
A Modeling Framework for Self-Healing
Software Systems

Michael Jiang, Jing Zhang, David Raymer, and John Strassner

Motorola Network Infrastructure Research Lab, Autonomics Research
{michael.jiang,j.zhang,david.raymer,john.strassner}@motorola.com

Abstract. For a system to be capable of self-healing, the system must
be able to detect what has gone wrong and how to correct it. This paper
presents a generic modeling framework to facilitate the development of
self-healing software systems. A model-based approach is used to cate-
gorize software failures and specify their dispositions at the model level.
Self-healing is then achieved by transforming the model of the system
into platform-specific implementation instrumented with failure detec-
tion and resolution mechanisms to mitigate the effect of software failures
and maintain the level of healthiness of the system.

Key words: Autonomics, modeling, AOM, model transformation

1 Introduction

When applied to computer-based systems and networks (CBSN), self-healing
is one aspect of the set of capabilities exhibited by autonomic computational
systems often represented by the phrase self-*, which most often includes self-
protecting, self-configuring, self-healing, and self-optimizing. The basis of auto-
nomic computing draws on biological analogies to describe an autonomic com-
puter as a computer that is self-governing, in the same manner that a biological
organism is self-governing [1][2].

A self-healing software system is one that has the ability to discover, diagnose,
and repair (or at least mitigate) disruptions to the services that it delivers. For
large scale systems, many different types of faults may exist, and their differing
natures often require disparate, tailored approaches to detect, let alone fix them.
Hence, for large scale systems, a self-healing system should also be able use
multiple types of detection, diagnosis, and repair mechanisms.

Autonomic systems extend the above notion of self-healing to include the
capabilities to adapt to changes in the environment, for example, to maintain
its performance, or availability of resources.

This paper presents a modeling framework to specify and implement self-
healing focusing on the software aspects of a system. Model constructs are used
to classify software failures and specify their dispositions apart from the models
that capture the base functionality of the system. Self-healing is achieved by
transforming base models as well as self-healing models into platform-specific



2 A Modeling Framework for Self-Healing Software Systems

implementation instrumented with fault detection and resolution, with intent to
mitigate the effect of software failures and maintain the level of healthiness of
the system.

2 Classification and resolution of software faults

2.1 Classification of software faults

The first step toward self-healing is the automatic recognition of software failures.
The IEEE standard 1044 [3] documents a comprehensive list of categories and
classifications for software anomalies. The taxonomies of software failures, errors,
and faults have been discussed extensively for many different types of software
systems. Commonly accepted definitions are as follows. A software fault refers to
a defect in a system. An error is a discrepancy between the observed behavior of
a system and its specified behavior. A software failure occurs when the delivered
service deviates from correct service, a departure of system behavior from user
requirements. A software fault or error may not necessarily cause a software
failure [4].

The following are the major categories of software faults discussed in the
literature for various types of software systems [5][6]:

– Syntactic faults: interface faults and parameter faults
– Semantic faults: inconsistent behavior and incorrect results
– Service faults: QoS faults, SLA related faults, and real-time violations
– Communication / interaction faults: time out and service unavailable
– Exceptions: I/O related exceptions and security-related exceptions

A syntactic fault occurs when the structures of messages or parameters of
a requester do not agree with those of a provider. While compilers are able to
capture these types of faults in a single program, they can happen in component-
based software and web services where a requester and a provider may be con-
structed independently of each other. Semantic faults, on the other hand, repre-
sent inconsistencies between the original design and the programmers’ intention.
Semantic faults are more challenging to diagnose and often require specialized
instrumentation to detect them.

A service fault occurs when the performance of the delivered service deviates
from the required service performance as specified in the Quality of Service (QoS)
or Service Level Agreement (SLA). These types of faults cause degraded perfor-
mance of the system. Faults also occur due to communication and interaction
among components, services, and subsystems in both distributed and central-
ized systems. The absence and unresponsiveness of providers and the timing of
service requests are examples of communication and interaction faults.

Unhandled exceptions are another source of software faults that often lead
to the abnormal termination of applications. Exception frameworks defined in
languages, such as Java and C++, provide both built-in and user-defined excep-
tions. However, they do not provide a mechanism to prevent unexpected applica-
tion termination due to unhandled exceptions. The different levels of granularity



A Modeling Framework for Self-Healing Software Systems 3

in the exception framework facilitate the specification of exception handling to
recover from specific and general software faults.

2.2 Fault detection

The detection methods for different software faults vary depending on the types
of faults. For syntactic faults, the structures of messages or parameters are veri-
fied against design requirements and failures to conform to design requirements
will result in syntactic faults. Communication and interaction faults may be de-
tected by the involved entities. For instance, wrappers can be added to web ser-
vice invocation to detect the availability and responsiveness of service providers.
For faults related to exceptions, the exception framework defined in program-
ming languages provides a uniform approach to fault detection. C++ and Java,
for example, provide the “try - catch” constructs to capture both specific and
general programming exceptions. The framework can be extended to capture
user-defined exceptions as well.

Service faults require the monitoring of services to determine whether the
provided services meet the required QoS or SLA agreement. Different types of
service faults may require different detection mechanisms. For instance, if the
invocation of a service must be completed within a specific time frame, the
invocation can be timed such that the failure to respond within the required
time frame is detected. The detection of semantic faults is more challenging.
It requires specialized instrumentation and / or domain-specific knowledge to
understand the correct vs. incorrect behavior of a component, service, or system.

Various generic approaches can also be applied to fault detection. One of
the common approaches is to perform source code instrumentation. Extra code
is inserted into the source code to facilitate the detection of software anoma-
lies. Aspect-oriented programming (AOP) [7], for instance, can be applied to
attach additional functions to the system for the purpose of detecting system
performance and faults. Sensors and event collection and processing can also be
applied to detect software faults. Majority voting [8], for instance, can be found
in telecommunication systems to detect software or system anomaly to ensure
high reliability and availability.

Failure prediction can also be used to enhance the above detection methods.
This involves both learning and reasoning about failures. Preventative and cor-
rective actions can be taken before faults occur to avoid the loss of functionality
or disruption of services [5].

2.3 Fault resolution and self-healing

Various approaches have been described to handle software faults: fault preven-
tion, fault removal, and fault tolerance. Fault prevention and removal aim to
achieve fault-free software through robust design and rigorous testing. The goal
of fault tolerance is to ensure the continual operation of a system in the presence
of faults.



4 A Modeling Framework for Self-Healing Software Systems

To achieve self-healing when a software fault occurs, the system must be able
to get back to one of its normal operating states. This requires the system to
know what the normal operating states are and what necessary actions should be
performed to get back to the normal operating states. Error recoveries, forward
or backward, can be employed to enable the system to reach an error-free state.
Redundancy can also be used to compensate for errors. Check-pointing can be
employed to save the state of a process or a component to be restored when
faults occur, as often required in transaction processing.

There are different levels of granularities for fault resolution. Exception han-
dling, for instance, can be declared for all types of exceptions, from most specific
to the most general. For a particular exception, specific actions can be taken
to recover from the exception effectively. For general exceptions, however, the
action to recovery might be less efficient, less accurate, and more costly, such as
resetting or restarting a complex subsystem.

3 Model-driven self-healing software system

We propose a modeling framework to facilitate the development of self-healing
software systems. The framework consists of a generic self-healing model, a model
composition mechanism for integration of base models (the ones that specify the
base functionality of the system) and the self-healing models, as well as a code
generation platform that supports automated generation of self-healing enabled
software systems. The aim of this framework is to integrate various existing self-
healing techniques (such as the ones mentioned in Section 2) with Model Driven
Architecture (MDA) [9] approaches, with the intent to provide a unified platform
to enable self-healing software systems to be engineered and implemented from
model specifications.

3.1 Self-healing model

Figure 1 shows a fragment of the self-healing model for components and services.
Different types of faults may be present for different types of software, such as a
software component or a web service. A software fault can be detected with one
or more detectors and recovered by using one or more resolution mechanisms.
The resolution of a fault is modeled by a set of actions that transform the system
from its faulty state to a specified operational state. Similarly, preventive actions
can be taken when the occurrence of faults is predicted.

The self-healing model specifies the categories of faults that may occur for
components and services: syntactic faults, semantic faults, service faults, commu-
nication/interaction faults, and exceptions. Each type of fault uses its specific
fault detectors/predictors and resolution mechanisms. Each type of fault can
also be decomposed into more specific faults depending on the nature of the
component and application domain.



A Modeling Framework for Self-Healing Software Systems 5

Fig. 1. Self-healing model fragment

3.2 Model composition

A self-healing model is described as a set of abstract constructs that are in-
stantiated when it is associated with the base system models. In this way, the
self-healing feature is kept separate from the base functionality of the software
system. The decomposition of the base functionality and the self-healing fea-
ture improves modularity and re-usability of the self-healing modules. The main
advantage of this approach is that it allows developing and maintaining the self-
healing models independently from the base model. Furthermore, self-healing
models can be applied to all levels in the software system hierarchy. Figure 2
illustrates a scenario in which different self-healing models (denoted by dotted
rectangles) can be composed from different software models, from class level
through component level to the system level.

Deploying a self-healing model to the base application model is done by model
composition techniques. Typically, model composition involves merging two or
more models to obtain a single integrated model.

Aspect-Oriented Modeling (AOM) [10] is a promising research area that sup-
ports model composition. Self-healing models can be specified as crosscutting
aspects that are embedded in the base models. Fault detectors are intended to
capture anomalous status of the software (what can go wrong, as well as when
and where it did go wrong). These patterns can be denoted using pointcut de-
scriptors. Resolutions are actions that will be taken once a certain type of failure
occurs. These actions can be encapsulated within the advice of an aspect model.
An aspect weaver instantiates aspect models and binds them to the base models.

Model weaving [11] is another approach for model composition, wherein the
relationships between the models are captured in a weaving model. A weaving
model is one that specifies different kinds of mappings between model elements.
By adopting this approach, a separate weaving model is created that explicitly
specifies the links between base models and self-healing models. All three kinds



6 A Modeling Framework for Self-Healing Software Systems

Fig. 2. Composition of base models and self-healing models

of models (i.e., base, self-healing and weaving models) will be fed to a weaver
engine and composed into a single integrated model.

3.3 Code generation

The self-healing models are specified in a platform-independent manner. To sup-
port a complete self-healing application, a family of code generators [12] needs
to be employed for transforming platform-independent models into platform-
specific code, each describing how the self-healing features are implemented on
a different platform.

As shown in Figure 3, the base and self-healing models are translated into
platform-specific implementations by their own code generators, respectively.
Specifically, the representation of software faults and their responding resolu-
tions are transformed to implementation code that detects the occurrence of
faults and takes the appropriate actions to restore the system to the specified
operational state. The base code is then augmented with the self-healing instru-
mentation by using program composition techniques [13]. As a result, a complete
self-healing enabled software system is constructed and directly mapped to the
representation of the composed self-healing enabled software model, upon which
model-based analysis can be performed for system verification and validation.



A Modeling Framework for Self-Healing Software Systems 7

Fig. 3. Self-healing software generation

4 Related work

The IEEE Standard Classification for Software Anomalies [3] provides a com-
prehensive list of software anomaly classification and related data items that
are helpful to identify and track anomalies. The methodology of this standard is
based on a process (sequence of steps) that pursues a logical progression from the
initial recognition of an anomaly to its final disposition. In [6], a fault taxonomy
of software components is proposed to facilitate the identification and classifica-
tion of common faults in component-based software. Authors in [5] describe the
taxonomy of failures, errors, and faults for dependable and secure computing.
The means to attain dependability and security are categorized as fault pre-
vention, fault tolerance, fault removal, and fault forecasting. In [14], tree-based
techniques are proposed for the classification of software failures based on execu-
tion profiles. The UML profile for modeling QoS and fault tolerance [15] defines
a set of UML extensions to represent QoS and fault tolerance concepts based on
object replications.

Projects in the DARPA DASADA program [16][17] describe an architecture
that uses probes and gauges to monitor the execution of programs, generate
events containing measurements, and take actions based on the interpretation



8 A Modeling Framework for Self-Healing Software Systems

of events. Effectors interact with the system to ensure that system’s runtime
behavior fits within the envelope of acceptable behavior. Authors in [18] pro-
pose the generation of proxies and wrappers to add autonomic functionalities to
object-oriented applications to cope with failures without source code adapta-
tion. In [19], authors describe the use of code transformation to instrument Java
byte-code by adding fault analysis and healing actions. Authors in [20] present a
connector-based self-healing mechanism for software components. A component
in a self-healing system is designed as a layered architecture, structured with
the healing layer and the service layer. The role of connectors between tasks in
a component is extended to support the self-healing mechanism in detecting,
reconfiguring, and repairing anomalous objects in components.

The novelty of our approach to self-healing software systems lies in the mod-
eling framework to integrate functional and self-healing specifications, as well as
the application of model transformation to realize self-healing capabilities. Our
modeling framework aims to be more general than the prior approaches in that
we synthesize various self-healing techniques and employ model composition and
transformation mechanisms to support full-fledged self-healing software systems
from the abstract model specifications down to the system implementations.

5 Conclusion and discussion

This paper presents a generic framework for modeling self-healing software sys-
tems. Modeling constructs are used to capture software faults and their detection
and resolutions to transform the system from faulty states to operational states
specified in the model. The classification of software faults and the modeling of
fault detection and resolution facilitate the construction of self-healing software
systems. Self-healing is achieved by transforming the self-healing models into
platform-specific implementation, which is then composed with the base mod-
ule to form an integrated software system that provides failure resolutions to
mitigate the effect of software faults.

To achieve system-wide optimization beyond self-healing, policies are re-
quired to orchestrate the behavior of the system and adjust its operations to
meet business objectives. Various self-* aspects need to be integrated to achieve
autonomic computing. This will be the focus of our future research, which will
also investigate the integration of ontology and production rules to enhance the
fault modeling with reasoning capabilities to improve fault analysis and classifi-
cation.

References

1. John Strassner and Jeffrey O. Kephart, “Autonomic Systems and Networks: Theory
and Practice,” Network Operations and Management Symposium (NOMS), 2006.

2. Jeffrey O. Kephart and David M. Chess, “The Vision of Autonomic Computing,”
IEEE Computer, Vol. 36(1), January 2003.

3. IEEE Standard Classification for Software Anomalies, IEEE Std 1044-1993, 1993.



A Modeling Framework for Self-Healing Software Systems 9

4. John Musa, “Software Reliability Engineering”, McGraw-Hill, 1999.
5. Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, Carl Landwehr, “Basic con-

cepts and taxonomy of dependable and secure computing,” IEEE Transactions on
Dependable and Secure Computing, Volume 1, Issue 1, 2004, pp. 11-33.

6. Leonardo Mariani, “A fault taxonomy for component-based software,” Proceed-
ings of International Workshop on Test and Analysis of Component-Based Systems
(TACoS), Electronic Notes in Theoretical Computer Science, Vol. 82, Elsevier Sci-
ence, 2003.

7. Gregor Kiczales, et al, “Aspect-Oriented Programming,” European Conference on
Object-Oriented Programming, Finland, June 1997.

8. Salim Hariri, Alok Choudhary, and Behcet Sarikaya, “Architectural Support for
Designing Fault-Tolerant Open Distributed Systems”. IEEE Computer, 1992.

9. Richard Soley and the OMG Staff Strategy Group, “Model-Driven Architecture,”
ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf.

10. AOM: http://www.aspect-modeling.org/
11. Didonet Del Fabro Marcos, Bzivin Jean, Jouault Frdric, Breton Erwan, Gueltas

Guillaume, “AMW: A Generic Model Weaver,” In Proceedings of the 1re Journe
sur l’Ingnierie Dirige par les Modles (IDM05), Paris, France, June-July 2005.

12. Markus Voelter, “A Collection of Patterns for Program Generation,” Eighth Eu-
ropean Conference on Pattern Languages of Programs, Irsee, Germany, June 2003.

13. Uwe Amann, Invasive Software Composition, Springer-Verlag, 2003.
14. Patrick Francis, David Leon, Melinda Minch, Andy Podgurski, “Tree-Based Meth-

ods for Classifying Software Failures,” Proceedings of the 15th International Sympo-
sium on Software Reliability Engineering (ISSRE’04), Saint-Malo, France, November
2004.

15. Object Management Group, “UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms,” http://www.omg.org/cgi-
bin/doc?formal/06-05-02, 2006.

16. David Garlan, Bradley Schmerl and Jichuan Chang, “Using Gauges for
Architecture-based Monitoring and Adaptation,” Working Conference on Complex
and Dynamic Systems Architecture, Australia, 2001.

17. Janak Parekh, et al, “Retrofitting autonomic capabilities onto legacy systems,”
Journal of Cluster Computing, 2005, pp. 141-159.

18. A. Reza Haydarlou, et al, “A Self-healing Approach for Object-Oriented Appli-
cations,” 3rd International Workshop on Self-Adaptive and Autonomic Computing
Systems, 2005.

19. M. Muztaba Fuad and Michael J. Oudshoorn, “Transformation of Existing Pro-
grams into Autonomic and Self-healing Entities,” 14th Annual IEEE Interna-
tional Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS’07), 2007.

20. Michael E. Shin and Daniel Cooke, “Connector-Based Self-Healing Mechanism
for Components of a Reliable System,” Workshop on the Design and Evolution of
Autonomic Application Software (DEAS 2005), St. Louis, Missouri, May 21, 2005.


