

Model-Based Run-Time Error Detection

Jozef Hooman & Teun Hendriks

Embedded Systems Institute Eindhoven, The Netherlands

Models@run.time, 2 October 2007

TRADER System Reliability

Period: Sept. 2004 - Aug. 2009 20 fte/yr, 7 PhDs, 1 Postdoc, 10 Partners

Develop methods and tools to optimize reliability of high-volume products

Carrying Industrial Partner

Issues

- Minimize product failures.
- Maintain high-level of user-perceived reliability

Case studies from TV domain

Reliability threats in TV domain

Increasing complexity

- Functions/content increases rapidly
 - Play music (mp3, ..), view photos, search teletext, Electronic Programming Guide, child lock, sleep timer, Picture-in-Picture, TV ratings, emergency alerts, many image processing options and user settings, ...
- External information sources multiply
 - Connected planet strategy, downloadable applications
- → Increase of SW (1KB in 1980 64MB in 2007) Increase of third party content (EPG, codec's)

Decreasing time-to-market

Fixed shipping gates to occupy reserved shelf space

- Not satisfying the high reliability expectations
 - Many returned products
 - Damages brand image
 - Reduces market share

Challenge:

- Prevent product faults causing customer complaints given constraints:
 - Low costs
 - Short time to market

Approach: run-time awareness

Research Questions (1)

- Which part of the system to model?
- What are most suitable models, at which level of abstraction?
- Which models can be implemented most efficiently?
- How to obtain suitable models?
- How to increase confidence in the model?

Model desired behaviour

First model desired user-perceived behaviour (in Matlab/Simulink/Stateflow)

→ More difficult than expected; not explicit in current requirements documents

Research Questions (2)

Models at run-time

- How to preserve model semantics in implementation?
- How to avoid false errors?
- When to compare system observations with model?
- When to report an error, how much tolerance is allowed?

Awareness Experiments

Experiment with awareness concept:

- Simulation using Simulink/Stateflow compare model of System Under Observation (SUO) and SPEC, try different error detection strategies
- Linux-based awareness framework in which SUO and SPEC can be inserted easily
- Open source media player MPlayer [current work] model desired behaviour and insert system and spec in Linux-based framework
- Add awareness to part of TV system [future work]

Simulating Awareness

Comparison can be

- Time-triggered (compare pulse)
- Event-triggered (compare signal from model)

Simulating Awareness

Observe internal variable to detect error earlier and allow recovery before user observes failure

Design of Framework in Linux

Concluding Remarks

- Stateflow suitable modeling language
 - Allows various forms of model validation
 - Various options for code generation
- Linux-based framework suitable for experiments
- Comparison strategy needs further study
 - When to compare to avoid false errors
 - In Linux framework we allow the specification of
 - Maximal allowed deviation on values
 - Maximal number of allowed consecutive erroneous deviations
 - Uncertainty about system behaviour, such as worst-case & best-case execution times, are included in model
 Avoid comparison when system behaviour is uncertain

Thank you for your attention!

