
A Runtime Model for Multi-Dimensional Separation of Concerns

Awais Rashid, Ruzanna Chitchyan
Computing Department, Infolab21, Lancaster University, Lancaster LA1 4WA, UK

{awais | rouza} @comp.lancs.ac.uk

Abstract

Multi-dimensional separation of concerns

techniques for aspect-oriented software development
(AOSD) support symmetric representation and
composition of various concerns in a system. In a
multi-dimensional separation one can project any set
of concerns on another set of concerns hence offering
powerful modular and compositional reasoning
abilities. This is in contrast with asymmetric
approaches to AOSD which distinguish aspects from
base concerns with the projections directed from
aspects to base. However, to date, most multi-
dimensional models only exist during analysis and
design or, at best, as static models of programs – the
multi-dimensionality disappears as the program
models are statically composed. In this paper we
highlight the challenges of maintaining a multi-
dimensional model at runtime and discuss how these
have been addressed in the Dynamic Hyperslices
approach.

1. Introduction

Aspect-oriented software development (AOSD)
techniques are generally classified into two broad
categories:

• Asymmetric, e.g., [4, 7, 16, 22, 24], where there is

a base model in a dominant decomposition, for
instance, an object-oriented model, with an aspect
model crosscutting the elements in the base model.

• Symmetric or multi-dimensional, e.g., [9, 13, 14,
25, 27], where there is no separation between base
and aspects. All concerns are treated as first-class
entities in the model with the ability to project or
compose any set of concerns with any other set of
concerns.

Multi-dimensional models are, of course, more

powerful than their asymmetric counterparts. While in

an asymmetric separation aspect composability is
constrained by the composition semantics of the base
decomposition model, there are no such restrictions in
a multi-dimensional model. One is able to define
powerful and expressive composition operators and
utilise these as a basis to reason about and manipulate
the relationships between concerns and the influences
and dependencies they exert on each other – this has
been termed compositional reasoning [21].

As far as asymmetric models are concerned, we find

a number of techniques aiming to maintain first-class
representations of such models at runtime. AspectJ [4],
for instance, offers a meta-aspect protocol (MAP) with
basic introspection support as well as load-time
composition of aspects. Other systems such as JAC
[17] and PROSE [18] maintain runtime representations
of the aspect and base models and support runtime
adaptation of both models.

In contrast, multi-dimensional models have so far

mainly been utilised for analysis and design [10, 13,
14, 25]. Runtime representations of such models have
been largely unexplored. The Hyperspaces approach
[27] and its supporting tool Hyper/J [15] provide
support for multi-dimensional models during design
and implementation. However, the composition in
Hyper/J is based on statically merging the various
concern slices. As a result, the multi-dimensional
separation is mapped on to a two-dimensional model
(Java’s object-oriented model) and the concerns in the
analysis and design models (as well as the static
program model) do not have counterparts at runtime.
This, in turn, means that one cannot introspect or
manipulate concerns in the multi-dimensional concern
model at runtime for dynamically adapting the system.
Any changes have to be made statically and the
concerns recomposed to map onto the object-oriented
model for execution.

In this paper, we tackle the issue of maintaining

such a multi-dimensional model at runtime and

supporting dynamic composition and adaptation of
concerns in such a model. Such a multi-dimensional
runtime model has the usual applications in supporting
dynamic composition and reconfiguration in auto-
adaptive systems, such as those deployed in ambient
computing environments. However, more significantly,
it helps improve traceability from multi-dimensional
analysis and design models – which offer more
powerful means for analysis of broadly-scoped
properties in auto-adaptive systems [14] – to runtime.
Section 2 discusses the challenges of maintaining a
multi-dimensional model at runtime. Section 3
discusses how these challenges have been addressed in
the Dynamic Hyperslices approach, that extends the
notion of Hyperslices from [27] to runtime. Section 4
discusses some related work and Section 5 concludes
the paper.

2. Challenges for Multi-Dimensionality at
Runtime

There are three key challenges when attempting to
maintain a multi-dimensional separation at runtime.
We discuss each of these below.

Flattening a multi-dimensional model onto an OO
model

In a multi-dimensional model concerns are not

sliced on class boundaries. Instead they are often sliced
on the basis of the high-level features in a system. For
instance, payroll and personnel may be considered as
two concerns in a multi-dimensional model (e.g., the
Hyperslices model [27]) with fragments of the class
Person appearing in both (cf. Fig. 1). Note that the
same method getSalary() appears in Personpayroll and
Personpersonnel as both concerns have to be declaratively
complete – both personnel and payroll may require
access to salary information. In other cases, there may
be different fragments of the behaviour of such
“shared” method in each concern.

Person

getName()
getSalary()
…

…
…
…
…
…
…

personnel

Person

getSalary()
paySalary()
…

…
…
…
…
…
…

payroll

Fig. 1: Class fragments in a multi-dimensional slicing

Static flattening of such a model onto an OO model

is easier as one can combine the various fragments of

Person into one class definition which is then used for
runtime representation of objects. In fact, this is what
the Hyper/J tool does in a nutshell. However, if we
wish to maintain the two concerns in our multi-
dimensional separation at runtime along with the
partial definitions of the class Person within each, then
type safety issues come into play. How do we maintain
two (or more) variations of the class Person at
runtime? One way to achieve this is to use different
packages to represent different concerns. However,
then the Person class definitions in the two packages
represent two different classes. But semantically all
Person objects should belong to both class definitions.
This implies that we need support for multiple
classification of objects. Though such multiple
classification can be simulated via inheritance, firstly,
Personpersonnel is not a sub-type of Personpayroll and vice
versa, and secondly, this would lead to deep
inheritance trees with high levels of fragility [12] as
concern slices are dynamically adapted.

Nature of composition operators

Composition operators in multi-dimensional

approaches are also driven by the above-mentioned
need to flatten the model onto an OO model (or
another model such as, functional programming, for
that matter) for execution purposes1. When mapping to
an OO model (for instance, in Hyper/J) the operators
focus on merging the various class fragments based on
certain syntax or semantics. In cases where a method
appears in multiple class fragments, one can specify
whether one of the various method implementations is
to be used (i.e. other implementations are overridden)
or if they are all to be used and executed in a specific
order. While for runtime representation, we need to
maintain the concerns and class fragments as first-class
entities, at the same time, there is a need to realise the
semantics of static merging, i.e. the concern
compositions should yield the same result
(behaviourally) during runtime composition as they
would had static composition been used. This requires
first-class representation of compositions so that they
may be manipulated and adapted at runtime as the
concern slices evolve and the merge/over-ride
relationships change.

1 No doubt that the ideal solution would be to design a
language and runtime for multi-dimensional models.
However, the need for backward compatibility and utilisation
of existing programmer expertise drives the mapping onto an
existing programming model for execution.

Concern interfaces and consistency preservation

If a multi-dimensional concern separation is to be

maintained at runtime, it also needs to be clarified as to
what is the public interface of a concern. Is the
interface the union of the public interfaces of the
various class fragments in the concern slice? For static
reasoning this would be sufficient but if we choose this
approach for runtime representation, then the interface
of a concern will change each time there is a change to
the public interface of one of the class fragments
within it. While simpler consistency issues can be
resolved automatically – additive changes being
backward compatible and subtractive changes being
forward compatible – the more arbitrary changes
cannot be so easily resolved. Therefore, for runtime
representation of concerns in a multi-dimensional
separation, we need provided/required interfaces for
each concern (in the same fashion as components [26])
that abstract over the public interfaces of the various
class fragments.

3. The Dynamic Hyperslices Approach

The Dynamic Hyperslices approach, initially
presented in [5, 6], aims to maintain a runtime
representation of the Hyperspaces model from [27] for
runtime adaptability and evolution of concerns
(referred to as hyperslices). Below we discuss how we
address the three issues highlighted in Section 2 in the
design of the Dynamic Hyperslices approach.
Interested readers are referred to [5, 6] for details on
the implementation of the Dynamic Hyperslices
approach.

Runtime representation of concerns

The Dynamic Hyperslices approach provides a meta-
object protocol (MOP) that supports first-class
representation of each concern (hyperslice) at runtime.
It also supports first class representation of the concern
compositions (as discussed below). The MOP supports
introspection and adaptation of the concerns and their
compositions at runtime. We deal with the issue of
multiple classification by using a mechanism
analogous to having versioned type semantics in object
database environments [19, 20]:

• Each class A can have multiple representations of

itself, a1, a2, …, an, in the various concerns, C1,
C2, …, Cn, at runtime.

• Semantically, each ai is equivalent to A, i.e.
whenever an object of type A is required an object
of type ai can be substituted.

• Objects are instantiated per class fragment ai and
bound to the MOP representation of their
instantiating fragment over their lifetime (unless
the fragment is deleted in which case the object
can be, if so desired, reclassified and rebound to
another fragment of the same class). Method
invocations and field accesses are delegated to the
relevant object slices as dictated by the
composition specifications.

Concern composition

For first-class representation of the concern

compositions (and the merge/over-ride semantics of
such compositions) we introduce the notion of a
composition connector, which combines the concept of
a connector in software architecture [2] with the notion
of a filter in the Composition Filers approach [1]. Our
composition connectors differ from a normal
architectural connector in that they connect partial
class representations and not complete classes or
components. Furthermore, they not only match
provided/required services and specify roles for
connected concerns, but also support dynamically
updateable composition strategies to build up
functionality of coarser-grained concerns from
primitive hyperslices. The filters associated with a
composition connector intercept incoming and
outgoing messages to a composite hyperslice and
dispatch them to the relevant primitive hyperslice as
per the composition strategy. Interested readers are
referred to [5] for more details of the structure of a
composition connector as well as realisation of the
various composition operators (such as merge) for
runtime composition. An illustrative example of
runtime adaptation using the Dynamic Hyperslices
approach is also provided in [5].

Concern interfaces

As mentioned above, the composition connectors

carry out the composition based on provided/required
interfaces. The provided/required interfaces are similar
to those well-known in the components-based
development space. The provided interface of a
hyperslice declares the methods it exposes to other
hyperslices (these methods may or may not have a one-
to-one correspondence with those of its constituent
class fragments). The required interface, on the other

hand, specifies what methods a hyperslice expects
from those it is to be composed with to carry out its
tasks in line with the composition strategy in the
composition connector. Note that connectors have the
ability to reflect on the internals of their immediately
connected hyperslices while still keeping these
internals hidden from all other connectors and
hyperslices.

As such impact of the changes to the internals of a

hyperslice is largely contained within that hyperslice,
unless an internal change triggers the need to change a
provided interface (which may in turn trigger the need
to change a required interface elsewhere). The
dynamic adaptation capabilities of the MOP extend to
such changes. Since such information is contained in
the connectors, usually simpler adaptations (e.g.,
renaming) can be made by creating a bridge at the
connector level instead of adapting the actual concern
interfaces. Subtractive changes are only allowed if the
specific method in the concern interface is not being
used by any other concern. This is achieved by
maintaining a counter for references from required
interfaces within the connector, with method deletion
from a provided interface allowed only if the counter is
zero.

4. Related Work

The work presented in this paper strongly relates to
the notion of dynamic aspect-oriented programming
(AOP) techniques, e.g., [17, 18]. As mentioned earlier,
the key distinction is that we focus on providing a
runtime representation and adaptation mechanism for a
multi-dimensional separation of concerns approach
while most dynamic AOP techniques focus on
asymmetric models.

In fact, our work can be seen as an attempt to bring
component-based and aspect-oriented approaches
closer but with focus on multi-dimensional concern
models. The notion of provided/required interfaces for
our concerns at runtime is similar to what is employed
in CaesarJ [16], which utilises the concept of
provided/required interfaces and role-based
composition as in component-based software
development. Similarly, the introspection and
adaptation of hyperslices through our composition
connectors is analogous to open component models
such as OpenCOM [8]. Finally, our composition
connectors compose partial class representations which
is similar to mixin-based composition of concerns [3,
23].

5. Conclusion

In this paper, we have highlighted three key
challenges for maintaining a multi-dimensional
separation of concerns model at runtime and dynamic
introspection and adaptation of concerns in such a
model. These challenges pertain to multiple
classification due to the mapping of concerns slices
onto an OO model; first-class representation of
concern compositions and the merge/over-ride
semantics used in them; and well-defined interfaces for
concerns at runtime. We have discussed how these
issues have been addressed in the Dynamic
Hyperslices approach through the multiple
classification and dynamic reclassification mechanisms
employed in environments with versioned type
systems, use of composition connectors and specifying
clear provided/required interfaces for concerns.

One of the key advantages of the approach is the
ability to map the multi-dimensional analysis and
design models onto the system runtime. This, in turn,
facilitates derivation of proof obligations from the
analysis and design models [11] which can themselves
be represented as a concern in the Dynamic
Hyperslices model. Such proof obligation concerns can
monitor and enforce constraints (hence aiding
verification and validation) to ensure that the runtime
representations meet the constraints and trade-offs
specified by the analysis and design models. Another
key strength of the approach is the direct
correspondence of runtime entities with user views,
hence facilitating the mapping of requirements-level
changes on to the running system.

6. References

[1] M. Aksit, L. Bergmans, and S. Vural, "An Object-

Oriented Language-Database Integration Model: The
Composition-Filters Approach", European Conference
on Object-Oriented Programming (ECOOP) 1992,
Springer LNCS 615, pp. 372-395.

[2] R. Allen and D. Garlan, "A Formal Basis for
Architectural Connection", ACM Transactions on
Software Engineering and Methodology (TOSEM),
Vol. 6, No. 3, pp. 213-249, 1997.

[3] S. Apel, T. Leich, and G. Saake, "Aspectual Mixin
Layers: Aspects and Features in Concert",
International Conference on Software Engineering
(ICSE), 2006, ACM, pp. 122-131.

[4] "AspectJ Project", http://www.eclipse.org/aspectj/,
2006.

[5] R. Chitchyan and I. Sommerville, "Composing
Dynamic Hyperslices", Workshop on Correctness of
Model-based Software Composition (held with
ECOOP), 2003, pp. 29-36.

[6] R. Chitchyan, I. Sommerville, and A. Rashid, "A
Model for Dynamic Hyperspaces", Workshop on
Software Engineering Properties of Languages for
Aspect Technologies (held in conjunction with
AOSD), 2003.

[7] S. Clarke and E. Baniassad, Aspect-Oriented Analysis
and Design: The Theme Approach: Addison-Wesley,
2005.

[8] G. Coulson, G. S. Blair, P. Grace, A. Joolia, K. Lee,
and J. Ueyama, "OpenCOM v2: A Component Model
for Building Systems Software", IASTED Software
Engineering and Applications (SEA), 2004.

[9] W. Harrison, H. Ossher, S. M. Sutton, and P. L. Tarr,
"Supporting Aspect-Oriented Software Development
with the Concern Manipulation Environment", IBM
Systems Journal, Vol. 44, No. 22, pp. 309-318, 2005.

[10] M. Kande, "A Concern-Oriented Approach to
Software Architecture": PhD Thesis, EPFL,
Switzerland, 2003.

[11] S. Katz and A. Rashid, "From Aspectual Requirements
to Proof Obligations for Aspect-Oriented Systems",
International Conference on Requirements Engineering
(RE), 2004, IEEE Computer Society, pp. 48-57.

[12] L. Mikhajlov and E. Sekerinski, "A Study of The
Fragile Base Class Problem", European Conference on
Object-Oriented Programming (ECOOP), 1998,
Springer LNCS 1445, pp. 355-382.

[13] A. Moreira, J. Araujo, and A. Rashid, "A Concern-
Oriented Requirements Engineering Model",
International Conference on Advanced Information
Systems Engineering (CAiSE), 2005, Springer LNCS
3520, pp. 293-308.

[14] A. Moreira, A. Rashid, and J. Araujo, "Multi-
Dimensional Separation of Concerns in Requirements
Engineering", International Conference on
Requirements Engineering (RE), 2005, IEEE
Computer Society, pp. 285-296.

[15] H. Ossher and P. L. Tarr, "Hyper/J: multi-dimensional
separation of concerns for Java", International
Conference on Software Engineering, 2001, ACM, pp.
734-737.

[16] "CaesarJ", http://caesarj.org/, 2006.
[17] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin,

"JAC: A Flexible Solution for Aspect-Oriented
Programming in Java", 3rd International Conference

on Meta-Level Architectures and Separation of
Concerns (Reflection), 2001, Springer LNCS 2192, pp.
1-25.

[18] A. Popovici, A. Frei, and G. Alonso, "A Proactive
Middleware Platform for Mobile Computing",
ACM/IFIP/USENIX International Middleware
Conference, 2003, Springer LNCS 2672, pp. 455-473.

[19] A. Rashid and N. Leidenfrost, "Supporting Flexible
Object Database Evolution with Aspects",
International Conference on Generative Programming
and Component Engineering (GPCE), 2004, Springer
LNCS 3286, pp. 75-94.

[20] A. Rashid and N. Leidenfrost, "VEJAL: An Aspect
Language for Versioned Type Evolution in Object
Databases", Workshop on Linking Aspect Technology
and Evolution (held in conjunction with AOSD), 2006.

[21] A. Rashid and A. Moreira, "Domain Models are NOT
Aspect Free", Proceedings of MoDELS/UML, 2006,
Springer (Accepted to Appear).

[22] A. Rashid, A. Moreira, and J. Araujo, "Modularisation
and Composition of Aspectual Requirements",
International Conference on Aspect-Oriented Software
Development (AOSD), 2003, ACM, pp. 11-20.

[23] Y. Smaragdakis and D. S. Batory, "Implementing
Layered Designs with Mixin Layers", European
Conference on Object-Oriented Programming
(ECOOP), 1998, Springer LNCS 1445, pp. 550-570.

[24] D. Stein, S. Hanenberg, and R. Unland, "Expressing
Different Conceptual Models of Join Point Selections
in Aspect-Oriented Design", International Conference
on Aspect-Oriented Software Development (AOSD),
2006, ACM, pp. 15-26.

[25] S. M. Sutton and I. Rouvellou, "Modeling of Software
Concerns in Cosmos", International Conference on
Aspect-Oriented Software Development (AOSD),
2002, ACM, pp. 127-133.

[26] C. Szyperski, Component Software: Beyond Object-
Oriented Programming: Addison-Wesley-Longman,
1998.

[27] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M.
Sutton, "N Degrees of Separation: Multi-Dimensional
Separation of Concerns", International Conference on
Software Engineering (ICSE), 1999, ACM, pp. 107-
119.

