
System Monitoring using Constraint Checking as part
of Model Based System Management

Christian Hein, Tom Ritter, Michael Wagner

Fraunhofer FOKUS
Kaiserin-Augusta-Allee 31, Berlin 10589
{hein|ritter|wagner}@fokus.fraunhofer.de

Abstract: Nowadays the result of a software development process is in many
cases a complex system. Critical factors that contribute to a higher degree of
complexity are the size, dynamicity or heterogeneity of the developed system.
Furthermore many stakeholders with different viewpoints and different interests
have a need for different management features. Thus it is possible to make use
of model-driven engineering techniques, methods and tools also in case of
system management. We briefly described an example scenario based on
CORBA Components. In this scenario we have applied constraint checking
based on OCL as part of model based system management to identify
malfunction of the system by automatic and semi-automatic monitoring.

Introduction

Nowadays the result of a software development process is in many cases a complex
system. Critical factors that contribute to a higher degree of complexity are the size,
dynamicity or heterogeneity of the developed system. Therefore it is particularly
difficult to manage such systems. Furthermore, many stakeholders with different
viewpoints and different interests have a necessity for different management features.
For instance a technical administrator is interested in the correct working of all
technical resources, like used server nodes or client nodes. A system administrator is
interested in observation of system specific policies. This may be for example security
policies. The information basis could be the same for both viewpoints. However the
information needs to be presented differently.

Furthermore the software development paradigm itself is changing apparently
slightly from code centric to model centric development, which means the artifacts
produced or used in the development lifecycle are represented as models instead of
their own individual format. In other words, everything is a model. Requirements are
models, designs are models, implementations are models and even the description of
the system at run-time could be a model as well. Thus it is possible to make use of
model-driven engineering techniques, methods and tools also in case of system
management.

2 Christian Hein, Tom Ritter, Michael Wagner

Figure 1. Model Based System Management Overview

The essential idea behind Model Based System Management (MDSM) is the

model representation of a running system by using tools and technologies which are
normally used for model driven system development (see Figure 1). In fact, this
means that a model (e.g. notated using UML [1]) can be used not only to design a
system but also to describe a running system instance. This is in particular interesting
in dynamic or autonomous systems, where a great fluctuation in the internal system
structure can occur (e.g. creation of instances of sub-system) and where usually the
direct control over the system and its subsystems is limited. One benefit of this
approach is to make use of already existing technology which is working only on
models and is completely independent of the concrete system and the used platform.

Constraint checking as a part of model-based verification is one example of these
existing and established technologies. It can be understood as analyzing models
against expected properties. In context of model based system management constraint
checking can be used to identify malfunction of the system at run-time. For example
one constraint could specify that the distribution of components to different nodes
should be homogenous. Another constraint could deal with security or safety aspects,
for instance the definition of boundaries (maximum number of interconnections or
maximum number of specific components). These constraints will be checked and
evaluated during the run-time of the system. This approach enables monitoring and
configuring features in case of model based system management.

In this position paper, a brief description of a CORBA Components [2] based
example scenario is given. In this scenario constraint checking based on OCL [3][7] is
applied as part of model based system management to identify malfunctions of the
system. This can be realized using automatic and semi-automatic monitoring.

Constraint-Checking at Run-time for Monitoring

Starting point for this approach is gathering information about the current state of the
system at run-time. These data can be collected and represented as instance of a meta-
model. Thus it is possible to apply model-driven techniques like transforming or
querying to manipulate system by changing their models (see Figure 1). However,

System Monitoring using Constraint Checking as part of Model Based System
Management 3

this paper focuses on checking of global constraints on deployed and running systems
in order to facilitate the monitoring of such systems.

Figure 2 depicts the conceptual overview of the run-time constraint checking
architecture, which could be applied to various different target platforms. It is similar
to Rainbow Architecture [11] or MAPE-K [12]. Model based system management in
general is a mechanism, which collects run-time information and represents them in a
model, which conforms to the respective meta-model. An important factor for
successful use of model driven system management is the availability of an
introspection mechanism in the respective platform the system is realized upon. The
CORBA Component platform [2] supports introspection mechanisms. But also
programming languages like Java (which also may constitute a platform) offer such
capabilities [4][5]..

Figure 2: Concept overview

In our architecture an Adapter is responsible for using platform specific technology

and introspection mechanisms to gather run-time information and to create a model
out of it. Hence this component must undertake the task of doing data retrieval at first
and formalization of this data secondly. The formalization requires the existence of an
adequate model in which the run-time information can be represented. For this
purpose the run-time adapter must have the knowledge about the corresponding meta-
model.

Due to the dynamicity of the systems and depending on the platform the system is
running on, it can not be assured that the Adapter collects a consistent snapshot.
Perhaps a snapshot contains links between instances which are deleted during the
creation of a snapshot. This problem is hard to solve. Only in cases where a global
control over the system is possible, which for instance allows to freeze a system, a
consistent snapshot of the system can be assured. But to freeze a whole system could
also imply problems regarding the usability.

But the model validation technology presented in this paper can be used to at least
identify and monitor inconsistencies in the snapshots. Depending on the importance

4 Christian Hein, Tom Ritter, Michael Wagner

of such inconsistencies the quality of a snapshot can be assessed and can be taken into
account when the system properties are evaluated later on. Guidelines and rules for
identifying such defects and for appropriate reflection of this information will be
addressed in future research. In this case, a promising area could be the extension of
the corresponding meta-model with annotations which includes Fuzzy semantics
properties.

After creation of a run-time model is finished the management policies can be
evaluated. The inputs for this task are the run-time model provided by the Adapter,
the meta-model as well as a set of constraints. The constraints must be defined by a
domain expert, which has knowledge about the system and its properties. In fact he
has to tell acceptable from not acceptable system properties.

In our approach the constraints are expressed at meta-model level using OCL, but
it is also conceivable to use other formal language like Z as well. In contrast to
traditional formal languages OCL is applicable for a large number of users and is not
only applied in academic world. During the small learning curve it is also interesting
for business- and system modelers, programmers or management. The advantage over
program code is the great flexibility. OCL expressions can be easily changed and
adapted. Furthermore these expressions are on a more abstract level than written
program code.

The evaluation of the constraint set against the model is made by a constraint
checker. The checker verifies each constraint in the set and provides a result. This
result might be a Boolean value, the constraint is fulfilled or not. The result can also
be of other types. In fact the OCL expressions could also be metrics or queries which
provide other results. Therefore many possibilities exist for the subsequent treatment
of the evaluation results. An alternative way is the communication of the results to the
running system, thus it has the ability to react accordingly. A further option is the
illustration of the evaluation result in a graphical user interface (GUI) for a system
manager which is than able to analyze the resulting data. In addition after
interpretation of the data the manager can formulate new OCL queries or constraints
to qualify the behavior and characteristics of the run-time system.

Application on CORBA-Components

An air-traffic management simulation based on CORBA Components is the example
scenario for the proof of the described approach. Figure 3 illustrates this scenario. The
air-traffic simulation consists of the five components Plane, Radar, SimulationServer,
TAPDisplay and SimulationController. A Plane can be tracked by a Radar station and
each Radar station has its area of observation. The SimulationController creates new
Planes at random as well as new Radar instances. The component SimulationServer
retrieves the position of all planes and finally a TAPDisplay presents the information
from all radar stations.

System Monitoring using Constraint Checking as part of Model Based System
Management 5

Figure 3. Sample Scenario

The scenario is a CCM based system, because CCM provides some promising

features that support introspection capabilities, therefore it can be used to collect
information of the system at run-time. This allows easily the creation of a snapshot of
a running CCM based system with all component instances and all connections
between them. The Adapter from the general architecture is implemented as a
CORBA Server, which periodically creates the system snapshots and exports CCM
models to the constraint checker.

The following example OCL constraint is a formal representation of the rule; that
the number of planes running on one computing device shall not be significantly
different from the number of planes on the other computing devices. Nevertheless it is
possible that the model of the running system is inconsistent. Therefore weak
constraints have to be formulated, considering these inconsistencies. The following
constraint describes that a significant difference is given if the range between
maximum and minimum occurring number of planes on the different devices is
greater than 3. In nowadays systems usually only the maximum difference number
can be changed if it is realized as a configuration value. The presented approach
allows the modification of the whole constraint by the corresponding manager.

context HomeInstantiation def:
HelpSet: OrderedSet(Integer) =

HomeInstanstiation.allInstances()->
Iterate(
i: HomeInstantiation ;
sum: Sequence(Integer)=Sequence{} | sum->

append(i.comp.size())
).asOrderedSet()

context HomeInstantiation def:

6 Christian Hein, Tom Ritter, Michael Wagner

Range: Integer =
HelpSet.last()-HelpSet.first()

context HomeDef inv:
if (identifier='PlaneHome')
then homeImpl->forAll(h|
h.instance->forAll(Range<4)
) else true endif

The constraint checker is realized by using the Open Source Library for OCL (OSLO)
[8]. This library is an OCL2 implementation containing parser and evaluator and
which can be used for arbitrary meta-models.

In order to estimate the effort need for system management when using our
approach we make some performance analysis. We have done the analysis on average
computer hardware connected via 100MBit Ethernet. Computers have Intel Pentium
processors at clock speed of 2GHz. At first we measured the effort creating the
snapshot. The adapter which is creating the snapshot is working sequentially. It
traverses all component servers one by one and within the component server each
container one by one and after this it examines all component instances. Another
approach would be to make the snapshot in a parallel way, which means to query all
component servers at the same time. The Figure 4 shows the measuring results for
creating the snapshots in our CCM environment.

0

5000

10000

15000

20000

25000

0 100 200 300 400 500 600 700

number of componentinstances

tim
e

in
 m

s

get a snapshot

Figure 4. Measuring results of introspection mechanism

Secondly, we analyzed the effort for checking constraints against models. These

models are delivered by the adapter creating the snapshots. We have executed two test
cases. The first one contains only one constraint and the second one uses 10
constraints. Figure 5 depicts these measuring results. We can say that the effort of
creating the snapshots and for checking constraints against models is linear.

System Monitoring using Constraint Checking as part of Model Based System
Management 7

0

500

1000

1500

2000

2500

0 200 400 600 800 1000

number of classes

tim
e

in
 m

s

1 Constraint
10 Constraints

Figure 5. Measuring results of constraint checker

Related Work

The idea of model-based system management is discussed increasingly in academic
and industrial world. For example the European project ModelPlex [9] deals with this
topic. It has originated a MBSM state of the art document [10]. Further work
regarding monitoring of a running system has been done by Garlan [11], IBM [12] or
Oracle [13]. Another interesting commercial product is the Auto Immune System of
Fujitsu-Siemens [14].

Conclusion

This paper briefly summarized an approach for constraint checking at run-time. The
aim is to monitor and to verify the system at run-time as part of model based system
management by using already existing model-driven technologies. The example has
shown that even inconsistent models can be used for constraint checking, if the
possible inconsistent parts of the models are considered as possible inconsistent. An
open question is how to deal with inconsistent models. In our case study we soften the
constraints to cope with inconsistent models.

There are multiple ways for reducing the inconsistency of the run-time models. At
first the creation of a snapshot could be handled in different ways, depending on the
size and dynamicity of the system. Alternatively to our implemented approach, it
could be possible to get a complete snapshot only right before starting the system and
inform the adapter only about changes within the running system. This could be
useful for big and less dynamic systems. Another way to improve the consistency of
the snapshot is to reduce the information which needs to be gathered by the adapter.
Maybe not all aspects of the running system need to be represented in the run-time
model to apply management policies. Which means the adapter needs to collect less
data, which takes less time and which potentially reduces the degree of inconsistency.

8 Christian Hein, Tom Ritter, Michael Wagner

However, there will always be a certain degree of inconsistency in the run-time
models in particular for distributed systems, unless a system can be frozen for taking
the snapshot. To deal with this problem we are currently investigating to enrich the
Object Constraint Language with Fuzzy semantics.

In our approach we make use of already existing tools of the development process
to derive the information for the user and his domain. This means for example to take
the design tools also for system management. Future practical experiences need to
show the feasibility of this approach. A particular question is how to deal with a run-
time model in a design tool, without having information regarding the corresponding
design process and design model. This could be the focus of future work. Another
important area of future work would be the integration of a transformation tool in
order to manipulate the model of the run-time with respect to re-configuration of the
running system.

Acknowledgement

The presented work in this paper is conducted in context of the MODELPLEX
project. MODELPLEX is a project co-funded by the European Commission under the
“Information Society Technologies" Sixth Framework Programme (02- 06).
Information included in this document reflects only the authors' views. The European
Community is not liable for any use that may be made of the information contained
herein.

References

[1] Object Management Group. Unified Modelling Language (UML)
Specification: Infrastructure. http://www.omg.org/docs/ptc/04-10-14.pdf
[2] Object Management Group. CORBA Component Model Specification.
http://www.omg.org/docs/formal/06-04-01.pdf
[3] Object Management Group. Object Constraint Language – Specification
Version 2.0. http://www.omg.org/docs/ptc/05-06-06.pdf
[4] Havelund, K and Rosu G.: Monitoring Java programs with
JavaPathExplorer. In Proceedings of the Workshop on Runtime Verification, volume
55 of Electmnic Notes in Theoretical Computer Science. Elsevier Publishing, 2001
[5] SUN - Java Management Extensions (JMX) Technology.
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
[6] ORACLE - Oracle Business Activity Monitoring -
http://www.oracle.com/technology/products/integration/bam/index.html
[7] Kleppe, Anneke & Warmer, Jos - The Object Constraint Language Second
Edition, Getting Your Models Ready for MDA, 2003, Addison-Wesley
[8] OSLO - Open Source Library for OCL. Open Source project hosted at
http://oslo-project.berlios.de
[9] ModelPlex Project. http://www.modelplex.org
[10] ModelPlex Deliverable. Model based System Management – State of the Art.

System Monitoring using Constraint Checking as part of Model Based System
Management 9

Deliverable D5.1a
[11] Garlan, D., Cheng, W.., Huang, A., Schmerl, B., Steenkiste, P. – Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure
[12] IBM White Paper. An architectural blueprint for autonomic computing.
http://www-03.ibm.com/autonomic/pdfs/ACBP2_2004-10-04.pdf
[13] Oracle Business Activity Monitoring -
http://www.oracle.com/technology/products/integration/bam/index.html
[14] Fujitsu Siemens Auto Immune Systems -
http://www.fujitsu-siemens.com/services/managed_services/autoimmune.html

