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Need for Dynamically Adaptive Software
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Assurance that the adaptive software satisfies its 
requirements is critical.
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Viable Target System• A-LTL adaptation properties 
‣ Used to specify global, local, and transitional properties

‣ Extends LTL with the adapt operator 
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satisfying        where the adapting states satisfy 
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steady-state program

How can a developer analyze adaptive software?
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Analyzing Adaptive Software

• AMOebA (Adaptive program MOdular Analyzer)
‣ Modular model checking of models of adaptive 

software (generally requirements or design)
‣ Verifies adaptive properties specified in LTL 

and A-LTL
• AMOebA Limitations: 
‣ State explosion renders this approach 

insufficient for complex adaptive software
‣ Cannot be used to verify program code
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• AMOebA (Adaptive program MOdular Analyzer)
‣ Modular model checking of models of adaptive 

software (generally requirements or design)
‣ Verifies adaptive properties specified in LTL 

and A-LTL
• AMOebA Limitations: 
‣ State explosion renders this approach 

insufficient for complex adaptive software
‣ Cannot be used to verify program code

Are there alternative, lighter weight approaches to 
analyzing complex adaptive software?
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AMOebA-RT : A Run-time Model Checker

• Assurance
‣ A-LTL specification of adaptation requirements
‣ Verifies adaptive software code at run-time

• Automation
‣ Non-invasive (aspect-oriented) instrumentation 
‣ Returns a counterexample if the verification fails

• Reduced verification complexity
‣ Avoids state explosion
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AMOebA-RT Architecture

AspectJ compiler: 
Weave instrumentation 

script into adaptive Java
program

instrumented 
bytecode

A!LTL interpreter: Parse 
A!LTL spec and generate

property automaton

Run!time model
checker: Simulate state

sequence using the
property automaton
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Run-time Monitoring Run-time Model Checking
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AMOebA-RT : Run-time Monitoring
‣ Before run-time: 

- Point-cuts identify state change 
locations. 

- Advice collects state information
‣ Compile time:

- Weave monitoring 
instrumentation into the program 
(uses AspectJ)

‣ Run-time:
- Instrumentation code produces 

and sends run-time state 
information to the model 
checker
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Uses aspect-oriented approach

Non-invasive: source code for the steady-state 
programs is not altered.
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AMOebA-RT : Run-time Analysis

checker: Simulate state
sequence using the
property automaton

Run−time Model 
Checking Server

Adaptation spec
in A−LTL

Developer
Verification 

result

run−time

compile time

load time

State
sequence

automaton
Property

A−LTL interpreter: Parse 

sequence

A−LTL spec and generate
property automaton

Run−time model

‣ Load time: 
- Construct property automaton   

from A-LTL specification 
- Property automata  is a      

run-time model 
- Accepts all execution paths 

that satisfy the property
- Each node specifies:
- Property it satisfies
- Property that must be 

satisfied by next states
- Used to simulate adaptive 

system execution
- Detect and report 

property violation
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sequence using the
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sequence

A−LTL spec and generate
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Run−time model

‣ Run-time: 
- Receives the run-time state 

information
- Simulate execution on 

property automaton 
‣ Return verification results:

- Success if execution 
terminates without a violation

- Failure and a counterexample 
if the simulation reaches an 
error state

Avoids state explosion by exploring one execution 
path at a time.
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Conclusions & Future Work
• AMOebA-RT 
‣ Run-time monitoring 

- Non-invasive instrumentation of source code
• Separates run-time monitoring code from business logic.

‣ Run-time model checking
- Verifies adaptation properties specified using LTL and A-LTL

• Load time: constructs automata representing LTL / A-LTL property
• Run-time:  checks execution path adheres LTL / A-LTL property

- Avoids state explosion by verifying one execution path at a time
• Future Work
‣ Applying AMOebA-RT to additional case studies
‣ Use the counterexamples as decision maker input
‣ Extend to isualize the run-time execution path
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A-LTL: Adapt Operator Extended LTL

– Used to specify adaptation semantics.

satisfy Ω
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One-Point Adaptation

adapt
request

source behavior target behavior

– Initially behaves as source.
– At one point after “adapt request”, starts to behave as target.
– Most common adaptation semantics.
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Guided Adaptation

adapt
request

guide condition

source behavior target behavior

– Initially behaves as source.
– A condition guides the program to reach a safe state.
– Finally, the program behaves as target.
– Example: Used for hot-swapping techniques
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Overlap Adaptation

source behavior
target behavior

adapt
request

guide condition

– The source and target behavior may overlap.
– A condition guides the program to reach a safe state.
– Example: Adaptive Java pipeline


