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ABSTRACT
Manual administration of complex distributed applications
is almost impossible to achieve. On one side, work in auto-
nomic computing focuses on systems that are able to main-
tain themselves, driven by high-level policies. Such a self-
administration relies on the concept of a control loop. On
the other side, modeling is currently used to ease design
of complex distributed systems. Nevertheless, at runtime,
models remain useless, because they are decoupled from
the running system which is subject to dynamic changes.
The autonomic computing control loop involves an abstract
representation of the system used to analyze the situation
and to adapt the application properly. Our proposition,
named Distributed Autonomous Component-based ARchitec-
tures (Dacar), introduces models in the control loop. Using
adequate models into the control loop, it is possible to de-
sign both the distributed systems and their evolution poli-
cies, and to execute them. The metamodel suggested in
our work mixes both OMG Deployment and Configuration
specification and the Event-Condition-Action (ECA) meta-
models. This paper treats the different concerns that are
present in the control loop and focuses on the concepts of
the metamodel that are needed to express entities of the
control loop. It also gives an overview of the current Dacar
prototype and illustrated it on an ubiquitous application ex-
ample.
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1. INTRODUCTION
Business applications become more and more complex,

and they are also distributed on several machines. The re-
sulting heterogeneity of the deployment domain —i.e. the
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set of machines that host these applications— makes deploy-
ment and maintenance of these applications become critical
tasks. Actually with the emergence of grid and ubiquitous
computing [5, 18], manual administration of applications
is almost impossible to achieve, since the deployment do-
main is not statically known at deployment-time, and it can
strongly evolve during runtime, in terms of node appear-
ance or disappearance. This statement led to the creation
of a new research topic called Autonomic Computing [13].
Work in autonomic computing focuses on systems that are
able to maintain themselves during runtime, driven by high-
level policies. In autonomic computing, the control loop is
the central notion that helps achieving autonomic manage-
ment and reconfiguration of applications. This control loop
involves an abstract representation of the system used to
analyze the situation and to adapt the application properly.
There is a causal link between the abstract representation
of the system and the actual system that is running.

Models are widely used to design distributed applications.
The use of models allows the designer to only specify an ab-
stract view of a system to be deployed. Using this abstract
models, many approaches, such as the Model Driven Archi-
tecture [8], are able to generate a more concrete view of the
system, and the task of the designer is drastically simplified.
Unfortunately, the models of an application are useless once
the system is deployed and running, since models and system
are decoupled and they change independently. Introducing
models as the abstract representation of a system in the au-
tonomic computing control loop makes the use of models
still relevant at runtime. The model is causally linked to
the running system, and it evolves the same way. Then the
autonomic computing can benefit from the use of models
by having a complete abstract representation of the system
from which it is possible to extract fine-grained information,
and then apply the adequate reconfiguration.

Dacar is our proposition that consists in establishing a
metamodel that mixes the OMG Deployment and Configu-
ration (D&C) specification [10] and Event-Condition-Action
(ECA) rules [3], in order to inject models as computation
support in autonomic computing.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the fundamental principles of autonomic
computing as defined in [13]. Section 3 discusses the key
research challenges to address the problem of introducing
models in autonomic computing. Section 4 presents Dacar,
our proposition for model-based autonomic computing. A



simple illustrative example is given in Section 5. Sec-
tion 6 presents other work related to autonomic distributed
component-based systems. Finally, Section 7 exposes our
conclusions and perspectives.

2. PRINCIPLES OF AUTONOMIC COM-
PUTING

The essence of autonomic systems relies on the notion of
control loop (represented in Figure 1) as defined in [13]. This
loop consists in four phases: Monitoring the system, ana-
lyzing the situation to take a decision about some changes
monitored, planning the adequate reconfiguration actions,
and applying them. The analyzing and planning phases are
relying on the Knowledge part as support for computation.
At runtime the Knowledge part must always be conform to
the execution environment, that means that every change
in the execution environment must lead to an update of the
knowledge part, and vice-versa. Then a causal link must be
maintained between the knowledge part and the execution
environment.

Figure 1: The control loop of autonomic computing

We choose to separate the architecture of the control loop
into three parts which have different roles:

The knowledge part It is the abstract autonomous sys-
tem representation. This representation must be com-
plete in order to be aware of any information that may
influence decision to take. It must be reconfigurable,
because the abstract representation must evolve the
same way that the running application onto the de-
ployment domain. It must also be an high-level rep-
resentation where only relevant information about the
application must be present, so that the autonomic
mechanism does not get lost into details when com-
puting a decision.

The policy part The Analyze and Plan phases are re-
sponsible of exploiting the knowledge part to analyze
situation and prepare adequate reconfigurations. We
group them into the policy part. The integrality of the
autonomic policy is gathered in these two phases.

The platform part The third part encompasses the ex-
ecution environment, and the Monitor and Execute
parts. These three parts represent the middleware
used. It encompasses operations to deploy the sys-
tem, reconfigure it, and monitor it. Those operations
are dependant of the underlying software technology
used.

3. KEY RESEARCH CHALLENGES
This section discusses the key research challenges to

address for introducing models into autonomic computing.
Then we try to answer to the following questions: What
models of autonomic applications should look like? How
the control loop could be split? What metamodels can be
used to provide concepts to express entities of the control
loop? Section 2 already provided answer’s elements. The
control loop architecture has been split in three parts that
represent the different concerns of an autonomic system.

First, the platform part of the control loop should
be modeled. We saw that this platform should provide
monitoring information about the running application as
well as deployment operations to instantiate the application
onto the deployment domain. Then, there is no possibility
of a generic complex metamodel in this case, since a unique
metamodel could hardly be used to express any runtime
platform model. We can then suppose that the platform
part is encapsulated in one software component with
clearly defined interfaces providing the required operations.
The details about the implementation of this component
relies on the runtime platform chosen for executing the
application. By using a platform component, we maintain
genericity regardless to middleware running the applications
(e.g. J2EE [15], CCM [9], SCA [12], etc.).

The second part is about the Knowledge part. What in-
formation about the application a knowledge model should
encompass? This part must contain all information relevant
to analyze the system and to plan adequate reconfiguration
actions. This model must provide the concepts to:

• Describe deployment domain entities: Computers
available on the network, interconnections between
those computers, bandwidth of these interconnections,
etc. These concepts are needed since in the case of an
ubiquitous or grid-tailored application, the knowledge
about computer’s appearance/disappearance is criti-
cal.

• Describe the components of the applications. This en-
compasses the component types, the interfaces they
provide and require, the location of the binary of these
components, etc. This information is needed because
the reconfiguration of running component instances re-
quires knowledge of their specification.

• Express the structure of the concerned applications,
which we also call the Deployment Plan. This means
information about the component instances to deploy,
the computers onto which these instances must be de-
ployed, and how these instances are bound together.
This information is crucial for the application since it
contains all information about the application archi-
tecture. Without knowing this information it is im-



possible to deploy and start the application. Moreover
autonomic management of applications often means
reconfigurate dynamically the structure of an applica-
tion, so it means modifying the deployment plan.

There are already existing solutions, like the Architecture
Description Languages (ADL) [14], in order to modelize
application data such as component types, deployment plan,
etc.. But most of the existing ADLs are specific to a given
component model and the few that are generic generally do
not provide concepts to express deployment domain entities.
Nevertheless the Object Management Group (OMG) has
recently adopted a new specification called Deployment and
Configuration of Distributed Component-based Applications
[10]. This specification defines a metamodel with two parts,
the Component Data part and the Component Management
part. The first one describes the packaged components,
with their typed interfaces and implementations, whereas
the second one describes the deployment infrastructure
and the way it handles data from the first part to execute
the deployment process. The Component Data part of
the OMG D&C specification provides the three parts of
our knowledge metamodel: the Types, the Domain and
the DeploymentPlan. So it seems that OMG D&C is a
convenient knowledge metamodel to use.

However, using OMG D&C means forgetting some
of the aspects of a running system. For instance, it
is impossible to express components container policies,
such as transactions, security, persistency or lifecycle
concerns. Nevertheless, there exist extensions to specify
extra-functionnal container policies, such as the CORBA
Component Descriptors (CCD). So in order to reify and
control every fine-grained concern of an component-based
application, the OMG D&C metamodel should be extended.

The third part is about the high-level autonomic policy.
This part must describe exhaustively the autonomic policies
of an application. How should these policies be expressed?
Which concepts can allow the designer to specify pre-
cisely the exhaustive autonomic policies of a distributed
component-based application, knowing that the model at
runtime should have sufficient information to analyze the
situation and to take the right decision when needed?

There are three main concepts in order to express an
autonomic policy. First, there is a stimulus part, that is
an event that triggers the autonomic policy. This stimulus
emerges in a certain context, which can be modeled as a
set of properties of the application or the stimulus itself.
Finally, there is an execution part that depends on the
nature of the stimulus as well as the context in which
this stimulus is detected. We argue that the ECA rule
paradigm, well-known in the domain of active databases [3],
fits well our needs for the expression of autonomic policies.
The Event part represents the stimulus, the conditions of
a rule are the context of this rule trigger, and the actions
represent the execution part of the model.

Another issue to be raised about this part of the model
is to know whether the policy expression must be fine or
coarse-grained. In other words, the question is about hav-
ing an application-specific autonomic policy or composing
generic fine-grained policies to build an application global

policy. Our opinion is that by composing fine-grained
policies, it will be possible to extract independent and
reusable autonomic micro-policies. It is then possible to
define policies by composing both independant and more
application-specific policies. On the other way the well-
known feature interactions defined in [17] can be detected
and resolved thanks to the fine granularity of our rules.

The Shared Trigger Interaction (STI) problem occurs
when two or more rules are triggered at the same time
(i.e. by the same event). In our situation we consider
that no rule of the same category should be triggered by
the same event. Then there can be two alternatives to
solve this problem. The first one is simplistic: Dialog with
administrator to choose whether these rules can be merged
or executed in any order, choose an execution order, or
remove some of the rules because they have incompatible
actions. The second alternative is more complex. We can
add in the metamodel post-conditions properties for each
rule (which can be inferred from the rule code). It is then
possible to detect if two or more rules that share triggers
have compatible post-conditions (that is to say different but
compatible behaviours), or if these rules are also sharing
the target of the reconfiguration. In this latter case, there
is no other choice than prompting the administrator.

The Sequential Action Interaction (SAI) problem occurs
when the action of a rule leads to the triggering of another
rule. But in our specific case, this is not really a problem.
But if these SAIs lead to a Looping Interaction (LI), then
it has to be resolved. LI occurs when there is a cycle in
the rules triggering. The typical simple illustration is the
action of a rule A that triggers a rule B, and the action of
B triggers A. Using the post-condition mechanism exposed
earlier it is firstly possible to detect SAIs when inserting
a new rule, by comparing events that triggers a rule with
post-condition of another rule. This way an algorithm for
detecting cycle is envisageable, and it is then possible to
rollback the rule insertion.

To experiment the mixing of OMG D&C metamodel and
ECA rules for the control loop of autonomic applications, we
have created a prototype that allows us to design, deploy,
and reconfigure autonomic distributed component-based ap-
plications.

4. OUR DACAR PROTOTYPE
Dacar for Distributed Autonomous Component-based

ARchitectures is our prototype to build autonomic dis-
tributed CORBA component-based applications. The
platform employed to deploy components is OpenCCM
(http://openccm.objectweb.org). We describe applica-
tions using XML descriptors conform to OMG D&C. These
descriptors are reified into memory as a graph of Java objects
that represents the executable model of the running appli-
cations. Currently, rules are not expressed using a model
since our rule metamodel has to be completely defined. So
the rules are implemented as Fractal lightweight components
(http://fractal.objectweb.org). Monitoring and recon-
figuration execution parts are implemented using specific
OpenCCM mechanisms [11].

We consider two sorts of events: The endogenous events
are coming from the knowledge part (example: A new in-



stance description has been added in the domain part), the
exogenous events are events coming from the execution plat-
form (example: A new node has been started in the de-
ployment domain). The condition part of a rule represents
conditions that event properties must fulfill in order to trig-
ger the rule. The action part can have effect either on the
knowledge part or the platform. Thus, we can classify rules
in three categories (represented on Figure 2):

Figure 2: The three types of rules involved in Dacar
platform

• The Monitoring rules are triggered by exogenous
events. They operate actions on the knowledge part
to update it according to changes that occurred onto
the running platform. Example: When a new node is
detected in the execution environment, add its descrip-
tion in the domain part of the knowledge part. These
rules are generic and reusable across applications.

• The Deployment rules are triggered by endogenous
events. They operate actions on the running platform
to update it according to changes that occurred onto
the knowledge part. Example: When a new instance is
declared in the deployment plan part of the knowledge
part, prepare the deployment of this instance on the
execution environment. These rules are also generic
and reusable across applications.

• The Architectural rules are triggered by endogenous
events. They operate actions on the knowledge part
to update it according to properties that this knowl-
edge part must fulfill. Example: When a new Client

instance is declared in the plan of the knowledge part,
declare a binding between this Client component and
a random Server component instance existing in the
plan. These rules are application specific.

Using these three categories of rules it is possible to en-
sure the causal link between the knowledge part and the

application at runtime. The monitoring rules ensure that
every change occuring in the execution environment leads
to an update operation of the knowledge part. The deploy-
ment rules ensure that every concept declared in the plan
of the knowledge part is prepared to be deployed on the
execution environment. Both monitoring and deployment
rules are the generic micro-policies enounced in Section 3.
Finally, the architectural rules are the only specific part of
the policy, they are responsible of the adaptation policy of
the application. It refines the knowledge part according to
changes emerging from the knowledge part itself. It is pos-
sible to express complete autonomic applications using our
metamodel. Dacar has been tested to design several auto-
nomic CORBA component-based applications.

5. SIMPLE EXAMPLE
This section illustrates the Dacar concepts through

a simple scenario of autonomous application. Figure 3
represents the architecture of our scenario. More details
about this scenario can be found in [4].

This example takes place in the context of an ubiquitous
application. In a railway station, there is a RailwayStation

component that can give information about the trains on
departure, relying on a DataBaseTrainSchedule compo-
nent. Every person that enters the station and has a Per-
sonal Digital Assistant (PDA) must be able to request the
RailwayStation component. In order to realize this, a ded-
icated TrainGUI component is implemented and must be
deployed on every PDA that wants to obtain the service.
With most of existing ADLs, it is impossible to specify that
a TrainGUI component must be deployed on every PDA that
enters the domain. Moreover, those deployed TrainGUI com-
ponents must be bound to the RailwayStation instance.

Figure 3: An autonomic train service example

We can first introduce the generic monitoring rule R_M,



in charge of adding new node descriptions into the domain
part of the autonomic computing knowledge:

RULE R M
EVENT

A new node N is detected onto the Platform
CONDITION

N.profile == PDA
ACTION

knowledge.domain.addNode(N)

Two architectural rules are required to imple-
ment autonomic behaviours of our simple ubiq-
uitous example. The first one is the following :

RULE R1
EVENT

A new node N is declared in the knowledge.domain part
CONDITION

N.profile == PDA
ACTION

knowledge.plan.declareInstance(TrainGUI ,
”cl”+N.name, N)

This rule R1 ensures that every terminal that enters
the domain gets an instance of TrainGUI. The second
rule ensures that every TrainGUI is connected to the
RailwayStation component :

RULE R2
EVENT

New instance I is declared in the knowledge.plan part
CONDITION

I.type == TrainGUI

ACTION

knowledge.plan.addConnection(I.the service,
RS.the service)

With these only two rules, the architecture will be ex-
tended to take into account every PDA that enters the do-
main. These rules reuse generic deployment and monitor-
ing rules that are respectively in charge of applying the de-
ployment operations when needed, and adding the descrip-
tion of new nodes into the reified architecture when it is
detected. The unbinding and undeployment of TrainGUI in-
stances when PDAs leave the domain must be written (also
two rules) but is not treated here.

We can also give details about one generic deployment
rule R_D, that is in charge of deploying component instances
declared in the plan:

RULE R D
EVENT

A new instance I is declared in the knowledge.plan part
CONDITION

true (no condition)
ACTION

platform.deployInstance(I)

The potential gains of the approach we present in this
paper are numerous. First, the ECA rules represent a con-
venient and natural way to express reconfiguration policies,
as well deployment and monitoring operations. Also, archi-
tectural rules can be designed to factorize the description of
very large and redundant applications, just like the simple

example we gave in this section. Indeed in our example, the
same actions are repeated when new PDA enter the domain,
but the two concise architectural rules factorize these actions
Finally for critical systems, there is no need to monitor the
application and to manually interact with the system when-
ever an human intervention — that is also error-prone— is
needed. An arbitrary part of the application can be self-
managed at runtime.

6. RELATED WORK
In this section, we will discuss of works addressing dis-

tributed component-based autonomic applications, in order
to justify the relevance of the metamodels we defined and
the way we interpret models at runtime to deploy and exe-
cute autonomic applications.

Jade proposes a component-based implementation of a
control loop to administrate J2EE applications on clusters
[2]. The target platform and the application are modeled
using Fractal components, in order to provide management
interfaces. This allows the administrator to dynamically re-
configure the application architecture. A sensor mechanism
is employed to monitor the system and communicate the
observations to the control loop. Jade allows the architec-
tures to be reconfigured according to infrastructure context
changes. It does not provide way to express architecture-
specific adaptation mechanisms. Moreover the knowledge
part of Jade consists only in a Fractal component assembly
which is not as expressive as a real typed model defined by
a metamodel.

CoSMIC is a model-driven generative programming tool-
chain, that permits efficient deployment and reconfiguration
in Distributed Real-time Embedded (DRE) systems [7]. It
is also based on the OMG D&C specification to specify de-
ployment process. Nevertheless, CoSMIC only monitors
Quality-of-Service results. Autonomous reconfigurations are
then triggered by performance leaks in the system. This
adaptation process is not driven neither by the architecture
nor by its deployment domain evolutions, by opposition with
our approach.

The Rainbow framework adopts an architecture-based
approach very similar to ours, to adapt distributed appli-
cations to their needs [6]. They also implement a control
loop to manage elements across the systems. They define
adaptation strategies using invariants, which are some re-
configuration scripts executed in response to events. The
use of invariants makes the policies in Rainbow monolithic,
on the contrary of our approach. This way Rainbow’s in-
variants interactions must be hard to detect and hard to
resolve. Using our rule-mechanism, it is possible to detect
interactions between policies. Then, autonomic reconfigura-
tions could be validated and safe at runtime.

Finally, Plastik is a meta-framework that provides mech-
anisms to manage runtime reconfigurations of component-
based software, with programmed changes —i.e. foreseen re-
configurations at design-time— versus ad hoc changes —i.e.
not foreseen at design-time [1]. This approach relies on re-
active reconfigurations, in the same way that our approach.
It proposes two layers, an architectural one, and a runtime
one, just like in Dacar. Nevertheless, the only coherency
supported between the two layers is from the ADL layer to
the platform layer. This means that in case of runtime-level
spontaneous changes, the architectural representation of the
system is deprecated, and then useless. In our approach, a



causal link is maintained between the two layers.

7. CONCLUSIONS & FUTURE WORK
In this paper, we have presented our vision of model-

based autonomic computing in which a metamodel com-
posed of three parts have been found out to express dis-
tributed component-based autonomic applications. This led
to the implementation of Dacar, a framework to model au-
tonomic component assemblies, following the vision of auto-
nomic computing. Dacar reuses the OMG D&C architec-
ture metamodel to build and manipulate the knowledge part
of the control loop, and reuses the ECA rules paradigm to
express the applicative adaptation policies. The first point
of our future work will consist in establishing precisely the
exhaustive metamodel used in Dacar, especially the rule
metamodel. Then it will be possible to ensure properties
expressed in the model and so to build safe autonomic ar-
chitectures. We plan to use a metamodeling language such
as Kermeta [16] in order to build and reconfigurate real
models of both architecture and adaptation policy. We also
envisage to integrate an existing ECA-rule execution engine
in Dacar, which will interpret properties expressed in the
model and apply them while rule execution.
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