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Abstract. Increasingly, software must dynamically adapt its behavior in re-
sponse to changes in the supporting computing, communication infrastructure,
and in the surrounding physical environment. Assurance that the adaptive soft-
ware correctly satisfies its requirements is crucial if the software is to be used
in high assurance systems, such as command and control or critical infrastruc-
ture protection systems. Adaptive software development for these systems must
be grounded upon formalism and rigorous software engineering methodology to
gain assurance. In this paper, we briefly describe AMOEBA-RT, a run-time mon-
itoring and verification technique that provides assurance that dynamically adap-
tive software satisfies its requirements.

1 Introduction

Increasingly, software must adapt its behavior in responseto changes in the support-
ing computing, communication infrastructure, and in the surrounding physical environ-
ment [1]. As such, a number of research projects have been investigating techniques
to support dynamic adaptation [2–7]. Assurance that the adaptive software correctly
satisfies its requirements is crucial if the software is to beused in high assurance sys-
tems, such as command and control or critical infrastructure protection systems. We
previously introduced the Adapt-operator extended LinearTemporal Logic (A-LTL) [8]
to formally specify adaptation properties for adaptive software. We consider adaptive
software to be a system comprising a number of steady-state programs and adapta-
tions among these steady-state programs. Specifically, asteady-state programis a non-
adaptive program suited for a specific set of environmental conditions, and anadap-
tation is a transition from one steady-state program (thesource program) to another
steady-state program (thetarget program). For our approach, the developer specifies
the adaptation properties, designs the steady-state programs and the adaptations among
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these steady-state programs, and then executes the adaptive system. In this paper, we
describe AMOEBA-RT a run-time monitoring and verification technique to verify that
dynamically adaptive software adheres to A-LTL and LTL properties.

Model checking is an attractive means to check for adherenceto functional prop-
erties. Recent research efforts have demonstrated the use of static model checkingto
verify critical properties in adaptive software [7, 9]. Critical adaptation propertiesthat
need to be verified can be expressed in A-LTL and LTL. We previously developed
the AMOEBA model checker [10] that modularly verifies A-LTL and LTL adapta-
tion properties in adaptive software, thereby, significantly reducing the complexity of
model checking of adaptive software. However, due to the state explosion problem,
static model checking techniques alone are insufficient to provide assurance for com-
plex adaptive programs. Run-time verification [11–14] is anattractive complement to
static verification. Run-time verification monitors executions of a software system and
uses a model checker to verify that the behavior of a softwaresystem adheres to a set
of formal specifications, including temporal logic properties. Since only one execution
path is examined at a time, the state explosion problem is effectively avoided in run-
time model checking. Currently, to the best of our knowledge, there does not exist a
run-time model checker that verifies adaptation propertiesspecified in A-LTL and LTL.

In this paper, we introduce AMOEBA-RT, an A-LTL and LTL run-time model
checker for adaptive software. In AMOEBA-RT, the run-time state information of an
adaptive program is collected and then analyzed for adherence to the formal specifi-
cations. To that end, the adaptive software program is instrumented using an aspect-
oriented approach [15] to collect run-time state information. As such, the aspect-
oriented approach is non-invasive, meaning that the sourcecode for the adaptive soft-
ware is not directly altered. At run-time, the instrumentedcode sends the collected
state information to a run-time model checking server that runs as a separate process.
The run-time model checking server uses an automaton-basedapproach to determine
whether the state information received from the adaptive program satisfies the adapta-
tion properties specified in A-LTL and LTL.

AMOEBA-RT has been used to verify and detect execution errors in a number
of adaptive components in wireless communication applications, including an adap-
tive Java pipeline program [10]. The remainder of the paper is organized as follows.
Section 2 provides background information on the adapt-operator extended LTL, three
commonly-used adaptation semantics, and the analysis of adaptation properties. In Sec-
tion 3, we briefly introduces the AMOEBA-RT architecture. In Section 4, we illustrate
the run-time verification using the adaptive Java pipeline example. Lastly, Section 5
summarizes the paper and discusses future work.

2 Specifying Adaptation Properties

This section describes the formal specification language used to specify adaptation
properties, A-LTL, and illustrates how A-LTL can be used to specify commonly oc-
curring adaptation semantics. AMOEBA-RT can then check for adherence to these
adaptation properties at run-time.
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To specify adaptation requirements, we have proposed A-LTL(Adapt operator-

extended LTL) [8], an extension to LTL with the adapt operator (
Ω
⇀). Informally, a

software program satisfying “φ
Ω
⇀ψ” (read asφ adapts toψ with adaptation constraint

Ω) means that the program initially satisfiesφ, and at a certain stateA, it fulfills all
the obligations demanded byφ and stops being constrained byφ, and in the next state
B, starts to satisfyψ, whereφ andψ are two temporal logic formulae. The state se-
quence(A,B) satisfiesΩ, whereΩ is an LTL formula evaluated on a sequence of two
states. A given state’sobligationsare the necessary conditions that the state must sat-
isfy for the program to satisfy its specification. Formal details of A-LTL may be found
elsewhere [8].

In the following, we summarize three commonly occurring basic adaptation seman-
tic interpretations from the literature [16–19] specified in terms of A-LTL. There are
potentially many other adaptation semantics. In all three adaptation semantics, we de-
note the source and the target programs local properties asSSPEC andTSPEC , respec-
tively. If applicable, the restriction condition during adaptation isRCOND. We use the
term fulfillment statesto refer to the states where all the obligations of the sourcepro-
gram are fulfilled (i.e.,SSPEC is satisfied), thus making it safe to terminate the source
behavior and ensuring that the system does not become inconsistent during adaptation.

One-Point Adaptation: After receiving an adaptation requestAREQ, the program
adapts to the target programTSPEC at a certain point during its execution. The pre-
requisite for one-point adaptation is that the source program SSPEC should always
eventually reach a fulfillment state during its execution.

(SSPEC∧♦AREQ)
Ω
⇀TSPEC . (1)

Formula 1 states that the program initially satisfiesSSPEC . After receiving an adap-
tation request,AREQ, it waits until the program reaches a fulfillment state, i.e., all obli-
gations generated bySSPEC are satisfied. Then the program stops being obligated to
satisfySSPEC and starts to satisfyTSPEC . This semantics is straightforward and is ex-
plicitly or implicitly applied by most approaches (e.g., [16,17,19]) to deal with simple
cases that do not require constraining the source behavior or overlapping the source and
the target behavior.

Guided Adaptation: After receiving an adaptation request, the program first con-
strains its source program behavior by a restriction condition,RCOND, and then adapts
to the target program when it reaches a fulfillment state.

`

SSPEC∧(♦AREQ
Ω1

⇀RCOND)
´Ω2

⇀TSPEC . (2)

Formula 2 states that initiallySSPEC is satisfied. After an adaptation request,
AREQ, is received, the program should satisfy a restriction condition RCOND (marked

with
Ω1

⇀). When the program reaches a fulfillment state of the source, the program stops

being constrained bySSPEC , and starts to satisfyTSPEC (marked with
Ω2

⇀). Thehot-
swappingtechnique introduced by Appavooet al [16] and the safe adaptation proto-
col [19] use the guided adaptation semantics.

Overlap Adaptation: The target program behavior starts before the source program
behavior stops. During the overlap of the source and the target behavior, a restriction
condition is applied to ensure that the source program reaches a fulfillment state.
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´Ω2

⇀true
”

∧

“

♦AREQ
Ω1

⇀
`

TSPEC∧(RCOND
Ω2

⇀true)
´

”

. (3)

Formula 3 states that initiallySSPEC is satisfied. After an adaptation request,
AREQ, is received, the program should start to satisfyTSPEC and also satisfy a re-

striction condition,RCOND (marked with
Ω1

⇀). When the program reaches a fulfillment
state of the source program, the program stops being obligedby SSPEC andRCOND

(marked with
Ω2

⇀). Thegraceful adaptation protocolintroduced by Chenet al [17] and
thedistributed reset protocolintroduced by Kulkarniet al [18] use the overlap adapta-
tion semantics.

3 Run-Time Model Checking

AMOEBA-RT extends the AMOEBA model checker [10] with support for run-time
monitoring and run-time verification of requirements specified in A-LTL and LTL.
AMOEBA-RT has two primary capabilities: First AMOEBA-RT uses an aspect-
oriented technique to instrument and achieve run-time monitoring of the executing
adaptive software. Second, AMOEBA-RT uses a run-time model checking server to
support run-time verification of the A-LTL/LTL adaptation specifications. In the fol-
lowing, we provide additional details about each capability.

AspectJ compiler: 
Weave instrumentation 

script into adaptive Java
program

instrumented 
bytecode

A−LTL interpreter: Parse 
A−LTL spec and generate

property automaton

Run−time model
checker: Simulate state

sequence using the
property automaton

Developer
Verification 

result

Run−time Model 
Checking Server

Adaptation spec
in A−LTL

Adaptive Java 
program

State
sequence

automaton
Property

Instrumentation 

instrumentation 
AspectJ

JVM: Execute 

script

bytecode

Fig. 1.The dataflow diagram for AMOEBA-RT verification

3.1 Run-time Monitoring

AMOEBA-RT instruments the adaptive system to achieve run-time monitoring. Fig-
ure 1 depicts the overall architecture of AMOEBA-RT. The instrumented code collects
information about the run-time state of the adaptive software and transmits the infor-
mation to the run-time model checking server. Using AspectJ[15], an aspect-oriented
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extension to Java, our AMOEBA-RT instrumentation defines pointcuts around method
calls that indicate a change in run-time state and uses advice to collect the run-time state
information that is transmitted to the run-time model checking server.

Our approach is non-invasive in that the AspectJ compiler compiles the Java source
files and an aspect file specifying the instrumentation, and then generates instrumented
Java bytecode files. The Java bytecode files are then executedon a general JVM. During
run-time, the instrumentation code collects run-time state information and sends the
information to the run-time model checking server in sequence. When the adaptive
program terminates, an end of execution message is attachedto the end of the sequence
and sent to the run-time model checking server.

3.2 Run-Time Analysis

As depicted in Figure 1, the AMOEBA-RT run-time model checking server checks
the conformance of the sequence of state information received from the instrumented
code with the adaptation requirements specified in A-LTL/LTL. An A-LTL interpreter
processes the adaptation requirements, and outputs a property automaton, i.e., a finite
state automaton that accepts the exact set of execution paths satisfying the specification.

AMOEBA-RT constructs a property automaton for the property beingverified by
extending the logic rewrite rules introduced by Bowman and Thompson [20]. In the
property automaton, each node comprises two fields, ‘p’ and ‘q,s’ wherep is a propo-
sitional logic formula indicating the condition satisfied by the node itself, andq is an
A-LTL formula indicating the property that must be satisfiedby its next states. The next
nodest1, t2, · · · , tk of a nodes are non-overlapping, i.e., thep values of these nodes
are logically disjoint. Therefore, the property automata constructed are deterministic,
i.e., we can always choose the appropriate next node based onthe conditions in the
current state. If a run-time execution path is accepted by the property automaton, then
it satisfies the specification. In this way, the property automaton serves to verify a given
execution sequence at run-time.

Formally, aproperty automatonis a tuple(S, S0, T, P,N), whereS is a set of states.
S0 is a set of initial states whereS0 ⊆ S.
T : S → 2S maps each state to a set of next states.
P : S → proposition represents the propositional conditions that must be satisfied by
each state.N : S → formula represents the conditions that must be satisfied by all the
next states of a given state.

Given a set of A-LTL/LTL formulaΦ, we generate a property automatonPROP (Φ)
with the following features:

– For each memberφ ∈ Φ, create an initial states ∈ S0 such thatP (s) = true,
N(s) = φ.

– Letpe, pi, andqi be propositional formulae. For each states ∈ S, let the partitioned
normal form [20] ofN(s) be
(pe∧empty)∨

∨
i(pi∧©qi), then it has a successors′i ∈ S for eachpi field with

P (s′i) = pi andN(s′i) = qi.
The (pe∧empty) part of the partitioned normal form depicts the condition when
a sequence isempty, whereempty ≡ ¬©true [20], andpe is a proposition that
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must be true when the state is the last state. In the
∨

i(pi∧©qi) part of the formula,
the propositionspi partitionstrue, andqi is the corresponding condition that must
hold whenpi holds in the current state.

A path of a property automaton is an infinite sequence of statess0, s1, · · · such that
s0 ∈ S0, sn ∈ S, andsi, si+1 ∈ T , for all i (0 ≤ i < n). We say a path of a property
automatons0, s1, · · · , simulatesan execution path of a programs′1, s

′

2, · · · , if P (si)
agrees withs′i for all i (0 < i). We say a property automatonacceptsan execution
path from initial states ∈ S0, if there is a path in the property automaton starting from
s that simulates the execution path. It can be proved [10] thatthe property automa-
ton constructed above, from initial states ∈ S0, accepts exactly the set of executions
that satisfyN(s).1 Thus, we are able to use the property automaton to verify thatan
execution path satisfiesΦ.

Implementation We implemented this approach as the AMOEBA-RT prototype.
Specifically, AMOEBA-RT uses the property automaton to simulate the sequence of
run-time state information received from the instrumentation module in parallel with
the adaptive software.

If the property automaton returnsfailure during or at the end of an execution,
then the execution violates the A-LTL property and the statesequence (i.e., a counter-
example) is recorded in a bug report. Otherwise, the model checking server returns
success. If an execution violates the A-LTL property, then there aretwo possibilities.
First, if the execution represents a valid behavior of the system, then the A-LTL prop-
erty violated by the execution needs to be modified. Second, in cases where the system
behavior is erroneous, the developer must modify the systemto adhere to the A-LTL
property.

4 An Illustrative Example

In some multi-threaded Java programs, such as proxy servers, data are processed
and transmitted from one thread to another in a pipelined fashion. The Java pipeline
is implemented using a pair of piped I/O classes, which can besynchronous or
asynchronousfunctions. The asynchronized version is preferable when CPU load is
low [23]. However, when the CPU load is high, the synchronized version performs bet-
ter. The data transmission is achieved by accessing shared buffers. A sync buffer and
anasync buffer are used for the synchronized and asynchronous pipeline components,
respectively. Previously, we have constructed an adaptiveversion of the Java pipeline
classes where the system can monitor CPU workload and use an adaptation decision
maker to select the optimal implementation for specific run-time conditions.

We specify the adaptation requirements for the adaptive Java pipeline program in
A-LTL as follows. As such, before adaptation, the system (i.e., the source program) is
required to input data from the synchronized pipeline in response to the outputs. That

1 We ignore the eventuality constraint [21] (a.k.a self-fulfillment [22]) at this point. However,
later steps will ensure eventuality to hold in our approach.
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is, for each output datax in the synchronized mode, the system must eventually input
datax. In LTL:

2(SyncOutput(x)→♦SyncInput(x)). (4)

The program behavior after adaptation can be specified in a similar manner. The system
(i.e., the target program) is required to input data from theasynchronous pipeline in
response to the outputs. In LTL:

2(AsyncOutput(x)→♦AsyncInput(x)). (5)

For both the synchronized and asynchronous pipelines, whenan output event occurs,
an input obligation is generated. In other words, if the output is generated, then there
should be a subsequentinput event to read the generated output, thus discharging the
input obligation. Formulae (4) and (5) state that an execution must fulfill all input obli-
gations before it terminates.

In the adaptation from the source program to the target program, we allow thewrite
operation of the asynchronous pipeline to overlap with theread operation of the syn-
chronized pipeline. Therefore, we apply the overlap adaptation semantics introduced
in Section 2 to the specification of the adaptation. During the overlapped period, the
restriction condition is that the synchronized pipeline should not output data, and the
asynchronous pipeline should not input data. The requirement for the adaptation from
the source to the target can be specified using the overlap adaptation semantics as fol-
lows:

(((2(SyncOutput→♦SyncInput)∧(♦AREQ

Ω
⇀2¬SyncOutput))

Ω
⇀true)

∧(♦AREQ

Ω
⇀(2(AsyncOutput→♦AsyncInputs)∧(2¬AsyncInput

Ω
⇀true)))). (6)

This formula states that the system should adapt from the source program (in the
synchronized mode) to the target program (in the asynchronous mode) in response to
the adaptation requestAREQ. The source and target programs overlap. During the over-
lapped period, the source must not output data, and the target must not input data. The
output obligation generated in the synchronized mode must be fulfilled before the adap-
tation completes.

4.1 Instrumentation and Model Checking

To monitor the run-time execution conditions of the adaptive Java pipeline program,
we use aspect-oriented programming to insert instrumentation code into the adaptive
system. Currently, the AspectJ script for instrumentationis generated manually; future
work will explore automated support.
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In this example, the “instrumentation concern” is encapsulated in an
Instrumentation aspect, saved in a file namedInstrumentation.aj.
Specifically, we define a pointcutMain to identify themain() method of the adaptive
Java pipeline program. Figure 2 depicts thebefore advicewe defined for theMain
pointcut. Specifically, at the very beginning of the entire program, we insert code to
initialize the property automaton in the run-time model checking server by sending
an A-LTL formula to the server. TheAmoebaChecker class implements a stub that
is responsible for the communication with the model checking server. Its constructor
method takes three parameters: The first two parameters specify the IP address and the
port number for the model checking server, respectively. The third parameter specifies
the A-LTL property to be verified. Figure 3 depicts theafter advice we defined for
theMain pointcut. Specifically, at the very end of each execution, weinsert code to
send an‘‘EOE’’ message to the run-time model checking server to terminate the
model checking.

1  before() :Main() {
2     AmoebaChecker.checker = new AmoebaChecker ("192.168.1.101", 2211, 

4       /\\ (<>AREQ _> ([] (AsyncOutput−> <> AsyncInput) /\\
5       ([]!AsyncInput _> true ))))" );  }

3       "((([](SyncOutput−><>SyncInput) /\\ (<>AREQ _>[] !SyncOutput)) _>true)      

Fig. 2.Before advice forMain pointcut

1  after() :Main { AmoebaChecker.checker.terminate(); }

Fig. 3.After advice forMain pointcut

Second, we use pointcuts to identify the locations of the adaptive Java pipeline
program at which thesync shared buffer and theasync shared buffer are accessed
and therefore should be instrumented. Figure 4 illustratesthe pointcut definition for
theSyncOutput message. Line 1 defines that the point is within thereceive()
method of theasync piped input and sync piped input classes. Line 2 defines that
the point is at the location where thebuffer is accessed. When the buffers are ac-
cessed for read/write, an input/output message will be generated and sent to the run-
time model checking server through network communication.Figure 5 shows the ad-
vice definition forSyncOutput. This code defines that it is abefore advicefor the
sync output pointcut. Before each access to the sync buffer, the advice inserts in-
strumentation code that invokes thenextState() method of thechecker, which
sends theSyncOutput message to the run-time model checking server.

We executed the instrumented adaptive Java program and verified the program
against the overlap adaptation requirement in Formula (6) using AMOEBA-RT. To
demonstrate that the model checker is actually effective incatching errors, in a second
experiment, we deliberately introduced some errors in the adaptive system. This time,
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1  public pointcut sync_output() : withincode (*sync.PipedInputStream.receive(..))
2  && get (byte[] buffer ); 

Fig. 4.Pointcut definition forSyncOutput

1  before() : sync_output() { checker.nextState ("SyncOutput"); };

Fig. 5.Before advice forSyncOutput pointcut

AMOEBA-RT caught violations of the property in some of the random executions. As
a response to the violations, AMOEBA-RT recorded the execution paths in a bug report
that is currently processed offline. The bug reports documents counter-examples, that
is, the paths of execution that lead to a property violation.The bug report in the above
experiment showed that during those execution paths, the property was indeed violated.

5 Conclusions

In this paper, we introduced AMOEBA-RT, a run-time verification approach for adap-
tive software. AMOEBA-RT comprises instrumentation that supports run-time monitor-
ing and a run-time model checker that supports verification.To instrument the adaptive
system, we used a non-invasive aspect-oriented technique that separates the run-time
monitoring and model checking concern from the functional logic of the adaptive sys-
tem. The AMOEBA-RT model checking server interprets A-LTL specificationsand
verifies execution sequences against A-LTL specifications at run-time.

There are numerous possible directions for future work, including applying
AMOEBA-RT to additional case studies. Also, we are investigatingthe use of counter-
examples generated by AMOEBA-RT as input to the decision-making process for adap-
tation. Ideally, the adaptive system would be able to detectproperty violations and then
adapt to repair itself. Additionally, we are interested in enabling a developer to visual-
ize the run-time execution path of the adaptive system on thedesign models [24]. We
envision that this capability could be used to better understand the relationship between
environmental conditions and adaptation, as well as the need for additional steady-state
systems.
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