metaprogramming and metamodeling techniques. We
have mainly shown how introspection may be
combined with advanced model driven engineering to
produce powerful software evolution solutions. The
possible extension of run-time model to intercession
has not yet been studied.

The present work has been done with the goal in
mind of contributing to new solutions in the area of
model-driven reverse engineering. Some of the
solutions will be extended to deal with the objectives
of the OMG ADM group (Architecture-Driven
Modernization task Force). However some findings in
this work goes beyond this scope and show the high
potential of run-time models if we are able to provide a

regular conceptual framework. It seems to us that more
work is needed on the definition of the extraction
operation between a system and a model. Our
conviction is that this should not be confused with the
simple application of model transformation. One
possible area would be to investigate the relations of
this with the concept of technical spaces [4].

6. Acknowledgements

This work is being partially supported by the

ModelPlex project. We thank all the students that have
previously worked on related projects, and particularly
Julien Blin, Eric Malespine, Guillaume Tillet, Thomas
Woerly who achieved the first Squeak implementation
in 2003.

7. References

[1] ATL, ATLAS Transformation Language Reference site

http://www.sciences.univ-nantes.fr/lina/atl/ including
KM3: Kernel Metametamodel definition.

[2] Bézivin, J. sNets: a First generation Model Engineering
Platform. In: Lecture Notes in Computer Science,
Volume 3844, Satellite Events at the MoDELS 2005
Conference, edited by Jean-Michel Bruel. Springer-
Verlag, Montego Bay, Jamaica, pages 169--181.

[3] Bézivin, J., Jouault, F., Kurtev, I., and Valduriez, P.,
Model-Based DSL Frameworks. OOPSLA'2006
Companion Proceedings, Portland, OR.

[4] Bézivin, J., Kurtev, I., Model-based Technology
Integration with the Technical Space Concept. In:
Metainformatics Symposium 2005, Esbjerg, Denmark,
November 2005, LNCS publication.

[5] Blin, J., Malespine, E., Tillet, G., Woerly, T. TER
Report, june 2003, University of Nantes.

[6] Chevrel, R., Bézivin, J., Brunelière, H., Jossic, A., Piers,
W., Jouault, F. ModelExtractor: an Automatic
Parametric model extractor, ECOOP Workshop on
Object-Oriented Reengineering, Nantes, July 2006.

http://www.sciences.univ-nantes.fr/lina/atl/

	General terms
	Keywords
	1. Introduction
	2. Systems and models
	3. Model extraction from legacy systems
	4. The case of reflective languages
	5. Conclusion
	6. Acknowledgements
	7. References

