
AMOebA-RT: Run-Time
Verification of Adaptive
Software

Ji Zhang, Betty H.C. Cheng, and
Heather J. Goldsby

This work has been supported in part by NSF grants EIA-0000433, CNS-0551622, CCF-0541131,
IIP-0700329, CCF-0750787, Department of the Navy, Office of Naval Research under Grant No.
N00014-01-1-0744, Air Force Research Lab under subcontract MICH 06-S001-07-C1, Siemens

Corporate Research, and a Quality Fund Program grant from Michigan State University.

Motivation Amoeba-RT Conclusions

• Pervasive Computing
‣ Promises anywhere, anytime access to data and

computing. • Autonomic Computing‣ Promises self-managed and long-running systems that
require only limited human guidance.

Need for Dynamically Adaptive Software

Handheld/Wearable Computing Sensor Networks

Motivation Amoeba-RT Conclusions

• Pervasive Computing
‣ Promises anywhere, anytime access to data and

computing. • Autonomic Computing‣ Promises self-managed and long-running systems that
require only limited human guidance.

Need for Dynamically Adaptive Software

Handheld/Wearable Computing Sensor Networks

Assurance that the adaptive software satisfies its
requirements is critical.

Motivation Amoeba-RT Conclusions

Adaptive Software

• Set of steady-state programs
‣ Respond to changing environmental

conditions
‣ Non-adaptive

Viable Target System• A-LTL adaptation properties
‣ Used to specify global, local, and transitional properties

‣ Extends LTL with the adapt operator

‣ Denotes an adaptation from satisfying to
satisfying where the adapting states satisfy

steady-state program

source
target

Motivation Amoeba-RT Conclusions

Adaptive Software

• Set of steady-state programs
‣ Respond to changing environmental

conditions
‣ Non-adaptive

Viable Target System• A-LTL adaptation properties
‣ Used to specify global, local, and transitional properties

‣ Extends LTL with the adapt operator

‣ Denotes an adaptation from satisfying to
satisfying where the adapting states satisfy

steady-state program

How can a developer analyze adaptive software?

source
target

Motivation Amoeba-RT Conclusions

Analyzing Adaptive Software

• AMOebA (Adaptive program MOdular Analyzer)
‣ Modular model checking of models of adaptive

software (generally requirements or design)
‣ Verifies adaptive properties specified in LTL

and A-LTL
• AMOebA Limitations:
‣ State explosion renders this approach

insufficient for complex adaptive software
‣ Cannot be used to verify program code

Motivation Amoeba-RT Conclusions

Analyzing Adaptive Software

• AMOebA (Adaptive program MOdular Analyzer)
‣ Modular model checking of models of adaptive

software (generally requirements or design)
‣ Verifies adaptive properties specified in LTL

and A-LTL
• AMOebA Limitations:
‣ State explosion renders this approach

insufficient for complex adaptive software
‣ Cannot be used to verify program code

Are there alternative, lighter weight approaches to
analyzing complex adaptive software?

Motivation Amoeba-RT Conclusions

AMOebA-RT : A Run-time Model Checker

• Assurance
‣ A-LTL specification of adaptation requirements
‣ Verifies adaptive software code at run-time

• Automation
‣ Non-invasive (aspect-oriented) instrumentation
‣ Returns a counterexample if the verification fails

• Reduced verification complexity
‣ Avoids state explosion

Motivation Amoeba-RT Conclusions

AMOebA-RT Architecture

AspectJ compiler:
Weave instrumentation

script into adaptive Java
program

instrumented
bytecode

A!LTL interpreter: Parse
A!LTL spec and generate

property automaton

Run!time model
checker: Simulate state

sequence using the
property automaton

DeveloperVerification
result

Run!time Model
Checking Server

Adaptation spec
in A!LTL

Adaptive Java
program

State
sequence

automaton
Property

Instrumentation

instrumentation
AspectJ

JVM: Execute

script

bytecode

Run-time Monitoring Run-time Model Checking

Motivation Amoeba-RT Conclusions

AMOebA-RT : Run-time Monitoring
‣ Before run-time:

- Point-cuts identify state change
locations.

- Advice collects state information
‣ Compile time:

- Weave monitoring
instrumentation into the program
(uses AspectJ)

‣ Run-time:
- Instrumentation code produces

and sends run-time state
information to the model
checker

AspectJ compiler:
Weave instrumentation

script into adaptive Java
program

instrumented
bytecode

Adaptive Java
program

State
sequence

Instrumentation

instrumentation
AspectJ

script

run−time

compile time
JVM: Execute

load time

bytecode

Uses aspect-oriented approach

Motivation Amoeba-RT Conclusions

AMOebA-RT : Run-time Monitoring
‣ Before run-time:

- Point-cuts identify state change
locations.

- Advice collects state information
‣ Compile time:

- Weave monitoring
instrumentation into the program
(uses AspectJ)

‣ Run-time:
- Instrumentation code produces

and sends run-time state
information to the model
checker

AspectJ compiler:
Weave instrumentation

script into adaptive Java
program

instrumented
bytecode

Adaptive Java
program

State
sequence

Instrumentation

instrumentation
AspectJ

script

run−time

compile time
JVM: Execute

load time

bytecode

Uses aspect-oriented approach

Non-invasive: source code for the steady-state
programs is not altered.

Motivation Amoeba-RT Conclusions

AMOebA-RT : Run-time Analysis

checker: Simulate state
sequence using the
property automaton

Run−time Model
Checking Server

Adaptation spec
in A−LTL

Developer
Verification

result

run−time

compile time

load time

State
sequence

automaton
Property

A−LTL interpreter: Parse

sequence

A−LTL spec and generate
property automaton

Run−time model

‣ Load time:
- Construct property automaton

from A-LTL specification
- Property automata is a

run-time model
- Accepts all execution paths

that satisfy the property
- Each node specifies:
- Property it satisfies
- Property that must be

satisfied by next states
- Used to simulate adaptive

system execution
- Detect and report

property violation

Motivation Amoeba-RT Conclusions

AMOebA-RT : Run-time Analysis

checker: Simulate state
sequence using the
property automaton

Run−time Model
Checking Server

Adaptation spec
in A−LTL

Developer
Verification

result

run−time

compile time

load time

State
sequence

automaton
Property

A−LTL interpreter: Parse

sequence

A−LTL spec and generate
property automaton

Run−time model

‣ Run-time:
- Receives the run-time state

information
- Simulate execution on

property automaton
‣ Return verification results:

- Success if execution
terminates without a violation

- Failure and a counterexample
if the simulation reaches an
error state

Motivation Amoeba-RT Conclusions

AMOebA-RT : Run-time Analysis

checker: Simulate state
sequence using the
property automaton

Run−time Model
Checking Server

Adaptation spec
in A−LTL

Developer
Verification

result

run−time

compile time

load time

State
sequence

automaton
Property

A−LTL interpreter: Parse

sequence

A−LTL spec and generate
property automaton

Run−time model

‣ Run-time:
- Receives the run-time state

information
- Simulate execution on

property automaton
‣ Return verification results:

- Success if execution
terminates without a violation

- Failure and a counterexample
if the simulation reaches an
error state

Avoids state explosion by exploring one execution
path at a time.

Motivation Amoeba-RT Conclusions

Conclusions & Future Work
• AMOebA-RT
‣ Run-time monitoring

- Non-invasive instrumentation of source code
• Separates run-time monitoring code from business logic.

‣ Run-time model checking
- Verifies adaptation properties specified using LTL and A-LTL

• Load time: constructs automata representing LTL / A-LTL property
• Run-time: checks execution path adheres LTL / A-LTL property

- Avoids state explosion by verifying one execution path at a time
• Future Work
‣ Applying AMOebA-RT to additional case studies
‣ Use the counterexamples as decision maker input
‣ Extend to isualize the run-time execution path

AMOebA-RT Run-Time
Verification of Adaptive
Software

Ji Zhang, Betty H.C. Cheng, and
Heather J. Goldsby

This work has been supported in part by NSF grants EIA-0000433, CNS-0551622, CCF-0541131,
IIP-0700329, CCF-0750787, Department of the Navy, Office of Naval Research under Grant No.
N00014-01-1-0744, Air Force Research Lab under subcontract MICH 06-S001-07-C1, Siemens

Corporate Research, and a Quality Fund Program grant from Michigan State University.

Thank you!

Motivation Amoeba-RT Conclusions

Selected References
• Zhang, J., Cheng, B.H.C.: Using temporal logic to specify

adaptive program semantics. Journal of Systems and Software
(JSS), Architecting Dependable Systems 79(10) (2006) 1361–
1369

• Zhang, J., Cheng, B.H.C.: Model-based development of
dynamically adaptive software. In: Proceedings of International
Conference on Software Engineering (ICSE’06),
Shanghai,China (2006)

• Zhang, J., Cheng, B.H.C.: Modular model checking of
dynamically adaptive programs. Technical Report MSU-
CSE-06-18, Computer Science and Engineering, Michigan
State University, East Lansing, Michigan (2006) http://
www.cse.msu.edu/~ zhangji9/zhang06Modular.pdf.

http://www.cse.msu.edu
http://www.cse.msu.edu
http://www.cse.msu.edu
http://www.cse.msu.edu

Motivation Amoeba-RT Conclusions

A-LTL: Adapt Operator Extended LTL

– Used to specify adaptation semantics.

satisfy Ω

Motivation Amoeba-RT Conclusions

One-Point Adaptation

adapt
request

source behavior target behavior

– Initially behaves as source.
– At one point after “adapt request”, starts to behave as target.
– Most common adaptation semantics.

Motivation Amoeba-RT Conclusions

Guided Adaptation

adapt
request

guide condition

source behavior target behavior

– Initially behaves as source.
– A condition guides the program to reach a safe state.
– Finally, the program behaves as target.
– Example: Used for hot-swapping techniques

Motivation Amoeba-RT Conclusions

Overlap Adaptation

source behavior
target behavior

adapt
request

guide condition

– The source and target behavior may overlap.
– A condition guides the program to reach a safe state.
– Example: Adaptive Java pipeline

