
A Runtime Model for Multi-Dimensional Separation of Concerns  
 
 

Awais Rashid, Ruzanna Chitchyan 
Computing Department, Infolab21, Lancaster University, Lancaster LA1 4WA, UK 

{awais | rouza} @comp.lancs.ac.uk 
 

 
Abstract 

 
Multi-dimensional separation of concerns 

techniques for aspect-oriented software development 
(AOSD) support symmetric representation and 
composition of various concerns in a system. In a 
multi-dimensional separation one can project any set 
of concerns on another set of concerns hence offering 
powerful modular and compositional reasoning 
abilities. This is in contrast with asymmetric 
approaches to AOSD which distinguish aspects from 
base concerns with the projections directed from 
aspects to base. However, to date, most multi-
dimensional models only exist during analysis and 
design or, at best, as static models of programs – the 
multi-dimensionality disappears as the program 
models are statically composed. In this paper we 
highlight the challenges of maintaining a multi-
dimensional model at runtime and discuss how these 
have been addressed in the Dynamic Hyperslices 
approach.  
 
1. Introduction 
 

Aspect-oriented software development (AOSD) 
techniques are generally classified into two broad 
categories: 

 
• Asymmetric, e.g., [4, 7, 16, 22, 24], where there is 

a base model in a dominant decomposition, for 
instance, an object-oriented model, with an aspect 
model crosscutting the elements in the base model.  

• Symmetric or multi-dimensional, e.g., [9, 13, 14, 
25, 27], where there is no separation between base 
and aspects. All concerns are treated as first-class 
entities in the model with the ability to project or 
compose any set of concerns with any other set of 
concerns. 

 
Multi-dimensional models are, of course, more 

powerful than their asymmetric counterparts. While in 

an asymmetric separation aspect composability is 
constrained by the composition semantics of the base 
decomposition model, there are no such restrictions in 
a multi-dimensional model. One is able to define 
powerful and expressive composition operators and 
utilise these as a basis to reason about and manipulate 
the relationships between concerns and the influences 
and dependencies they exert on each other – this has 
been termed compositional reasoning [21]. 

 
As far as asymmetric models are concerned, we find 

a number of techniques aiming to maintain first-class 
representations of such models at runtime. AspectJ [4], 
for instance, offers a meta-aspect protocol (MAP) with 
basic introspection support as well as load-time 
composition of aspects. Other systems such as JAC 
[17] and PROSE [18] maintain runtime representations 
of the aspect and base models and support runtime 
adaptation of both models. 

 
In contrast, multi-dimensional models have so far 

mainly been utilised for analysis and design [10, 13, 
14, 25]. Runtime representations of such models have 
been largely unexplored. The Hyperspaces approach 
[27] and its supporting tool Hyper/J [15] provide 
support for multi-dimensional models during design 
and implementation. However, the composition in 
Hyper/J is based on statically merging the various 
concern slices. As a result, the multi-dimensional 
separation is mapped on to a two-dimensional model 
(Java’s object-oriented model) and the concerns in the 
analysis and design models (as well as the static 
program model) do not have counterparts at runtime. 
This, in turn, means that one cannot introspect or 
manipulate concerns in the multi-dimensional concern 
model at runtime for dynamically adapting the system. 
Any changes have to be made statically and the 
concerns recomposed to map onto the object-oriented 
model for execution. 

 
In this paper, we tackle the issue of maintaining 

such a multi-dimensional model at runtime and 



supporting dynamic composition and adaptation of 
concerns in such a model. Such a multi-dimensional 
runtime model has the usual applications in supporting 
dynamic composition and reconfiguration in auto-
adaptive systems, such as those deployed in ambient 
computing environments. However, more significantly, 
it helps improve traceability from multi-dimensional 
analysis and design models – which offer more 
powerful means for analysis of broadly-scoped 
properties in auto-adaptive systems [14] – to runtime. 
Section 2 discusses the challenges of maintaining a 
multi-dimensional model at runtime. Section 3 
discusses how these challenges have been addressed in 
the Dynamic Hyperslices approach, that extends the 
notion of Hyperslices from [27] to runtime. Section 4 
discusses some related work and Section 5 concludes 
the paper. 
 
2. Challenges for Multi-Dimensionality at 
Runtime 
 

There are three key challenges when attempting to 
maintain a multi-dimensional separation at runtime. 
We discuss each of these below. 

 
Flattening a multi-dimensional model onto an OO 
model 

 
In a multi-dimensional model concerns are not 

sliced on class boundaries. Instead they are often sliced 
on the basis of the high-level features in a system. For 
instance, payroll and personnel may be considered as 
two concerns in a multi-dimensional model (e.g., the 
Hyperslices model [27]) with fragments of the class 
Person appearing in both (cf. Fig. 1). Note that the 
same method getSalary( ) appears in Personpayroll and 
Personpersonnel as both concerns have to be declaratively 
complete – both personnel and payroll may require 
access to salary information. In other cases, there may 
be different fragments of the behaviour of such 
“shared” method in each concern. 
 

Person

getName( )
getSalary( )
…

…
…
…
…
…
…

personnel

Person

getSalary( )
paySalary( )
…

…
…
…
…
…
…

payroll

 
Fig. 1: Class fragments in a multi-dimensional slicing 

 
Static flattening of such a model onto an OO model 

is easier as one can combine the various fragments of 

Person into one class definition which is then used for 
runtime representation of objects. In fact, this is what 
the Hyper/J tool does in a nutshell. However, if we 
wish to maintain the two concerns in our multi-
dimensional separation at runtime along with the 
partial definitions of the class Person within each, then 
type safety issues come into play. How do we maintain 
two (or more) variations of the class Person at 
runtime? One way to achieve this is to use different 
packages to represent different concerns. However, 
then the Person class definitions in the two packages 
represent two different classes. But semantically all 
Person objects should belong to both class definitions. 
This implies that we need support for multiple 
classification of objects. Though such multiple 
classification can be simulated via inheritance, firstly, 
Personpersonnel is not a sub-type of Personpayroll and vice 
versa, and secondly, this would lead to deep 
inheritance trees with high levels of fragility [12] as 
concern slices are dynamically adapted. 
 
Nature of composition operators 

 
Composition operators in multi-dimensional 

approaches are also driven by the above-mentioned 
need to flatten the model onto an OO model (or 
another model such as, functional programming, for 
that matter) for execution purposes1. When mapping to 
an OO model (for instance, in Hyper/J) the operators 
focus on merging the various class fragments based on 
certain syntax or semantics. In cases where a method 
appears in multiple class fragments, one can specify 
whether one of the various method implementations is 
to be used (i.e. other implementations are overridden) 
or if they are all to be used and executed in a specific 
order. While for runtime representation, we need to 
maintain the concerns and class fragments as first-class 
entities, at the same time, there is a need to realise the 
semantics of static merging, i.e. the concern 
compositions should yield the same result 
(behaviourally) during runtime composition as they 
would had static composition been used. This requires 
first-class representation of compositions so that they 
may be manipulated and adapted at runtime as the 
concern slices evolve and the merge/over-ride 
relationships change.  

                                                           
1 No doubt that the ideal solution would be to design a 
language and runtime for multi-dimensional models. 
However, the need for backward compatibility and utilisation 
of existing programmer expertise drives the mapping onto an 
existing programming model for execution. 



 
Concern interfaces and consistency preservation 

 
If a multi-dimensional concern separation is to be 

maintained at runtime, it also needs to be clarified as to 
what is the public interface of a concern. Is the 
interface the union of the public interfaces of the 
various class fragments in the concern slice? For static 
reasoning this would be sufficient but if we choose this 
approach for runtime representation, then the interface 
of a concern will change each time there is a change to 
the public interface of one of the class fragments 
within it. While simpler consistency issues can be 
resolved automatically – additive changes being 
backward compatible and subtractive changes being 
forward compatible – the more arbitrary changes 
cannot be so easily resolved. Therefore, for runtime 
representation of concerns in a multi-dimensional 
separation, we need provided/required interfaces for 
each concern (in the same fashion as components [26]) 
that abstract over the public interfaces of the various 
class fragments. 
 
3. The Dynamic Hyperslices Approach 
 

The Dynamic Hyperslices approach, initially 
presented in [5, 6], aims to maintain a runtime 
representation of the Hyperspaces model from [27] for 
runtime adaptability and evolution of concerns 
(referred to as hyperslices). Below we discuss how we 
address the three issues highlighted in Section 2 in the 
design of the Dynamic Hyperslices approach. 
Interested readers are referred to [5, 6] for details on 
the implementation of the Dynamic Hyperslices 
approach. 

 
Runtime representation of concerns 

 
The Dynamic Hyperslices approach provides a meta-
object protocol (MOP) that supports first-class 
representation of each concern (hyperslice) at runtime. 
It also supports first class representation of the concern 
compositions (as discussed below). The MOP supports 
introspection and adaptation of the concerns and their 
compositions at runtime. We deal with the issue of 
multiple classification by using a mechanism 
analogous to having versioned type semantics in object 
database environments [19, 20]: 
 
• Each class A can have multiple representations of 

itself, a1, a2, …, an, in the various concerns, C1, 
C2, …, Cn,  at runtime.  

• Semantically, each ai is equivalent to A, i.e. 
whenever an object of type A is required an object 
of type ai can be substituted. 

• Objects are instantiated per class fragment ai and 
bound to the MOP representation of their 
instantiating fragment over their lifetime (unless 
the fragment is deleted in which case the object 
can be, if so desired, reclassified and rebound to 
another fragment of the same class). Method 
invocations and field accesses are delegated to the 
relevant object slices as dictated by the 
composition specifications.  

 
 
 
Concern composition 

 
For first-class representation of the concern 

compositions (and the merge/over-ride semantics of 
such compositions) we introduce the notion of a 
composition connector, which combines the concept of 
a connector in software architecture [2] with the notion 
of a filter in the Composition Filers approach [1]. Our 
composition connectors differ from a normal 
architectural connector in that they connect partial 
class representations and not complete classes or 
components. Furthermore, they not only match 
provided/required services and specify roles for 
connected concerns, but also support dynamically 
updateable composition strategies to build up 
functionality of coarser-grained concerns from 
primitive hyperslices. The filters associated with a 
composition connector intercept incoming and 
outgoing messages to a composite hyperslice and 
dispatch them to the relevant primitive hyperslice as 
per the composition strategy. Interested readers are 
referred to [5] for more details of the structure of a 
composition connector as well as realisation of the 
various composition operators (such as merge) for 
runtime composition. An illustrative example of 
runtime adaptation using the Dynamic Hyperslices 
approach is also provided in [5]. 
 
Concern interfaces 

  
As mentioned above, the composition connectors 

carry out the composition based on provided/required 
interfaces. The provided/required interfaces are similar 
to those well-known in the components-based 
development space. The provided interface of a 
hyperslice declares the methods it exposes to other 
hyperslices (these methods may or may not have a one-
to-one correspondence with those of its constituent 
class fragments). The required interface, on the other 



hand, specifies what methods a hyperslice expects 
from those it is to be composed with to carry out its 
tasks in line with the composition strategy in the 
composition connector. Note that connectors have the 
ability to reflect on the internals of their immediately 
connected hyperslices while still keeping these 
internals hidden from all other connectors and 
hyperslices. 

 
As such impact of the changes to the internals of a 

hyperslice is largely contained within that hyperslice, 
unless an internal change triggers the need to change a 
provided interface (which may in turn trigger the need 
to change a required interface elsewhere). The 
dynamic adaptation capabilities of the MOP extend to 
such changes. Since such information is contained in 
the connectors, usually simpler adaptations (e.g., 
renaming) can be made by creating a bridge at the 
connector level instead of adapting the actual concern 
interfaces. Subtractive changes are only allowed if the 
specific method in the concern interface is not being 
used by any other concern. This is achieved by 
maintaining a counter for references from required 
interfaces within the connector, with method deletion 
from a provided interface allowed only if the counter is 
zero. 
 
4. Related Work 
 

The work presented in this paper strongly relates to 
the notion of dynamic aspect-oriented programming 
(AOP) techniques, e.g., [17, 18]. As mentioned earlier, 
the key distinction is that we focus on providing a 
runtime representation and adaptation mechanism for a 
multi-dimensional separation of concerns approach 
while most dynamic AOP techniques focus on 
asymmetric models.  

In fact, our work can be seen as an attempt to bring 
component-based and aspect-oriented approaches 
closer but with focus on multi-dimensional concern 
models. The notion of provided/required interfaces for 
our concerns at runtime is similar to what is employed 
in CaesarJ [16], which utilises the concept of 
provided/required interfaces and role-based 
composition as in component-based software 
development. Similarly, the introspection and 
adaptation of hyperslices through our composition 
connectors is analogous to open component models 
such as OpenCOM [8]. Finally, our composition 
connectors compose partial class representations which 
is similar to mixin-based composition of concerns [3, 
23]. 

  

5. Conclusion 
 

In this paper, we have highlighted three key 
challenges for maintaining a multi-dimensional 
separation of concerns model at runtime and dynamic 
introspection and adaptation of concerns in such a 
model. These challenges pertain to multiple 
classification due to the mapping of concerns slices 
onto an OO model; first-class representation of 
concern compositions and the merge/over-ride 
semantics used in them; and well-defined interfaces for 
concerns at runtime. We have discussed how these 
issues have been addressed in the Dynamic 
Hyperslices approach through the multiple 
classification and dynamic reclassification mechanisms 
employed in environments with versioned type 
systems, use of composition connectors and specifying 
clear provided/required interfaces for concerns. 

One of the key advantages of the approach is the 
ability to map the multi-dimensional analysis and 
design models onto the system runtime. This, in turn, 
facilitates derivation of proof obligations from the 
analysis and design models [11] which can themselves 
be represented as a concern in the Dynamic 
Hyperslices model. Such proof obligation concerns can 
monitor and enforce constraints (hence aiding 
verification and validation) to ensure that the runtime 
representations meet the constraints and trade-offs 
specified by the analysis and design models. Another 
key strength of the approach is the direct 
correspondence of runtime entities with user views, 
hence facilitating the mapping of requirements-level 
changes on to the running system. 
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