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Abstract. Increasingly, software must dynamically adapt its behavior in re-
sponse to changes in the supporting computing, communication infrasguc
and in the surrounding physical environment. Assurance that theieelapft-
ware correctly satisfies its requirements is crucial if the software is to &é& us
in high assurance systems, such as command and control or criticetimk-
ture protection systems. Adaptive software development for thesensgsnust

be grounded upon formalism and rigorous software engineering nhalthgy to
gain assurance. In this paper, we briefly describe AA-RT, a run-time mon-
itoring and verification technique that provides assurance that dyniyradap-

tive software satisfies its requirements.

1 Introduction

Increasingly, software must adapt its behavior in respéasghanges in the support-
ing computing, communication infrastructure, and in the@unding physical environ-
ment [1]. As such, a number of research projects have be@stigating techniques
to support dynamic adaptation [2—7]. Assurance that thetagasoftware correctly
satisfies its requirements is crucial if the software is taubed in high assurance sys-
tems, such as command and control or critical infrastrecpurotection systems. We
previously introduced the Adapt-operator extended Liffeanporal Logic (A-LTL) [8]

to formally specify adaptation properties for adaptivetwafe. We consider adaptive
software to be a system comprising a number of steady-statggms and adapta-
tions among these steady-state programs. Specificaltgaaly-state prograns a non-
adaptive program suited for a specific set of environmergabitions, and amdap-
tation is a transition from one steady-state program @barce programjpto another
steady-state program (tharget program. For our approach, the developer specifies
the adaptation properties, designs the steady-stategmsgand the adaptations among
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these steady-state programs, and then executes the adsydbem. In this paper, we
describe AM@BA-RT a run-time monitoring and verification technique toifyethat
dynamically adaptive software adheres to A-LTL and LTL pdes.

Model checking is an attractive means to check for adhertméenctional prop-
erties. Recent research efforts have demonstrated thef s$atio model checkingo
verify critical properties in adaptive software [7, 9]. al adaptation propertieshat
need to be verified can be expressed in A-LTL and LTL. We preslipo developed
the AMOEBA model checker [10] that modularly verifies A-LTL and LTL auta-
tion properties in adaptive software, thereby, signifisargducing the complexity of
model checking of adaptive software. However, due to thee staplosion problem,
static model checking techniques alone are insufficienrévige assurance for com-
plex adaptive programs. Run-time verification [11-14] isa#tractive complement to
static verification. Run-time verification monitors exaons of a software system and
uses a model checker to verify that the behavior of a softegséem adheres to a set
of formal specifications, including temporal logic propest Since only one execution
path is examined at a time, the state explosion problem éctfEly avoided in run-
time model checking. Currently, to the best of our knowledpere does not exist a
run-time model checker that verifies adaptation propesgpegified in A-LTL and LTL.

In this paper, we introduce AMEBA-RT, an A-LTL and LTL run-time model
checker for adaptive software. In AMEBA-RT, the run-time state information of an
adaptive program is collected and then analyzed for adberemthe formal specifi-
cations. To that end, the adaptive software program isungnted using an aspect-
oriented approach [15] to collect run-time state informatiAs such, the aspect-
oriented approach is non-invasive, meaning that the saode for the adaptive soft-
ware is not directly altered. At run-time, the instrumentedie sends the collected
state information to a run-time model checking server thasras a separate process.
The run-time model checking server uses an automaton-tegg@dach to determine
whether the state information received from the adaptieg@mm satisfies the adapta-
tion properties specified in A-LTL and LTL.

AMOEBA-RT has been used to verify and detect execution errors inraber
of adaptive components in wireless communication apptinat including an adap-
tive Java pipeline program [10]. The remainder of the paperganized as follows.
Section 2 provides background information on the adaptaipeextended LTL, three
commonly-used adaptation semantics, and the analysisptaibn properties. In Sec-
tion 3, we briefly introduces the AMEBA-RT architecture. In Section 4, we illustrate
the run-time verification using the adaptive Java pipelir@ngple. Lastly, Section 5
summarizes the paper and discusses future work.

2 Specifying Adaptation Properties

This section describes the formal specification languagel e specify adaptation
properties, A-LTL, and illustrates how A-LTL can be used pesify commonly oc-
curring adaptation semantics. AM®BA-RT can then check for adherence to these
adaptation properties at run-time.



To specify adaptation requirements, we have proposed A-{Adapt operator-

extended LTL) [8], an extension to LTL with the adapt opere(tgx). Informally, a

software program satisfyingzb‘ﬁw" (read as¢ adapts ta) with adaptation constraint

£2) means that the program initially satisfigsand at a certain state, it fulfills all

the obligations demanded layand stops being constrained éyand in the next state

B, starts to satisfy), where¢ andt are two temporal logic formulae. The state se-
quence( 4, B) satisfies(?, wheref? is an LTL formula evaluated on a sequence of two
states. A given state@bligationsare the necessary conditions that the state must sat-
isfy for the program to satisfy its specification. Formaladstof A-LTL may be found
elsewhere [8].

In the following, we summarize three commonly occurringibaslaptation seman-
tic interpretations from the literature [16—19] specifiedtérms of A-LTL. There are
potentially many other adaptation semantics. In all thidggpéation semantics, we de-
note the source and the target programs local propertiss:as- andTsprc, respec-
tively. If applicable, the restriction condition duringaatation isRconp. We use the
termfulfillment statego refer to the states where all the obligations of the soproe
gram are fulfilled (i.e.Ssprc is satisfied), thus making it safe to terminate the source
behavior and ensuring that the system does not become istamtsduring adaptation.

One-Point Adaptation: After receiving an adaptation reque$k o, the program
adapts to the target prografyppc at a certain point during its execution. The pre-
requisite for one-point adaptation is that the source @wg$sprc should always
eventually reach a fulfillment state during its execution.

(SSPEC/\QAREQ)gTSPEC- (1)

Formula 1 states that the program initially satisfes z¢. After receiving an adap-
tation requestd r g, it waits until the program reaches a fulfillment state, ad.obli-
gations generated b§spgrc are satisfied. Then the program stops being obligated to
satisfySspprc and starts to satisfys pgc. This semantics is straightforward and is ex-
plicitly or implicitly applied by most approaches (e.g.6[17, 19]) to deal with simple
cases that do not require constraining the source behaviweolapping the source and
the target behavior.

Guided Adaptation: After receiving an adaptation request, the program first con
strains its source program behavior by a restriction camdif oy p, and then adapts
to the target program when it reaches a fulfillment state.

(SSPEC/\(OAREQ&RCOND))@TSPEC- (2

Formula 2 states that initialyssprc is satisfied. After an adaptation request,
ARrgq, is received, the program should satisfy a restriction ¢@@Rconp (Marked

with &). When the program reaches a fulfillment state of the sounegyriogram stops

being constrained b¥sprc, and starts to satisfys ppc (marked withﬁ). Thehot-
swappingtechnique introduced by Appava al [16] and the safe adaptation proto-
col [19] use the guided adaptation semantics.

Overlap Adaptation: The target program behavior starts before the source progra
behavior stops. During the overlap of the source and thetdmghavior, a restriction
condition is applied to ensure that the source program esaaliulfillment state.



((SSPEC/\(OAREQQJRCOND)) njtrue)
A (OAREQ&(TspEc/\(Rcozvpgjtrue))). 3)

Formula 3 states that initialysprc is satisfied. After an adaptation request,
Argq, is received, the program should start to satiSipzc- and also satisfy a re-

striction condition,Rconp (marked withQJ). When the program reaches a fulfillment
state of the source program, the program stops being obtigety prc and Rconp

(marked withni). Thegraceful adaptation protocahtroduced by Cheet al[17] and
thedistributed reset protocdhtroduced by Kulkarnet al [18] use the overlap adapta-
tion semantics.

3 Run-Time Model Checking

AMOEBA-RT extends the AM@BA model checker [10] with support for run-time
monitoring and run-time verification of requirements sfiedi in A-LTL and LTL.
AMOEBA-RT has two primary capabilities: First AMEBA-RT uses an aspect-
oriented technique to instrument and achieve run-time tadng of the executing
adaptive software. Second, AMBA-RT uses a run-time model checking server to
support run-time verification of the A-LTL/LTL adaptatiopecifications. In the fol-
lowing, we provide additional details about each capapbilit
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Fig. 1. The dataflow diagram for AMGBA-RT verification

3.1 Run-time Monitoring

AMOEBA-RT instruments the adaptive system to achieve run-timaitoong. Fig-
ure 1 depicts the overall architecture of AM@A-RT. The instrumented code collects
information about the run-time state of the adaptive saftwand transmits the infor-
mation to the run-time model checking server. Using Aspgd], an aspect-oriented



extension to Java, our AMEBA-RT instrumentation defines pointcuts around method
calls that indicate a change in run-time state and usesautivimllect the run-time state
information that is transmitted to the run-time model chieglserver.

Our approach is non-invasive in that the AspectJ compilergles the Java source
files and an aspect file specifying the instrumentation, had generates instrumented
Java bytecode files. The Java bytecode files are then exemutegeneral JVM. During
run-time, the instrumentation code collects run-timeestaformation and sends the
information to the run-time model checking server in seqgaerwhen the adaptive
program terminates, an end of execution message is attackieelend of the sequence
and sent to the run-time model checking server.

3.2 Run-Time Analysis

As depicted in Figure 1, the AMEBA-RT run-time model checking server checks
the conformance of the sequence of state information reddiom the instrumented
code with the adaptation requirements specified in A-LTILW/LAn A-LTL interpreter
processes the adaptation requirements, and outputs arfgrapgomaton, i.e., a finite
state automaton that accepts the exact set of executios gatibfying the specification.

AMOEBA-RT constructs a property automaton for the property bemgfied by
extending the logic rewrite rules introduced by Bowman ahdripson [20]. In the
property automaton, each node comprises two fiejdsnd ‘¢,s’ wherep is a propo-
sitional logic formula indicating the condition satisfied the node itself, ang is an
A-LTL formula indicating the property that must be satisfigdts next states. The next
nodesty, ts, - - - ,tx Of @ nodes are non-overlapping, i.e., thevalues of these nodes
are logically disjoint. Therefore, the property automatastructed are deterministic,
i.e., we can always choose the appropriate next node bas#taonditions in the
current state. If a run-time execution path is accepted byptbperty automaton, then
it satisfies the specification. In this way, the property m#ton serves to verify a given
execution sequence at run-time.

Formally, aproperty automators a tuple(S, Sy, T, P, N), whereS is a set of states.
Sy is a set of initial states wheig) C S.
T : S — 2% maps each state to a set of next states.
P : S — proposition represents the propositional conditions that must befigatiby
each statelV : S — formula represents the conditions that must be satisfied by all the
next states of a given state.

Given a set of A-LTL/LTL formula®, we generate a property automat@®RO P (P)
with the following features:

— For each membep € @, create an initial state € Sy such thatP(s) = true,
N(s) = ¢.

— Letpe, p;, andg; be propositional formulae. For each state S, let the partitioned
normal form [20] of N(s) be
(penempty)V V,(piAOqi), then it has a successsfr € S for eachp; field with
P(s}) = pi andN (s}) = g;.
The (penempty) part of the partitioned normal form depicts the conditionewh
a sequence ismpty, whereempty = ~Otrue [20], andpe is a proposition that



must be true when the state is the last state. INtf@; A(g;) part of the formula,
the propositiong; partitionstrue, andg; is the corresponding condition that must
hold whenp; holds in the current state.

A path of a property automaton is an infinite sequence ofstgte, - - - such that
S0 € So, sp € S, ands;, s;11 € T, foralli (0 < i < n). We say a path of a property
automatons, s1, - - -, Simulatesan execution path of a program, s,,-- -, if P(s;)
agrees withs, for all (0 < 7). We say a property automat@tceptsan execution
path from initial states € Sy, if there is a path in the property automaton starting from
s that simulates the execution path. It can be proved [10] tthatproperty automa-
ton constructed above, from initial statec .Sy, accepts exactly the set of executions
that satisfyN (s).! Thus, we are able to use the property automaton to verifyahat
execution path satisfies.

Implementation We implemented this approach as the AMEA-RT prototype.
Specifically, AMCEBA-RT uses the property automaton to simulate the sequence of
run-time state information received from the instrumdntatnodule in parallel with
the adaptive software.

If the property automaton returrfailure during or at the end of an execution,
then the execution violates the A-LTL property and the ssatguence (i.e., a counter-
example) is recorded in a bug report. Otherwise, the modetiihg server returns
successlf an execution violates the A-LTL property, then there twe possibilities.
First, if the execution represents a valid behavior of thetesy, then the A-LTL prop-
erty violated by the execution needs to be modified. Seconthses where the system
behavior is erroneous, the developer must modify the systemdhere to the A-LTL

property.

4 An lllustrative Example

In some multi-threaded Java programs, such as proxy serglata are processed
and transmitted from one thread to another in a pipelinedidas The Java pipeline
is implemented using a pair of piped I/O classes, which carsypehronous or
asynchronousfunctions. The asynchronized version is preferable wheb @Rd is
low [23]. However, when the CPU load is high, the synchrodizersion performs bet-
ter. The data transmission is achieved by accessing shaffstsdh A sync buffer and
anasync buffer are used for the synchronized and asynchronous pipelinpaoamts,
respectively. Previously, we have constructed an adapévsion of the Java pipeline
classes where the system can monitor CPU workload and usdagtation decision
maker to select the optimal implementation for specific tiore conditions.

We specify the adaptation requirements for the adaptiva pgpeline program in
A-LTL as follows. As such, before adaptation, the systemn (the source program) is
required to input data from the synchronized pipeline ipoese to the outputs. That

1 We ignore the eventuality constraint [21] (a.k.a self-fulfillment [2Z]jHs point. However,
later steps will ensure eventuality to hold in our approach.



is, for each output data in the synchronized mode, the system must eventually input
datax. In LTL:

O(SyncOutput(z)— O Synclnput(z)). 4)

The program behavior after adaptation can be specified migasimanner. The system
(i.e., the target program) is required to input data fromdkgnchronous pipeline in
response to the outputs. In LTL:

O(AsyncOutput(x)—O Asynclnput(zx)). (5)

For both the synchronized and asynchronous pipelines, \@hentput event occurs,
an input obligation is generated. In other words, if the auip generated, then there
should be a subsequeinput event to read the generated output, thus discharging the
input obligation. Formulae (4) and (5) state that an exeoutiust fulfill all input obli-
gations before it terminates.

In the adaptation from the source program to the target progwe allow thevrite
operation of the asynchronous pipeline to overlap withrélael operation of the syn-
chronized pipeline. Therefore, we apply the overlap adegtasemantics introduced
in Section 2 to the specification of the adaptation. Durirg dkerlapped period, the
restriction condition is that the synchronized pipelinewd not output data, and the
asynchronous pipeline should not input data. The requinéfioe the adaptation from
the source to the target can be specified using the overlggattien semantics as fol-
lows:

(((A(SyncOutput— O Synclnput) A(OArEqg
L0 —SyncOutput))
ﬁtrue)
NOAREQ
g(EI (AsyncOutput—O AsyncInputs) AN(O-AsyncInput
Ltrue)))). (6)

This formula states that the system should adapt from theceqarogram (in the
synchronized mode) to the target program (in the asynclu®nmde) in response to
the adaptation requedtz gg. The source and target programs overlap. During the over-
lapped period, the source must not output data, and thet tamgst not input data. The
output obligation generated in the synchronized mode nwigilflled before the adap-
tation completes.

4.1 Instrumentation and Model Checking

To monitor the run-time execution conditions of the adaptiava pipeline program,
we use aspect-oriented programming to insert instrumentabde into the adaptive
system. Currently, the AspectJ script for instrumentaisogenerated manually; future
work will explore automated support.



In this example, the ‘“instrumentation concern” is encap®a in an
I nst runent ati on aspect, saved in a file namddnstrunentation. aj .
Specifically, we define a pointcvai n to identify thermmai n() method of the adaptive
Java pipeline program. Figure 2 depicts thefore advicewe defined for thevai n
pointcut. Specifically, at the very beginning of the entiregram, we insert code to
initialize the property automaton in the run-time model atieg server by sending
an A-LTL formula to the server. ThAnoebaChecker class implements a stub that
is responsible for the communication with the model chegldarver. Its constructor
method takes three parameters: The first two parametergysgiecIP address and the
port number for the model checking server, respectively fitird parameter specifies
the A-LTL property to be verified. Figure 3 depicts thét er advice we defined for
the Mai n pointcut. Specifically, at the very end of each execution,ingert code to
send an' ' EOE' ' message to the run-time model checking server to termitate t
model checking.

1 before() :Main() {

2 AmoebaChecker.checker = new AmoebaChecker ("192.168.1.101", 2211,
3 "(((0(SyncOutput—><>Syncinput) A\ (<>AREQ _>[] !SyncOutput)) _>true)
4 N\ (<>AREQ _> ([] (AsyncOutput—> <> Asyncinput) /\\

5 ('Asyncinput _> true ))))" ); }

Fig. 2. Before advice foiMai n pointcut

1 after() :Main { AmoebaChecker.checker.terminate(); }

Fig. 3. After advice forMai n pointcut

Second, we use pointcuts to identify the locations of thepka Java pipeline
program at which theync shared buffer and theasync shared buffer are accessed
and therefore should be instrumented. Figure 4 illustrdiespointcut definition for
the SyncQut put message. Line 1 defines that the point is within tleeei ve()
method of theasync piped input and sync piped input classes. Line 2 defines that
the point is at the location where tieif f er is accessed. When the buffers are ac-
cessed for read/write, an input/output message will be rgée@ and sent to the run-
time model checking server through network communicatiégure 5 shows the ad-
vice definition forSyncQut put . This code defines that it isl@efore advicdor the
sync_out put pointcut. Before each access to the sync buffer, the aduierts in-
strumentation code that invokes thext St at e() method of thechecker , which
sends th&SyncQut put message to the run-time model checking server.

We executed the instrumented adaptive Java program anfiedetiie program
against the overlap adaptation requirement in Formula $6)guAMOEBA-RT. To
demonstrate that the model checker is actually effectivatohing errors, in a second
experiment, we deliberately introduced some errors in tteptive system. This time,



1 public pointcut sync_output() : withincode (*sync.PipedinputStream.receive(..))
2 && get (byte[] buffer);

Fig. 4. Pointcut definition foiSync Qut put

1 before() : sync_output() { checker.nextState ("SyncOutput”); };

Fig. 5. Before advice folSyncQut put pointcut

AMOEBA-RT caught violations of the property in some of the randomcations. As
aresponse to the violations, AMEBA-RT recorded the execution paths in a bug report
that is currently processed offline. The bug reports doctsnesunter-examples, that
is, the paths of execution that lead to a property violatidre bug report in the above
experiment showed that during those execution paths, tpepty was indeed violated.

5 Conclusions

In this paper, we introduced AMEBA-RT, a run-time verification approach for adap-
tive software. AMEBA-RT comprises instrumentation that supports run-time itoon
ing and a run-time model checker that supports verificafiorinstrument the adaptive
system, we used a non-invasive aspect-oriented techni@es¢parates the run-time
monitoring and model checking concern from the functioogid of the adaptive sys-
tem. The AMCEBA-RT model checking server interprets A-LTL specificaticarsd
verifies execution sequences against A-LTL specificationsratime.

There are numerous possible directions for future workjuding applying
AMOEBA-RT to additional case studies. Also, we are investigatirgguse of counter-
examples generated by AMEBA-RT as input to the decision-making process for adap-
tation. Ideally, the adaptive system would be able to detemperty violations and then
adapt to repair itself. Additionally, we are interested imakling a developer to visual-
ize the run-time execution path of the adaptive system omdésggn models [24]. We
envision that this capability could be used to better urtdacsthe relationship between
environmental conditions and adaptation, as well as thd fegeadditional steady-state
systems.
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