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Preface 
 
Welcome to the 3rd Workshop on Models@run.time at MODELS  2008 
 
This document contains the proceedings of the 3rd Workshop on Models@run.time 
that was co-located with the ACM/IEEE 12th International Conference on Model 
Driven Engineering Languages and Systems (MODELS). The workshop took place in 
the beautiful city of Toulouse, France, on the 30th of October, 2008. The workshop 
was organized by Nelly Bencomo, Robert France, Gordon Blair, Freddy Muñoz, and 
Cédric Jeanneret. From a total of 20 papers submitted 6 full papers, 6 short papers, 
and a 1 demo were accepted. This volume gathers together all the 6 full papers 
accepted at Models@run.time 08. 
 
We would like to thank a number of people who contributed to this event, especially 
the members of the program committee who acted as anonymous reviewers and 
provided valuable feedback to the authors. We also thank to the authors of all 
submitted papers are thanked for helping us making this workshop possible. 
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Embedding State Mahine Models inObjet-Oriented Soure CodeMoritz Balz, Mihael Striewe, and Mihael GoedikeUniversity of Duisburg-Essen{moritz.balz,mihael.striewe,mihael.goedike}�s3.uni-due.deAbstrat. This ontribution presents an approah to maintain statemahine model semantis in objet-oriented strutures. A framework isreated that reads and exeutes these strutures at run time and is om-pletely aware of the model semantis. The goal is to embed suh stru-tures in arbitrary large systems and delegate program ontrol to theframework. Hene we an debug and validate the system at run timeand apply monitoring with respet to state mahine model harateris-tis.1 IntrodutionState mahines an be omprehensively spei�ed, simulated and veri�ed at de-sign time. We present an approah to retain model semantis in exeutable sys-tems to allow debugging, validation and monitoring at run time. Our approahwill be introdued by a real-world example and formalized later on. The exampledepits a load generator appliation in whih we implemented a state mahinemodel that ontrols program exeution and invokes existing business logi.Traditional ways to translate models into soure ode by either manual imple-mentation or automated ode generation [1℄ are not suitable for this appliation:The inherent loss of semanti information entails that models are related todeveloped systems only by the developer's knowledge [2℄, thus preventing auto-mati bak traking of hanges [3℄. Model Round-Trip Engineering onepts [4℄make ode synhronisation possible but require manual e�ort and are thus error-prone [5℄. Additionally, generation tools often lak the apabilities to integratetheir output into existing systems like our load generation appliation. Even ifonly one modeling language is used, the need to regenerate parts of the soureode after loal hanges ontradits a gradual integration [6℄.Model exeution engines (e.g. Exeutable UML [7℄) an avoid the mentionedproblems by interpreting model desriptions. This is not appropriate either, whenthe system an not be entirely de�ned in an exeutable model. This leads to aloss of type information at integration layers between model and residual soureode. In addition, bad performane might be experiened due to heavyweightintegration layers or neessary data onversion.Common to these approahes is the permanent existene of di�erent typesof model representations at several development stages or parts of the run time
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system. Our approah aims at avoiding these di�erenes by storing state ma-hine model semantis expliitly in objet-oriented strutures. The goal is toembed suh strutures in arbitrary large systems and delegate program ontrolto the framework. The framework analyzes the ode strutures and extrats aninternal run time representation of the state mahine. It walks through the statemahine by evaluating guards and updates and invokes methods that representtransitions aordingly. These methods ontain arbitrary ode and onnet thestate mahine to the appliation logi. Our approah naturally ensures that theexeuted system is equivalent to the designed model. Moreover, we an debugand validate the system at run time and apply monitoring with respet to statemahine model harateristis. This bene�ts ome at the ost of having to obeyrules while writing the related soure ode strutures, but without the (oftennot realized) e�ort to maintain the soure ode and a separate model at thesame time. Setion 2 of this ontribution demonstrates the basi ideas by ex-ample, while setions 3 and 4 explain the formal approah and its mapping toa Java implementation in detail. Setions 5 and 6 show related work and drawthe onlusions.2 ExampleWe illustrate our approah on the basis of the mentioned load generator appli-ation that has been developed using Java. The ontrol mehanism is modelledas a state mahine. The program �ow starts with some preparations for themeasurement. Then an atual measurement run is performed wherein load isgenerated by worker threads. The result is evaluated and the number of workersis inreased and dereased in order to explore the load behaviour of a system un-der test. The last two steps are repeated until a measurement result is ahieved.The states before and after the measurement have transitions that �re depend-ing on the last measurement results. During transitions the appliation will e.g.inrease or derease workers.In order to maintain these state mahine semantis in the soure ode inaddition to appliation logi, we reate lasses that represent states. Methodsin these state types represent transitions that invoke business logi and are de-orated with meta data referening the transition target state. This leads to anetwork of state lasses being onneted by transition methods that representthe state mahine in objet-oriented strutures, whih is partly shown in �gure1. The state mahine starts at the initial state and performs some preparationswith the �rst transitions. Then it performs an atual measurement and reahesa state named �AfterMeasurement� depited at the top of �gure 1. The imple-mentation of this state is shown in listing 1.1 with minor omissions. It shows theway lasses and methods are interpreted as states and transitions and how theatual appliation omponents are invoked.State lasses are simply marked with the IState interfae. Transition methodsare marked by an annotation that refers to the target state lass and a ontrat
Workshop Models@run.time 2008 - Proceedings
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Fig. 1. State lasses and transition methods. The node desriptions are lass names,the edge labels represent method names.publi lass AfterMeasurementState implements IState {�Transition(target = AfterMeasurementState.lass, ontrat = RestartContrat.lass)publi void restartMeasurement(MeasurementModule ator) {ator.inreaseNumberOfRestarts();ator.doMeasure("Restarted measurement");}�Transition(target = UpUpState.lass, ontrat = BeginUpUpContrat.lass)publi void beginUpUp(MeasurementModule ator) {ator.resetRestarts();ator.beginUpUp();ator.doMeasure("Exploration by distane upwards");}// . . .�Transition(target = TerminationState.lass, ontrat = AbortContrat.lass)publi void abortMeasurement(MeasurementModule ator) {ator.terminateMeasurement();}} Listing 1.1. Class AfterMeasurementState with some outgoing transitionspubli lass BeginUpUpContrat implements IContrat<IMeasurementVariables> {publi boolean hekCondition(IMeasurementVariables vars) {return (!vars.getAbort() && !vars.getRestart() && vars.getTooLow());}publi boolean validate(IMeasurementVariables before, IMeasurementVariables after) {return (after.getNumberOfWorkers() == (before.getNumberOfWorkers() + before.getWorkerDistane()));}} Listing 1.2. Guards and updates in BeginUpUpContrat
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AfterMeasurementState

TerminationState

DownUpState

DownDownState

EndState

UpDownState

ReadyForMeasurementState

VerifyState

ExplorationStartState

UpUpState

true

true

((Abort==false)&&((Restart==false)&&TooLow))

((Abort==false)&&((Restart==false)&&TooLow))

((Abort==false)&&(Restart&&
(NumberOfRestarts<MaximumRestarts)))

true

((Abort==false)&&(Restart&&(NumberOfRestarts<MaximumRestarts)))

((Abort==false)&&(Restart&&
(NumberOfRestarts<MaximumRestarts)))

((Abort==false)&&((Restart==false)&&
(NumberOfWorkers>1)))

((Abort==false)&&(((Restart==false)&&
(NumberOfWorkers==1))&&TooHigh))

((Abort==false)&&
((Restart==false)&&TooLow)) ((Abort==false)&&((Restart==false)&&TooHigh))

((Abort==false)&&((Restart==false)&&TooLow))
NumberOfWorkers=(NumberOfWorkers+WorkerDistance)

((Abort==false)&&
(Restart&&(NumberOfRestarts<MaximumRestarts)))

((Abort==false)&&((Restart==false)&&TooLow))

(Abort||((NumberOfRestarts>=MaximumRestarts)&&Restart))(Abort||((NumberOfRestarts>=MaximumRestarts)&&Restart))

(Abort||((NumberOfRestarts>=MaximumRestarts)&&Restart))

(Abort||((NumberOfRestarts>=MaximumRestarts)&&Restart))

(Abort||(((Restart==false)&&(NumberOfWorkers==1))||
(Restart&&(NumberOfRestarts>=MaximumRestarts))))

(Abort||((NumberOfRestarts>=
MaximumRestarts)&&Restart))

((Abort==false)&&((Restart==false)&&TooHigh))

((Abort==false)&&(Restart&&
(NumberOfRestarts<MaximumRestarts)))

((Abort==false)&&((Restart==false)&&TooHigh))

((Abort==false)&&((Restart==false)&&TooHigh))

((Abort==false)&&(Restart&&
(NumberOfRestarts<MaximumRestarts)))

((Abort==false)&&(((Restart==false)&&TooHigh)&&
(NumberOfWorkers>1)))

Fig. 2. The state mahine model of the load generatorlass ontaining guards and updates for this transition. The method ontentsuse a faade objet ator that enapsulates the appliation logi and separates itfrom the model strutures.Listing 1.2 shows the lass ontaining guards and updates for the BeginUpUptransition. Variable values de�ning the state spae are provided by another en-apsulating type, denoted vars, and used to evaluate guards in the hekConditionmethod. State hanges during transitions an be veri�ed with the validatemethod,that does not perform the atual update, but heks whether it has taken plaein the implementation as desired. Simple omparisons and logial operations inboth methods are mapped one-to-one. Updates are represented as tests for equal-ity as shown in listing 1.2, where the worker inrement is validated by hekingthat numberOfWorkers′ = (numberOfWorkers + distance).Embedding model semantis in ode strutures allows us to read the ompletemodel at design time and validate it in state mahine modeling tools. So far aomplete extration is possible for Uppaal [8℄: The state mahine shown in�gure 2 is ompletely extrated from the existing soure ode and just laid outmanually. How to do this is disussed in setion 3.4.As an be seen, these strutures are able to over states, transitions, guardsand updates and hene inlude nearly all state mahine semantis. The onlymissing item is the initial state, whih is overed by the exeution omponentneessary to walk through the mahine. This will be disussed in setion 3.3,after the formalization of our approah.3 Formalization of the ApproahThe ode strutures ontaining the state mahine model semantis will be ex-euted at run time and used as an input to state mahine modelling tools
Workshop Models@run.time 2008 - Proceedings
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at development time. Thus we need a universal de�nition as a formal basefor well-de�ned interpretations. For our approah we de�ne state mahines as
M = {S, T, V, P, U} with� S a set of states.� T ⊂ S × S a set of transitions between states.� V = {v1 . . . vn} a set of named variables.� P = {pt|t ∈ T } a set of guards for eah transition.� U = {ut|t ∈ T } a set of updates for eah transition.The appliation state is modi�ed only when transitions are �red. Exeutionontrol will be passed to appliation omponents at this point of time and returnto the state mahine when the next state is reahed. The variables are used atmodeling time for state spae analysis and are provided at run time by a soureode omponent representing the appliation state.Eah guard is an expression related to one or more variables that evaluatesto a boolean value. Guards will be used at design and run time to deide whihtransition in the urrent state should �re. Comparisons and basi arithmetioperations an be performed on variables and literals inside expressions.Eah variable update onsists of atomi assignments that de�ne either asingle value or a range of values as update for one variable. New values maybe onstants or variable values whih an be onneted using basi arithmetioperations as above. Additionally, eah variable value of the previous state isaessible to allow relative hanges. At design time updates are used to de�neand hange the model state spae. At run time they an be interpreted as post-onditions in order to monitor if the appliation is in an expeted state.3.1 Embedded Model Spei�ationTo represent the model in soure ode, distint objet-oriented strutures willbe de�ned that map to the model semantis. Beause they are part of arbitrarysoure ode, arbitrary state spaes will exist beside the well-de�ned model in-formation. Hene the model must also de�ne interfaes between state mahinestrutures and other soure ode to pass program exeution ontrol and variablevalues and thus hide the appliation logi.So the �Embedded Model� is de�ned as ∆ = {Actor,Σ,Θ,Λ, Φ, Ψ} with� Actor a faade type representing appliation logi whih is invoked duringtransitions.� Σ = {σs|s ∈ S} a set of unique identi�ed types that represent states.� Θ = {θt,σ|t ∈ T, σ ∈ Σ} a set of methods in state type σ, eah representinga transition t.� Λ an interfae de�ning methods {λv|v ∈ V } that return the urrent valuefor a variable v.� Φ = {φt|t ∈ T } a set of methods that implement guard heks for transitions.� Ψ = {ψt|t ∈ T } a set of methods that implement update heks for transi-tions.
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State types implement an interfae whih de�nes no methods but allows totype-safely distinguish between state types and other types. Transition methodsare designated with meta data that refers to the target state, guard and updateimplementations. They have no return type and take as parameter an Actorinstane. The Actor type itself has arbitrary, appliation-spei� ontent and istreated as a blak box. Transition methods only make alls to methods providedby the Actor instane and therefore respet the oneptual separation betweenmodel and ode.The methods in Λmay query the appliation logi for any appliation variableat any point of time, but must never manipulate the appliation state. This way
Θ and Λ are the only well-de�ned interfaes between model and appliationsoure ode that allow manipulation and query of the appliation state.Eah φt returns true i� the pre-onditions of the guard hold. Due to their sim-ple struture desribed above, guards an be mapped to logial and arithmetialexpressions in the soure ode. Eah variable vn used in guards is representedas the aording all of the method λn. Obviously the simplest possible guard isthat there is none, in whih ase the soure ode method instantly returns true.Eah ψt returns true i� the variable updates interpreted as post-onditionshold. Parameters taken by this method are two instanes of Λ to allow ompar-isons, one granting aess to the urrent values and one ontaining ahed vari-able values from the point in time before the transition �red. Sine the methoddoes not perform an atual update but validates the state, variable updates arerepresented similar to guards as logial and arithmetial expressions. Eah singlevalue update is replaed by a test for equality and eah range update by a pair ofomparisons with lower and upper bound. If an update should be left unheked,the method an return true instantly.3.2 Representation in JavaFor an implementation of the onept skethed above, Java as a widespreadobjet-oriented programming language and run time environment was hosen.The Java-spei� onstruts and onventions are shortly outlined here. Theapproah is not limited to Java sine we an assume that similar onepts exist inother modern objet-oriented languages too. A subset of the available delarativestrutures [9℄ is used, namely lasses, interfaes, methods and annotations [10℄.In ombination with generi types the latter ensure type safety both for soureode and meta information and thus failitate an aurate soure ode reationby the developer.State types are lasses that implement the interfae IState. All methods inthe state lasses are treated as transitions when deorated with the �Transitionannotation. It ontains an attribute target to denote the transition's target statelass and an attribute ontrat that refers to a lass ontaining guard and updatemethods. Λ is realized as an interfae providing get-methods for eah variable
λv. The interfae itself and its implementation are provided by the appliationdeveloper. The ontents of these methods are blak boxes, too. It is up to theprogrammer to ensure that no manipulations of variable values happen when one
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of these methods is alled. Guards and updates for a transition are loated inlasses implementing the interfae IContrat with the generi type of Λ. It de�nesthe aording methods hekCondition and validate whih return a boolean valueand take parameters of the Λ type.3.3 Model ExeutionTo exeute the state mahine model an exeution omponent is required thatwalks through the state mahine by interpreting state lass delarations andtransitions annotations. In eah state the guard methods for eah transitionmethod are invoked to determine whih transition will �re. Aordingly a tran-sition method itself will be invoked. To start model exeution the appliationpasses three parameters to the exeution omponent: The initial state lass, the
Actor instane and the Λ implementation. All other parts of the state mahinestruture are inferred from these and instantiated on demand.To save resoures, update heks are only enabled in a �debug� mode. In thisase the urrent variable values are ahed before a transition �res and after-wards provided to the update method together with the most reent variablevalues. For this purpose a fourth parameter is passed to the exeution ompo-nent, the Λ interfae lass, whih is needed for dynami instantiation of this typein Java for update methods. In summary, the exeution omponent an aessall information related to the state mahine model at run time: States, transi-tions, variable values and their use in guards and updates. This way it is possibleto monitor the state mahine operation in real-time or to log the informationand make ativities traeable afterwards with only a few modi�ations.3.4 Model Extration for Design Time AnalysisFor design time the Embedded Model is mapped to representations used inmodelling tools. Beause of the di�erent emphases of existing modeling and ver-i�ation tools, this annot be done as universal as for objet-oriented strutures.Nevertheless the desription of states, transitions and variables follows the gen-eral onepts of state mahines and should hene be diretly ompatible withany modeling tool. On the other hand it has to be taken into aount thatthe general theoretial onept of state mahines is realized in di�erent ways inommon modeling tehniques [11℄. The example presented in setion 2 showedthe extrated model in the syntax of Uppaal, whih is one sample output fora tool-spei� mapping. When seleting an atual modeling tool and formulat-ing the neessary mapping, it must be arefully examined whether the hosentool provides a syntax powerful enough to express the semantis of guards andupdates desribed above. Cheking guards by evaluating variables, logial opera-tors, arithmeti operators and omparators to boolean values an be assumed tobe possible in most ases. Updating variables with single values, obtained fromvariables and arithmeti operations, is a standard tehnique, too. A range up-date is interpreted as a random hoie of a value from the given interval followedby an update of the variable with this non-deterministi value. More preisely,
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the question whether a tool supports range updates is the question whether itsupports non-deterministi hoies and allows to merge states de�ning the rangeof values for a variable into one single state. In our example, Uppaal supportsrange updates for variables based on non-deterministi hoies. Some minor hal-lenges regarding naming were solved in this example, too. The data type booleanis named bool in Uppaal and the get-pre�x of all variable methods is strippedfor better readability.For this ontribution, the model extration was performed by graph trans-formations, based on the abstrat syntax trees of Java and the DOM tree ofthe Uppaal data format. Triple Graph Grammars [12℄ an be applied here forparallel transformations of soure ode and tool data format with the generalstate mahine model as mapping shema. The detailed desription of this graphgrammar is beyond the sope of this paper.4 DisussionIt is important to notie that our approah inverts the traditional diretion ofmodel-to-ode generators. There is no model that is manipulated at design timeand transformed into soure ode from time to time. Instead there is a perma-nent model representation in the soure ode, whih is extrated for analysiswithin modelling tools from time to time. On the one hand this eliminates anye�ort to maintain and merge di�erent abstration layers. On the other hand,the hosen approah is not independent from programming languages and exe-ution environments, in our ase Java, as it is possible when using some othermodel-driven development tehnologies [1℄. Hene our future work at the toollevel aims to enable permanent partial transformations in real-time and heneparallel development of soure ode and external model representation. At theoneptual level we plan to realize more transformations from model to tools,e.g. into UML state hart diagrams [13℄ or the Cadene SMV model heker[14℄.The exeution omponent bene�ts from the permanent representation of themodel in ode strutures. Beause of this the atual work done by the exeutionomponent is limited to lass instantiations and method invoations. Sine alldynami funtionality is ontained in the invoked methods, the exeution is verye�ient as regular Java ode is exeuted. At the same time the state mahinemodel integrates in arbitrary business logi without enforing restraints on thenon-model ode. On the other hand, the developer has to take are to organizethe soure ode aordingly: The approah will only work if the lear separationis maintained and only valid expressions are used in methods whose ontent isinterpreted, i.e. guard and update methods. To detet errors here is possible onlyif the model is interpreted at design time.At a more general oneptual level, we aim to analyze the appliation of ourgeneral onept to domains and modeling methods other than state mahines.Espeially in these ases additional bene�ts an be expeted for larger projets,beause one hange in soure ode may in�uene more than one embedded model.
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5 Related WorkThe attribute-oriented programming approah [15℄ with similar use of meta datain ode strutures has been explored to map UML models to ode strutures [16℄.However, this does not leverage the priniple of having only one representationfor model and soure ode and does not avoid round trip engineering. The sameapplies to Framework Spei� Modeling Languages [17℄, whih ould be of useif a state mahine framework would ontrol the appliation state. The oneptof �exeutable UML� [7℄ tries to overome inonsistenies between di�erent rep-resentations by the use of automated transformations or by de�ning a primaryrepresentation that may generate and override all other representations. Ourapproah uses automated transformations to reate the model from the soureode and vie versa, but inside the soure ode the model is ombined with non-model parts of the appliation, thus enabling a seamless integration into largerappliations.Di�erent to the Java Modeling Language (JML) [18℄, whih o�ers a hugesyntax for spei�ation annotations, we do not aim to present a notation for thespei�ation of all possible system models. This applies also to the approahto use Smalltalk with it's introspetion apabilities as a meta language [19℄.Contrary to Java PathFinder [20℄ our approah does not onsider a wholeappliation as the model, but only seleted parts of it. Hene our approah an bemore omplete and formally founded and thus be used for expliit representationand validation in this limited domain of state mahine spei�ations.6 ConlusionIn this ontribution we proposed to embed state mahine model semantis insoure ode strutures and extrat onrete model representations on demand.The model exeution and extration omponents have been outlined. As shownby example, we an extrat a omplete state mahine representation from givenJava soure ode. All of the soure ode strutures in the Embedded Modelare used without hange to exeute, monitor and debug the model at run time.Hene the objetive to let appliation development in a larger ontext happensimultaneously to model spei�ation, validation and simulation for parts of theappliation without double e�ort to maintain two abstration levels is ful�lled.So we an state that our approah an e�etively be used to avoid maintainingand merging di�erent abstration layers.Referenes1. Brown, A.W., Iyengar, S., Johnston, S.: A Rational approah to model-drivendevelopment. IBM Systems Journal 45(3) (2006) 463�4802. Tihy, M., Giese, H.: Seamless UML Support for Servie-based Software Arhite-tures. In Gue�, N., Artesiano, E., Reggio, G., eds.: Proeedings of the InternationalWorkshop on sientiFi engIneering of Distributed Java applIations (FIDJI) 2003,
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Abstract. We introduce model-based traces, which trace behavioral mod-
els of a system’s design during its execution, allowing to combine model-
driven engineering with dynamic analysis. Specifically, we take visual
inter-object scenario-based and intra-object state-based models (sequence
charts and statecharts) used for a system’s design, and follow their acti-
vation and progress as they come to life at runtime, during the system’s
execution. Thus, a system’s runtime is recorded and viewed through ab-
stractions provided by behavioral models used for its design. We present
two example applications related to the automatic generation and visual
exploration of model-based traces and suggest a list of related challenges.

1 Introduction

Transferring model-driven engineering artifacts and methods from the early
stages of requirements and specification, during a system’s design, to the later
stages of the lifecycle, where they would aid in the testing, analysis, mainte-
nance, evolution, comprehension, and manipulation of running programs, is an
important challenge in current model-driven engineering research.

In this paper, as a means towards this end, we introduce model-based traces,
which trace behavioral models from a system’s design during its execution, al-
lowing to combine model-driven engineering with dynamic analysis. Specifically,
we take visual inter-object scenario-based and intra-object state-based models
(sequence diagrams and statecharts) used for a system’s design, and follow their
activation and progress as they come to life at runtime, during the execution of
the system under investigation. Thus, a system’s runtime is recorded and viewed
through abstractions provided by models used for its design.

An important feature of model-based traces is that they provide enough
information to reason about the executions of the system and to reconstruct
and replay an execution (symbolically or concretely), exactly at the abstraction
level defined by its models. This level of model-based reflection seems to be a
necessary requisite for the kind of visibility into a system’s runtime required for
model-based dynamic analysis and adaptation.

Additional features worth noting. First, model-based traces can be generated
and defined based on partial models; the level of abstraction is defined by the
? This research was supported by The John von Neumann Minerva Center for the
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modeler. Second, the models used for tracing are not necessarily reflected ex-
plicitly in the running program’s code; rather, they define a separate viewpoint,
which in the process of model-based trace generation is put against the concrete
runtime of the program under investigation. Third, the same concrete runtime
trace may result in different model-based traces, based on the models used for
tracing; and vice versa, different concrete runtime traces may result in equal
model-based traces, if the concrete runs are equivalent from the more abstract
point of view of the model used for tracing.

In the next section we briefly introduce, informally define, and discuss the
format and features of model-based traces, using a simple example. We then
present two example applications related to the automatic generation and visual
exploration of model-based traces. Finally, we suggest a list of related challenges.

2 Model-Based Traces

The use of system’s execution traces for different analysis purposes requires
different levels of abstraction, e.g., recording CPU register assignments, recording
virtual machine commands, or recording statements at the code level. We suggest
a higher level of abstraction over execution traces, based on behavioral models
typically used for a system’s design, such as sequence diagrams and statecharts.

In this work we present two types of model-based traces, inter-object scenario-
based traces and intra-object state-based traces. Additional types may be created
by combining variants of the two or using other modeling techniques1.

Given a program P and a behavioral model M , a model-based execution
trace records a run r of P at the level of abstraction induced by M . A unification
mechanism is defined, which statically and dynamically maps concrete elements
of the run to elements in the model. The type of the model used, the artifacts
and their semantics, define the types of entries that appear in the model-based
trace. We demonstrate our ideas using two concrete examples of a scenario-based
trace and a state-based trace, taken from a small example system.

Note that although there are code generation schemes for the execution of
the models we use, we do not, in general and in the example given here, consider
tracing programs whose code was automatically generated from models. On the
contrary, we believe that one of the strengths of our approach is that it can
be applied to systems in general, not only to ones where the implementation
explicitly reflects certain high-level models.

Also note that the model-based traces we present are not mere projections
of the concrete runtime information onto some limited domain. Rather, we use
stateful abstractions, where trace entries depend on the history and context of
the run and the model; the model-based trace not only filters out irrelevant
information but also adds model specific information (e.g., information about
entering and exiting ‘states’ that do not appear explicitly in the program).
A small example Consider an implementation of the classic PacMan game.
PacMan consists of a maze, filled with dots, power-ups, fruit and four ghosts. A
1 In principle, any representation of an execution trace may be considered a model-

based trace, depending on the definition of what constitutes a model.
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human player controls PacMan, who needs to collect as many points as possible
by eating the objects in the maze. When a ghost collides with PacMan, it loses a
life. When no lives are left, the game is over. However, if PacMan eats a power-
up, it is temporarily able to eat the ghosts, thus reversing roles. When a ghost is
eaten, it must go back to the jail at the center of the maze before leaving again to
chase PacMan. When all dots are eaten, the game advances to the next – more
difficult – level. We consider the PacMan game to be a well-known, intuitive,
relatively small and yet complex enough reactive system, hence a good choice
for the purpose of demonstrating model-based traces in this paper.
2.1 Scenario-based models
For inter-object scenario-based modeling, we use a UML2-compliant variant of
Damm and Harel’s live sequence charts (LSC) [4,9]. Roughly, LSC extends the
partial order semantics of sequence diagrams in general with a universal in-
terpretation and must/may (hot/cold) modalities, and thus allows to specify
scenario-based liveness and safety properties. Must (hot) events and conditions
are colored in red and use solid lines; may (cold) events and conditions are col-
ored in blue and use dashed lines. A specification typically consists of many
charts, possibly interdependent, divided between several use cases (our small
PacMan example has 9 scenarios divided between 3 use cases).

Fig. 1. The LSC for PacManEatsGhost with a cut displayed at (3,4,2,0).

Fig. 1 shows one LSC taken from our example model of PacMan. Vertical lines
represent specific system objects and time goes from top to bottom. Roughly,
this scenario specifies that “whenever a gameControl calls a ghost’s
collidedWithPacman() method and the ghost’s isEaten() method evaluates to
TRUE, the gameControl must tell the player (PacMan) to eat the ghost, the
player must tell the ghost it has been eaten, and the ghost’s state must change
to EATEN. Then, if and when the ghost goes to jail it must tell the gameModel it
has gone there and its state should change to JAIL, etc...” Note the use of hot
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‘must’ elements and cold ‘may’ elements. Also, note the use of symbolic instances
(see [15]): the lifeline representing ghost may bind at runtime to any of the four
ghosts (all four are instances of the class Ghost).

An important concept in LSC semantics is the cut, which is a mapping from
each lifeline to one of its locations (note the tiny location numbers along the
lifelines in Fig. 1, representing the state of an active scenario during execution).
The cut (3,4,2,0), for example, comes immediately after the hot evaluation of
the ghost’s state. A cut induces a set of enabled events — those immediately after
it in the partial order defined by the diagram. A cut is hot if any of its enabled
events is hot (and is cold otherwise). When a chart’s minimal event occurs, a
new instance of it is activated. An occurrence of an enabled method or true
evaluation of an enabled condition causes the cut to progress; an occurrence
of a non-enabled method from the chart or a false evaluation of an enabled
condition when the cut is cold is a completion and causes the chart’s instance
to close gracefully; an occurrence of a non-enabled method from the chart or a
false evaluation of an enabled condition when the cut is hot is a violation and
should never happen if the implementation is faithful to the specification model.
A chart does not restrict events not explicitly mentioned in it to occur or not to
occur during a run (including in between events mentioned in the chart).

2.2 Scenario-based traces
Given a scenario-based specification consisting of a number of LSCs, a scenario-
based trace includes the activation and progress information of the scenarios,
relative to a given program run. A trace may be viewed as a projection of the
full execution data onto the set of methods in the specification, plus, significantly,
the activation, binding, and cut-state progress information of all the instances
of the charts (including concurrently active multiple copies of the same chart).
Thus, our scenario-based traces may include the following types of entries:
– Event occurrence representing the occurrence of an event. Events are

timestamped and are numbered in order of occurrence. Only the events that
explicitly appear in one of the scenarios in the model are recorded in the
trace (one may add identifiers of participating objects, i.e., caller and callee,
and parameter values). The format for an event occurrence entry is:
E: <timestamp> <event no.>: <event signature>

– Binding representing the binding of a lifeline in one of the active scenario
instances to an object. Its format is:
B: <scenario name>[instance no.] lifeline <no.> <- <object identifier>

– Cut change representing a cut change in one of the active scenario in-
stances. Its format is:
C: <scenario name>[instance no.] <cut tuple> [Hot|Cold]

– Finalization representing a successful completion or a violation in an active
scenario instance. Its format is:
F: <scenario name>[instance no.] [Completion|Violation]

Fig. 2 shows an example short snippet from a scenario-based trace of PacMan.
Note the different types of entries that appear in the trace.
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...
E: 1172664920526 64: void pacman.classes.Ghost.slowDown()
B: PowerUpEaten[1] lifeline 6 <- pacman.classes.Ghost@7e987e98
B: GhostStopsFleeing[7] lifeline 1 <- pacman.classes.Ghost@7e987e98
C: GhostStopsFleeing[7] (0,1) Hot
C: GhostFleeing[7] (1,3) Hot
E: 1172664920526 65: void pacman.classes.GameControl.ghostSlowedDown(Ghost) pacman.classes.Ghost@7e987e98
B: GhostStopsFleeing[7] lifeline 0 <- pacman.classes.GameControl[panel0,0,0,600x600,layout=...
C: GhostStopsFleeing[7] (1,2) Cold
C: GhostFleeing[7] (2,4) Cold
E: 1172664920526 66: void pacman.classes.GameModel.resetGhostPoints()
C: PowerUpEaten[1] (1,2,6,1,1,1,1) Cold
F: PowerUpEaten[1] Completion
E: 1172664921387 67: void pacman.classes.Fruit.enterScreen()
B: PacmanEatsFruit[0] lifeline 2 <- pacman.classes.Fruit@3360336
C: PacmanEatsFruit[0] (0,0,1,0) Hot
C: PacmanEatsFruit[0] (0,0,2,0) Cold
E: 1172664923360 68: void pacman.classes.Ghost.collidedWithPacman()
B: PacmanEatsGhost[2] lifeline 1 <- pacman.classes.Ghost@7d947d94
B: PacmanEatsGhost[2] lifeline 0 <- pacman.classes.GameControl[panel0,0,0,600x600,layout=...
C: PacmanEatsGhost[2] (1,1,0,0) Hot
C: PacmanEatsGhost[2] (1,2,0,0) Hot
C: GhostEatsPacman[2] (0,1,1,0) Cold
F: GhostEatsPacman[2] Violation
...

Fig. 2. Part of a textual representation of a scenario-based trace of PacMan.

2.3 State-based models
For intra-object state-based modeling, we use UML state machines (that is, the
object based variant of Harel statecharts [7]). For lack of space, we assume the
reader is partly familiar with the syntax and semantics of statecharts in general,
at least to the level that allows to understand our example.

Fig. 3 shows an example statechart taken from a model of PacMan. It shows
part of a statechart for the class Ghost.

2.4 State-based traces
Given a state-based specification consisting of a number statecharts, a state-based
trace includes the creation and progress information of the statecharts, relative
to a given program run. The trace includes information on events, guards eval-
uation, and the entering and exiting of states in all instances of the statecharts
(including concurrently running instances of the same statechart). Thus, our
state-based traces may include the following types of entries:

– State entered representing a statechart entering a state. The format is:

EN: <class_name>[instance no.] Entered state <state full name>

– State exited representing a statechart existing a state. The format is:

EX: <class_name>[instance no.] Exited state <state full name>

– Event occurrence representing the occurrence of an event. Events are
timestamped and are numbered in order of occurrence. Only the events that
explicitly appear in one of the statecharts in the model are recorded in the
trace. One may optionally add guards evaluation. The format is:

EV: <timestamp> <event no.>: <event signature>
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Fig. 3. Part of the Ghost statechart in the PacMan model.

Fig. 4 shows a snippet from a state-based trace of PacMan involving a number
of statecharts. Note the different types of entries that appear in the trace.

We remark that the above scenario-based and state-based trace formats are
presented as examples. Depending on the application, the trace generation mech-
anism available, and the kind of analysis and reasoning intended for the model-
based traces, one may consider different formats, different entry types, different
levels of succinctness etc. For example, whether to document the values of guards
or the concrete values of parameters depends on the specific application and ex-
pected usage of the model-based trace.

3 Example Applications

We give a short overview of two example applications related to the generation
of model-based traces and to their visualization and exploration.

3.1 Generating model-based traces

S2A [8] (for Scenarios to Aspects) is a compiler that translates live sequence
charts, given in their UML2-compliant variant using the modal profile [9], into
AspectJ code [1], and thus provides full code generation of reactive behavior
from visual declarative scenario-based specifications. S2A implements a compi-
lation scheme presented in [13]. Roughly, each sequence diagram is translated
into a scenario aspect, implemented in AspectJ, which simulates an automa-
ton whose states correspond to the scenario cuts; transitions are triggered by
AspectJ pointcuts, and corresponding advice is responsible for advancing the
automaton to the next cut state.
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...
EV: 45632290 874: Ghost[3].collided
EX: Ghost[3] Exited state Ghost.InGame.InPlay.Play.Running.Free
EN: Ghost[3] Entered state Ghost.InGame.InPlay.Play.Running.Jail
EV: 45644272 875: Ghost[2].collided
EX: Ghost[2] Exited state Ghost.InGame.InPlay.Play.Running.Free
EN: Ghost[2] Entered state Ghost.InGame.InPlay.Play.Running.Jail
EV: 45644290 876: Ghost[3].timer
EX: Ghost[3] Exited state Ghost.InGame.InPlay.Play.Running.Jail
EN: Ghost[3] Entered state Ghost.InGame.InPlay.Play.Running.Free
EV: PacMan[1] 877: Pacman[1].complete
EX: PacMan[1] Exited state PacMan.InPlay.Play
EN: PacMan[1] Entered state PacMan.InPlay.LevelInitalization
EV: 45664403 878: Ghost[1].nextLevel
EX: Ghost[1] Exited state Ghost.InGame.InPlay.Play.Running.Free
EX: Ghost[1] Exited state Ghost.InGame.Levels.Basic
EN: Ghost[1] Entered state Ghost.InGame.InPlay.Play.Initalization
EN: Ghost[1] Entered state Ghost.InGame.Levels.Intermediate
EV: 45664405 879: Ghost[2].nextLevel
EX: Ghost[2] Exited state Ghost.InGame.InPlay.Play.Running.Jail
EX: Ghost[2] Exited state Ghost.InGame.Levels.Basic
EN: Ghost[2] Entered state Ghost.InGame.InPlay.Play.Initalization
EN: Ghost[2] Entered state Ghost.InGame.Levels.Intermediate
EV: 45664408 880: Ghost[3].nextLevel
...

Fig. 4. Part of a textual representation of a state-based trace of PacMan.

Most important in the context of this paper, though, is that in addition to
scenario-based execution (following the play-out algorithm of [10]), S2A provides
a mechanism for scenario-based monitoring and runtime verification. Indeed, the
example scenario-based trace shown in Fig. 2 is taken from an actual execution
log of a real Java program of the PacMan game adapted from [3], (reverse)
modeled using a set of live sequence charts (drawn inside IBM Rational SA [2] as
modal sequence diagrams), and automatically instrumented by the AspectJ code
generated by S2A. More on S2A and its use for model-based trace generation
can be found in http://www.wisdom.weizmann.ac.il/~maozs/s2a/.

3.2 Exploring model-based traces

The Tracer [14] is a prototype tool for the visualization and interactive ex-
ploration of model-based traces. The input for the Tracer is a scenario-based
model of a system given as a set of UML2-compliant live sequence charts, and
a scenario-based trace, generated from an execution of the system under inves-
tigation.

Fig. 5 shows a screenshot of the main view of the Tracer, displaying a
scenario-based model and trace similar to the one shown in Fig. 2. Roughly,
the main view is based on an extended hierarchical Gantt chart, where time
goes from left to right and a two-level hierarchy is defined by the containment
relation of use cases and sequence diagrams in the model. Each leaf in the hierar-
chy represents a sequence diagram, the horizontal rows represent specific active
instances of a diagram, and the blue and red bars show the duration of being in
a specific cold and hot relevant cuts. The horizontal axis of the view allows to
follow the progress of specific scenario instances over time, identify events that
caused progress, and locate completions and violations. The vertical axis allows
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Fig. 5. The Tracer’s main view, an opened scenario instance with its cut displayed at
(3,4,2,0), and the Overview pane (at the bottom). The example trace and model are
taken from an implementation of the PacMan game, see [14].

a clear view of the synchronic characteristic of the trace, showing exactly what
goes on, at the models abstraction level, at any given point in time.

When double-clicking a bar, a window opens, displaying the corresponding
scenario instance with its dynamic cut shown in a dashed black line. Identifiers of
bound objects and values of parameters and conditions are displayed in tooltips
over the relevant elements in the diagram. In addition, one can travel back and
forth along the cuts of the specific instance (using the keyboard or the arrows
in the upper-left part of the window). Multiple windows displaying the dynamic
view of different scenario instances can be opened simultaneously to allow for
a more global synchronic (vertical) view of a specific point in the execution,
or for a diachronic (horizontal) comparison between the executions of different
instances of the same scenario at different points in time during the execution.

Note the Overview pane (bottom of Fig. 5), which displays the main execu-
tion trace in a smaller pixel per event scale, and the moving window frame show-
ing the borders of the interval currently visible in the main view. The Overview
allows to identify high level recurring behavioral patterns, at the abstract level of
the scenarios in the model. Additional views are available, supporting multiplic-
ities, event-based and real-time based tracing, and the presentation of various
synchronous metrics (e.g., how many scenarios have been affected by the most
recent event?). Overall, the technique links the static and dynamic aspects of
the system, and supports synchronic and diachronic trace exploration. It uses
overviews, filters, details-on-demand mechanisms, multi-scaling grids, and gra-
dient coloring methods.

The Tracer was first presented in [14]. More on the Tracer, including addi-
tional screenshots and screencasts can be found in http://www.wisdom.weizmann.
ac.il/~maozs/tracer/.
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4 Related work

We briefly discuss related work. Generating model-based traces requires an ob-
server with monitoring and decision-making capabilities; a so called ‘runtime
awareness’ component (see, e.g., [5,11]). However, while model-based traces can
be used for error detection and runtime verification, the rich information embed-
ded in them supports more general program comprehension and analysis tasks
and allows the reconstruction and symbolic replay of a program’s run at the
abstraction level defined by the model used for tracing.

The use of AOP in general and AspectJ in particular to monitor program
behavior based on behavioral properties specified in (variants of) LTL has been
suggested before (see, e.g., [5,16]). As LSCs can be translated into LTL (see [12]),
these work have similarities with our use here of S2A. Like [16], S2A auto-
matically generates the AspectJ code which simulates the scenario automaton
(see [13]). Unlike both work however, S2A outputs a rich trace reflecting state
changes and related data (binding etc.), to serve our goal of generating model-
based traces that allow visibility and replaying, not only error detection.

Many work suggest various trace generation and visual exploration techniques
(e.g., for a survey, see, [6]). Most consider code level concrete traces. Some at-
tempt to extract models from these traces. In contrast, model-based traces use
an abstraction given by user-defined models. They are generated by symbolically
running these models simultaneously with a concrete program execution.

5 Discussion and Challenges for Future Work

We introduced model-based traces and presented two example applications. The
focus of model-based traces is on providing visibility into an execution of a
program at the abstraction level defined by a model, enabling a combination of
dynamic analysis and model-driven engineering. Below we discuss our approach
and list related challenges.

Trace generation S2A provides an example of a model-based trace generation
technology, based on programmatically generated aspects. Two major advan-
tages of this approach are that the monitoring code is automatically generated
from the models, and that the code of the system under investigation itself
is oblivious to the models ‘watching’ it. Related challenges include minimizing
runtime overhead, scalability in terms of trace length and model size, and the ap-
plication of similar technology to domains where aspect technology is not readily
available (e.g., various embedded or distributed systems).

Analysis and reasoning We consider the development of analysis methods for
model-based traces. For example, define and measure various vertical and hori-
zontal metrics (e.g., ‘bandwidth’, state / transition coverage per trace per model,
how many times was each state visited), abstraction and refinement operators
(e.g., hide events and keep states, hide sub states of composite states), ways
to represent and compare different model-based runtime configurations (‘snap-
shots’, perhaps most important for dynamic adaptation), or ways to align and
compare between traces of different runs of the same system, or very similar
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runs of different versions of the same system. In addition, we consider additional
types of abstractions over the same models, e.g., real-time based vs. event-based
trace representation (as is supported by the Tracer (see [14])). Also, an agree-
able, common representation format for model-based traces, where applicable
(e.g., for specific types of models), should perhaps be defined and agreed upon,
so that not only models but also their traces may be exchanged between tools
in a standard format like XMI.
Visualization and interaction The visualization and interaction supported
by the Tracer allows a human user to explore and analyze long and complex
model-based traces that are otherwise very hard to handle manually in their
textual form. Still, a lot more can be done on this front, from finding “economic”
visualizations for model-based snapshots to animation to visual filters etc.
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Abstract. In complex service-oriented systems, a number of layers of 

abstraction may be considered, in particular the models of the organisations 

involved, how interactions are coordinated and the services which are used and 

made available, are all relevant to the construction of complex service-oriented 

systems. As each of these layers is built upon another there is a clear need to 

provide a maintenance mechanism, capable of maintaining consistency across 

the concepts used in each layer. In addition, over time designs may change 

because of the introduction of new requirements and the availability and 

capabilities of services may change due to implementation modifications or 

service failures, leading to the need to consider a two-way adaptation, namely 

between the system design and its run-time. The contribution of this paper is the 

description of our (novel) mutual adaptation mechanism and, using an industry 

scenario based on the proposed ALIVE framework, its illustration in use of the 

kinds of adaptation.  

Keywords: Model-driven architecture, web services, workflows, monitoring, 

adaptation. 

1   Introduction 

Today’s software systems are becoming increasingly large and complicated. They are 

built upon many different technologies where a variety of abstraction layers are 

utilized, making it difficult for software engineering methodologies to support 

properly the various stages of their life-cycle, including design, implementation of 

artefacts and actual execution. Consequently, there is a clear need to develop 

maintenance and monitoring mechanisms allowing the dynamic adaptation, 

reconfiguration and self-management of such systems. It becomes increasingly clear 

that such mechanisms can provide a fundamental framework, where other more 

elaborate mechanisms can be established moving systems towards the vision of 

                                                           
* This work has been carried out in the framework of the FP7 project ALIVE IST-215890, 

which is funded by the European Community. The author(s) would like to acknowledge the 

contributions of his (their) colleagues from ALIVE Consortium (http://www.ist-alive.eu) 
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autonomic computing [1], where under certain circumstances a system may (re-) 

configure itself and adapt automatically to changing environments.  

The work described in this paper is carried out in the context of the EU-funded 

ALIVE project [2, 3]. The premise behind the project is that current service-oriented 

architectures (SOAs) are typically incremental developments of existing Web service 

frameworks, making them fragile and inappropriate for long-term deployment in 

changing environments. Our proposed solution is to utilize the rich body of 

experience found in human organisations through the formalization of organisational 

theory and the coordination mechanisms that underpin the interactions between the 

entities. This provides us with a range of strategies that have been tried-and-tested in 

(human) social and economic contexts and that, with the provision of sufficient 

appropriate information about the state of the environment and the enactment of a 

workflow, can be applied to the dynamic adaptation of SOAs. A key element of our 

solution is the use of model-driven architectural descriptions of the SOA design – 

representing the organisational and coordination artefacts mentioned earlier – that 

admit formal adaptation and are thus able to capture and reflect changes in the 

deployed system. 

In this paper we propose a bidirectional adaptation approach for maintaining 

design models with their run-time execution. The models visualising the service 

organisations and coordination as specified in ALIVE are used in a model-driven 

approach, while service enactment is a result of a model transformation process.  

In SOA functional components are exposed as services, each of which is associated 

with an externalised description of the service's interface and functionality. These 

services are composed and linked in a loosely-coupled pattern in such a way that 

individual services may be replaced and re-used without modification. Current 

approaches to SOAs build on existing Web service (WS) technologies, such as SOAP, 

WSDL and BPEL to describe and execute service interactions. Given a set of 

services, process descriptions in the form of workflows may be constructed and 

executed using existing workflow interpreters, which take a given language such as 

BPEL and invoke services in accordance with the specified flow of control. 

Model Driven Engineering (MDE) refers to the systematic use of models as 

primary artefacts for the specification and implementation of software systems. The 

Model Driven Development (MDD) methodology is based on the automatic creation 

of implementation artefacts from abstracted models via a predefined model 

transformation process. So far, model-driven approaches are primarily focused on the 

design, implementation and deployment stages of software development. However, 

MDD can similarly support the maintenance, requirements and testing phases. In 

those cases, MDD can be applied in the opposite direction, for the purpose of building 

or recovering high-level models from existing implementation artefacts to support 

round-trip engineering. Thus, it is possible to bridge the gap and provide consistency 

among design models and actual executions. 

The remainder of the paper is organised as follows: Section 2 provides an overview 

of the research context. Section 3 presents our mutual adaptation approach for models 

and enactments. Section 4 highlights our approach with an example drawn from an 

ALIVE use-case scenario. Section 5, provides various discussion points and compares 

our approach with related work. Finally, section 6 outlines our conclusions and 

summarises the fundamental characteristics of our approach. 
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2   Dynamic Model Adaptation 

Dynamic model adaptation refers to applying automated modifications on models 

often representing executing systems at run-time. Model-driven development often 

produces design artefacts that are lost during the execution and yet may be needed if 

the architect wants to change the actual execution when something goes wrong. The 

use of run-time models permits the complete or partial reuse of the current design 

models and their adaptation to the actual execution of systems. In particular [4] gives 

examples where run-time models can be useful in adaptation of systems. These 

examples are relevant to our two-way dynamic model adaptation mechanism. 

The first case where run-time models are useful is the observation of the execution. 

The execution utilizes real code to perform the functions prescribed by the models. 

The use of a run-time model, based on the observation of the execution, allows for the 

creation of an abstract view of the execution, which in turn may be used by an 

adaptation module. The set of events which are observed in this process have to be 

generated from the design models.  

The second case is the automatic adaptation of the system depending on the 

execution’s observation. Patterns of adaption are usually defined by the architect 

during the design phase by taking account of some critical execution events. When a 

predefined set of events is triggered, the adaptation is performed on the run-time 

model and then changes are applied in the generated execution.  

Finally, the third case is redesigning the actual execution using the run-time 

models. The architect, by looking at the run-time models, may decide to modify or 

add new functionalities to the system. These modifications are then transferred to the 

execution by production of run-time changes. 

3   An Approach for Mutual Dynamic Adaptation  

In this paper, we propose an approach for the dynamic adaptation of models and 

executables based on model transformations and the monitoring of the service 

enactment. The adaptation of models and executables is performed dynamically; both 

automatically and at run-time. Moreover, their dynamic adaptation is not based on the 

direct execution of models, so they are not compiled by model compilers and they do 

not run on specialised virtual machines - where executable models are monitored, but 

rather the adaptation is based on monitoring the enactment of native code that is the 

product of a model driven transformation process. Next, a monitoring mechanism 

monitors changes on service enactment and on design models by listening to specific 

significant events. Depending on the events generated the corresponding handling 

module is triggered to maintain/adapt the design models and generate the new 

enactment that will be loaded and executed from tools. The connectivity of external 

tools and the monitoring mechanism is maintained by the instrumentation framework. 

The approach is mutual, meaning that adaptations can be performed both a) from run-

time execution to design models and b) from design models to run-time execution.  

Another important characteristic that distinguishes our approach from others is that 

in our case model adaptations are applied both on structural models defining the 
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organisation of Multi Agent Systems (MAS) [5] and behavioural models defining 

their coordination. Furthermore, adaptations are applied on agent/service allocation 

and deployment, which are subject to various criteria such as availability of resources 

and generation of unexpected faults. 

More specifically, our approach is influenced by the three levels identified in the 

ALIVE project, namely; the organisation, coordination and services. Each of the 

levels plays an important role in MAS. For example, organisation provides the 

structure, relation and rules of agents, coordination specifies the allowable patterns of 

interaction and services provide the rules of engagement in terms of services. This 

multi-layer conceptual separation of concerns provides a number of architectural 

advances, based on the fundamental concepts of decoupling and modularisation. 

In order to reflect this architectural alignment within the ALIVE project the 

adaptation process has to cross both directions (bottom-to-top and top-to-bottom) in 

the multi level hierarchy. Thus,  changes in the service level may require adaptations 

of the coordination model and in turn changes in the coordination model may require 

changes of the organisation structure. Very similarly, this adaptation dependency is 

implied in the opposite direction from organisation to coordination and services. In 

that way, the ALIVE architecture remains highly adaptive across its inner and cross 

levels. At implementation level, the dependency of inner adaptations is maintained by 

linking the Organisation, Coordination and Service handlers, whereas cross 

dependency via transformations.  

 

 

Fig. 1. Maintaining Multi-Levels of Model Adaptation 

3.1   Adaptation steps and process 

Conceptually, within MDE each of the ALIVE levels is formalised and represented 

with a corresponding metamodel. The models which are diagramming instances of the 

ALIVE metamodel are created by designers using specialised graphical tools. After 

models have been constructed, model transformations are defined to create executable 

process specifications in languages such as BPEL. Specialised tools (engines) can 

then load the executables and initiate the enactment of the modelled ALIVE scenario. 

Process executions are instrumented with a monitoring framework, which listens 

for significant events during the execution of a given process. When a significant 
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event occurs the monitor is notified and the control is transferred on the 

corresponding handler. The handlers are interlinked to reflect the architectural 

dependencies among levels, and maintain the process of inner adaptation. 

Connectivity among external tools (engines) and the monitoring mechanism is 

maintained by a middleware instrumentation framework.  

 

Fig. 2. Our Mutual, Multi-Layered Adaptation Approach.  

The process steps can be distinguished into three phases as follows: 

Initialisation phase: The initialisation phase corresponds to the design time and 

the generation of the executable code. The first step is the creation of the organisation, 

coordination and service models by the architect (1) using design tools. The models 

which are instances of the ALIVE metamodel depict a particular use case scenario 

such as Thales. At design-time the designer can also specify automatic execution 
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adaptations that will be executed by the adaptation module. The models are next sent 

to predefined model transformations (2) to automatically create executable code (3), 

such as BPEL and WSDL. Then, execution tools load the executable code and initiate 

enactment (4). During the execution (5), a monitor mechanism observes execution 

and listens for specific significant events (6) controlled by conditions, rules etc.  

Model adaptations due to events/failures in service enactment: During the 

execution of the application, adaptations may occur depending on the significant 

events. Initial plans may not be possible to be performed due to limited availability of 

resources, failures and other external reasons. These (critical) events are captured by 

the monitoring mechanism and passed on the corresponding (organisation, 

coordination, service) model handler for an adaptation action (7) whereas the current 

service enactment is suspended (8). As a result, the corresponding model handler 

dynamically updates/adapts existing models to new ones (9). Depending on the rules, 

adaptations may be propagated internally between the successive inner levels of 

ALIVE. Once the new models are produced, the generation process produces new 

executions by using steps (2-3-4) and the service enactment restarts (5). 

Adaptation of service enactment due to design alterations: Alternatively, 

adaptations can occur as a result of a manual modification of the models by the 

architect while service enactment (10). The monitor mechanism is notified for the 

model changes (11) and the current enactment is suspended (8). Once more new 

executable code is generated by steps (2-3-4) and an updated enactment restarts (5). 

4   Applying the Approach with an ALIVE Scenario 

At this point, we present how the two-way dynamic adaptation of models and service 

enactment is maintained with a motivation example. The example describes a crisis 

management scenario from THALES [6, 7] used in the context of ALIVE project [2]. 

More specifically, the scenario describes how the Dutch Ministry of Internal Affairs 

manages an emergency depending on the severity of an incident, by defining five 

GRIP levels of emergency handling. Each level specifies the tasks, roles, authorities 

and responsibilities of the members involved in the handling of an incident. For 

purposes of simplicity, in this paper we consider an emergency scenario scaled from 

GRIP 0 to 1. GRIP 0 describes how to handle a routine accident where no major 

coordination is required, whereas GRID 1 describes how many different authorities 

coordinate at an operational level.  

4.1   Initialisation phase 

Initially, at design time the organisation, coordination and service concepts of the 

THALES scenario are modelled at GRIP 0 level by the designer. In this example a 

combination of UML 2.0 diagrams are used to depict effectively these concepts with 

Class/Collaboration, Interaction and Component models respectively. 

Organisation: At GRIP-0, the organisation consists of few structures. Most 

importantly, the CrisisManagement class has a GripLevel attribute to maintain the 

current state of the incident. CrisisManagement is related to at most one (see optional 
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cardinality [0..1]) Ambulance, Fire_Fighting_Team and PoliceOfficer classes. The 

Handle_Incident collaboration depicts how a PoliceOfficer playing the role of 

securePlace, an Ambulance by provideTreatment and a Fire_Fighting_Team by 

extinguishFire collaborate with one another to handle an incident. 

 

 

Fig. 3. Organisation models at GRIP 0 

Coordination: At GRIP-0, the coordination (describes the possible interactions 

among members) for handling an incident is specified in a network-like relation. All 

parties have equal responsibility in resolving the situation and communicate via 

inform methods and exchange incident information.  

Service: At GRIP-0, the services/agents are limited to those of a FireService, 

PoliceService and AmbulanceService. The services have to implement the interaction 

structures specified at coordination level and expose the relevant operations and 

interfaces.  

 

 

Fig. 4. Coordination (left) and Service (right) models at GRIP 0 

Later the coordination patterns and interfaces will be transformed to corresponding 

Web service implementations for BPEL and WSDL via predefined model 

transformations. At this point we do not present the details of the transformation 

process, however there are many approaches in this regard see [8, 9]. Next the 

generated artefacts are loaded for execution to an execution engine such as Apache’s 

Orchestration Director Engine (ODE) [10]. 

The significant events need to be marked with stereotypes and tag values on design 

models, so appropriate handlers can be created. For example, in fig.3 we have marked 

the property GripLevel of CrisisManagement as significant, so an appropriate handler 

can be created to monitor the state changes during enactment. Similarly, exceptions 

on interface operations can be marked as adapted, indicating that a handler needs to 

be generated and the path of enactment needs to be changed.  
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Finally, specific adaptation rules are defined by the designer and attached to 

models. These rules define the adaptation patterns to be followed in case of a 

significant event. The rules may be specified in a QVT-like language or refer to other 

implementations of ontological or rule-based languages. The handlers are capable to 

interpret these rules and perform the adaptations.  

4.2   Model adaptations due to events/failures in service enactment  

During the execution of the workflow, significant events may be triggered and 

processed by the monitoring mechanism. The events may propagate a series of inner 

adaptations from their corresponding handlers to design models as seen in chapter 3. 

Thus, during the execution of the PoliceService by an agent, an error may occur 

due to some unavailable resources. In this case the models have to be adapted at run-

time with new enactment plans which first need to be constructed. The adaptation 

process is directed by the adaptation pattern associated with the significant event and 

retrieved from the model. The pattern may be specified in model-driven native 

specification (QVT based) or other (rule-based) language. In the first case the 

adaptation is performed as an ordinary transformation, where in the latter it is 

performed by a dedicated tool. 

4.3   Adaptation of service enactment due to design alterations 

The most obvious adaptation case is when a service execution needs to be updated 

due to design alterations. In this case, the initial design models of organisation, 

coordination and service has been adapted with new structures/roles, coordination 

patterns and service functionalities. In our scenario, this is because the designer due to 

some external circumstances has re-evaluated the severity of the incident from Grip-

Level 0 to 1. In the opposite direction now, the changes in models would propagate 

events which may cause a sequence of inner adaptations. Finally, from the adapted 

models an updated service enactment will be generated. 

 

 

Fig. 5. After design-adaptation Organisation models at GRIP 1 
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Organisation: In GRIP-1, a local coordination team (CTPI) is now set up to 

supervise the operations and a Mayor entity is introduced. The CPTI team is 

composed of the heads of active services, such as Fire_Fighting_Team and Police-

Officer and Paramedic. Additional forces have been reserved, so cardinality has 

changed to [1..n]. A new collaboration CTPI_Member defines the additional roles of 

fireMember, policeMember and paramedicMember, which can be played by existing 

handling members such as a PoliceOfficer. Finally, within the Handle_Incident 

participation, all police, ambulance and fire units on the ground communicate through 

a CPTI_Member, playing the role of a coordinator.  

Coordination: At GRIP 1 the Mayor does not play an active role (there are no out-

coming interactions), however he/she might get informed by the CTPI members. How 

information is exchanged and shared among members has also changed from a 

network to a hierarchical structure. Now every incident handler has an obligation to 

report directly to CTPI members. CTPI has also the right (permission) to delegate 

tasks to other non-CTPI members, whereas other non-CTPI members have the 

obligation (implement the interface which is accessible only to CPTI_Members) to 

perform the tasks delegated to them. 

Services: At GRIP 1 two additional services MayorService and CPTIService are 

introduced. Previous services have also been altered in order to be consistent with the 

new coordination patterns. As a result, a CPTIService utilises the corresponding 

provided interfaces of FireService, PoliceService and AmbulanceService to delegate 

tasks as well as the MayorService to provide incident reports.  

 

Fig. 6. After design-adaptation Coordination (left) and Service (right) models at GRIP 1 

5   Other Related Work & Discussion 

Another quite related approach to the concept of run-time models is that of executable 

UML [11]. Executable UML is based on rich diagrams that can produce executable 

models, which can then be translated directly to code. In this case a virtual machine 

interprets the UML models without any intermediate code generation step involved.  

In our case the run-time models are represented by ordinary UML diagrams 

capturing the organisation and coordination of dynamic instances of an ALIVE 

scenario. Consistency among the service enactment (execution) and design models is 

maintained by the specification of significant events that are bound with specific state 

changes. Thus our approach does not provide a full bidirectional consistency among 

real execution (states) and dynamic models as the overhead is significant. Further, our 

ALIVE models are not executable; however they generate artefacts which can be 
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executed via a transformation process. Specific markings are also used to identify the 

significant states requiring monitoring and operations that may trigger an adaptation 

process.  

 6   Conclusions 

Providing mechanisms facilitating the dynamic adaptation of design models and run-

time executions is an important property for systems that need to reflect the 

environmental and design changes. In this paper we have proposed a mutual 

monitoring mechanism for maintaining adaptations among design models and service 

enactment. The run-time adaptations are performed automatically, triggered by 

significant events, directed by adaptation patterns described at design-time and 

implemented via model transformations. In addition, we have shown how the multi-

layers of model abstractions add significant complexity in the adaptation process, 

which also needs to be supported by the mechanism.  
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Abstract. This paper discusses preliminary work on modeling and validation 
dynamic adaptation. The proposed approach is on the use of aspect-oriented modeling 
(AOM) and models at runtime. Our approach covers design and runtime phases. At 
design-time, a base model and different variant architecture models are designed and the 
adaptation model is built. Crucially, the adaptation model includes invariant properties 
and constraints that allow the validation of the adaptation rules before execution. During 
runtime, the adaptation model is processed to produce a correct system configuration 
that can be executed.  

1   Introduction 
In [6], we presented our work on how we combine model-driven and aspect-

oriented techniques to better cope with the complexities during the construction and 
execution of adaptive systems, and in particular on how we handle the problem of 
exponential growth of the number of possible configurations of the system. The use of 
these techniques allows us to use high-level domain abstractions and simplify the 
representation of variants. The fundamental aim is to tame the combinatorial 
explosion of the number of possible configurations of the system and the artifacts 
needed to handle these configurations. We use models at runtime [2] to generate the 
adaptation logic by comparing the current configuration of the system and a newly 
composed model that represent the configuration we want to reach. One of the main 
advantages is that the adaptation does do not have to be manually written. 

The adaptation model covers the adaptation rules that drive the execution of the 
system. These rules can be dynamically introduced to change the behavior of the 
system during execution. We also discussed in [6] the need of techniques to validate 
the adaptation rules at design-time. In this paper we discuss our preliminary work on 
how to perform simulation and allow for model-checking in order to validate 
adaptation rules at design-time. The model validated at design-time is used at runtime.  

The remainder of this paper is organized as follows. Section 2 presents an 
overview of our methodology for managing dynamic adaptation. Section 3 gives 
details on our meta-model for adaptive systems, and shows through a service 
discovery example how it can be used to model variability, context, adaptation rules 
and constraints. Section 4 shows how we simulate the adaptation model to validate 
the adaptation rules. Section 5 explains our solution for runtime model-based 
adaptation. Finally, Section 6 discusses the main challenges our work is facing and 
concludes. 

                                                           
1 This work is done in the context of the European collaborative project DiVA (Dynamic 

Variability in complex, Adaptive systems). 
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2   Overview of the approach 
Figure 1 presents the conceptual model of the proposed approach. From a 

methodological perspective the approach is divided in two phases: design-time and 
runtime.  

At design-time, the application base and variant architecture models are designed 
and the adaptation model is built. At runtime, the adaptation model is processed to 
produce the system configuration to be used during execution. The following 
paragraphs details the steps of Figure 1.  

Since the potential number of configurations for an adaptive system grows 
exponentially with the number of variation points, a main objective of the approach is 
to model adaptive systems without having to enumerate all their possible 
configurations statically. In order to achieve this objective, an application is modeled 
using a base model which contains the common functionalities and a set of variant 
models which can be composed with the base model. The variant models capture the 
variability of the adaptive application. The actual configurations of the application are 
built at runtime by selecting and composing the appropriate variants. The adaptation 
model does not deal with the basic functionality which is represented by the base 
model. Instead, the adaptation model just deals with the adaptive parts of the system 
represented by the variant models. The adaptation model specifies which variants 
should be selected according to the adaptation rules and the current context of the 
executing system.  

Requirements

Variants

Dependencies

Adaptation Rules

Context sensors

Adaptation model

Variants
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Adaptation Rules

Context sensors

Adaptation model

Base Model

Variant modelsVariant modelsVariant modelsVariant modelsVariant models
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Design time

Runtime Middleware
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Running SystemRunning Sensors

Configuration
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Validation
Framework

Causal connection

Architecture models

 
Fig. 1. Overview of the proposed approach 

The adaptation model is central to the approach as it captures all the information 
about the dynamic variability and adaptation of the adaptive system. It is built from 
the requirements of the system, refined during design and used at runtime to manage 
adaptation. The adaptation model has four main elements: 
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• Variants: They make references to the available variability for the application. 
Depending on the complexity of the system, it can be a simple list of variants, a 
data structure like a hierarchy, or a complex feature model.   

• Constraints: They specify constraints on variants to be used over a configuration. 
For example, the use of a particular functionality (variant model) might require or 
exclude others. These constraints reduce the total number of configurations by 
rejecting invalid configurations. 

• Context: The context model is a minimal representation of the environment of the 
adaptive application to support the definition of adaptation rules. We only 
consider elements of the environment relevant for expressing adaptation rules. 
These elements are updated by sensors deployed on the running system. 

• Rules: These rules specify how the system should adapt to its environment. In 
practice these rules are relations between the values provided by the sensors and 
the variants that should be used.  

During runtime appropriate configurations of the application are composed from 
the base and variant models. In order to select the appropriate configuration, the 
reasoning framework processes the adaptation model and makes a decision based on 
the current context. The output of the reasoning framework is a configuration that 
matches the adaptation rules and satisfies the dependency constraints. The model of 
this configuration can be built at runtime using model composition. 

3   Adaptation Model 
This section presents the adaptation meta-model and how it is applied to a Service 
Discovery Application (SDA). The SDA is a solution to tackle heterogeneity of 
service discovery protocols are presented in [4]. The solution allows an application to 
adapt to different service discovery protocols and needs during execution. The service 
discovery platform can take different roles that individual protocols could assume: 

-User Agent (UA) to discover services on behalf of clients, 
-Service Agent (SA) to advertise services, and, 
-Directory Agent (DA) to support a service directory. 

Depending on the required functionality, participating nodes might be required to 
support 1, 2, or the 3 roles at any time. A second variability dimension is the specific 
service discovery protocols to use, such as ALLIA, GSD, SSD, SLP [4]. Each service 
discovery protocol follows its own rules. As a result, in order to get two different 
agents understanding each other, they need to use the same protocol [6]. These 
decisions have to be performed during execution. 

The next sub-section presents an overview of the meta-model and the following 
sub-sections detail how it is instantiated for the SDA example. 

3.1   Meta-model for variability and adaptation 
As detailed in the previous section the adaptation model includes four different 

aspects: variants, adaptation rules, dependencies and context. Additionally, links to 
the architecture models and concepts for rules and expressions are supplied. The 
meta-model is shown in Figure 2. As can be seen from the figure, colors are used to 
differentiate between the categories.  

The colors indicate the following: 
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• Grey – base and aspect architecture models; 
• Orange – variability information; 
• Purple – adaptation rules; 

• Red/pink – dependencies, formulated as 
constraints; 

• Yellow – context information; 
• Blue – expressions. 

 

 
Fig. 2. Meta-model for variability and adaptation 

This is to be considered a first version of our meta-model that has been created at 
an early stage in the DiVA project. It was created based on a set of simple examples 
such as the SDA described in this paper. During the project, the meta-model will 
evolve based on feedback and experiences with applying it to larger and more 
complex case studies. Nevertheless, at this point the meta-model is able to support 
modeling, simulation and validation activities. The following shows how the meta-
model is instantiated for the SDA. To make the example readable we use a textual 
concrete syntax. This concrete syntax is processed by our prototype tool in order to 
build the adaptation model. 

3.2   Modeling variability 
Figure 3 shows a model of the variability information in our service discovery 
example, located in the section identified by the #variability keyword.  We start by 
defining two variability dimensions: one for functional variability and another for 
different network protocols that the application can use. A variability dimension can 
best be described as a category of variants, while a variant is an aspect or concern that 
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is described outside of the base model and may vary to produce adaptation. So far, we 
have specialized variants further into atomic variants and complex variants. The latter 
is used to express a collection of several variants, thus forming a partial or full 
configuration. This concept was added because we encountered in our example that 
some combinations of variants were already foreseen during the requirements phase. 
As an example, the Discovery Agent functionality corresponds to having both the 
User Agent and the Service Agent functionalities. DA is thus defined as a complex 
variant referring to UA and SA.  

#variability 
 
dimension Functionality : UA, SA 
variant DA : UA, SA 
 
dimension DiscoveryProtocol : ALLIA, SLP 

/* Variability of the application */ 

 
 

Fig. 3. Variability in the Service Discovery Application 

3.3   Modeling the context 
Information about the context and sensors are delimited by the #context keyword. 
Currently, the meta-model supports two types of context variables: Booleans and 
enumerations.  

The context model, as shown in Figure 4, starts with defining a variable for 
whether or not the device is running low on battery and, similarly, if the application 
has been elected as a Discovery Agent. Next, we have defined an enumeration that 
holds different roles. The application has to act as one of these roles at all time. 
Finally, there are two variables that tell which protocols are required, which can be 
one or many.  

#context /* Context of the system */
 
boolean LowBatt // Battery is low 
// Node has been elected Discovery Agent 
boolean ElectedDA 
 
// Node is required to act either as  
// User Agent or as Service Agent 
enum SrvReq : UA, SA 
 
// Node is require to use one or  
// more of the following prototcols 
boolean ALLIAReq 
boolean SLPReq  

 
Fig. 4. Context of the Service Discovery Application 

3.4   Modeling adaptation 
Once the variability and context have been modeled, the adaptation rules can be 
specified. The adaptation rules link the context variables and the variants in order to 
specify the configuration to use with respect to a particular context.  Currently, 
adaptation is based on simple condition-action rules. The condition part is a Boolean 
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expression based on the context information, while the action is a change in the 
configuration of variants.  

/* Adaptation rules for functionalities */ 
 
rule BecomeDA : // Becomes a DA 
  condition ElectedDA and not LowBatt and not DA 
  effect DA 
 
rule StopDA : // Stop being a DA 
  condition (LowBatt or not ElectedDA) and DA 
  effect not DA 
   
rule BecomeUA : // Become a User Agent 
  condition  SrvReq=UA and not UA 
  effect UA and not SA 
   
rule BecomeSA : // Become a Service Agent 
  condition SrvReq=SA and not SA 
  effect not UA and SA  

Fig. 5. Adaptation rules for the functionalities of the SDA 

Figure 5 depicts the adaptation rules for the variants in the functionality category. 
The first rule is called “BecomeDA”, which is triggered when an application is elected 
as a discovery agent. If the device also has sufficient batteries and it is not a discovery 
agent already, the adaptation will proceed and the application will assume the role of 
a discovery agent. 

3.5   Modeling constraints 
Finally, Figure 6 shows the dependencies. These are currently modeled as constraints, 
more specifically invariants. For example, the first invariant states that the application 
must use at least one functionality variant. If it does not, an error message will be 
produced by the tool. 

invariant AtLeastOneFunctionality : UA or SA 
invariant NotDAWithLowBatt : not (LowBatt and DA) 
invariant AtLeastOneProtocol : ALLIA or SLP 
invariant NoSLPWithLowBatt : not (SLP and LowBatt)  

Fig. 6. Invariants of the SDA 

4   Simulation and Validation 
The main benefit of using a model to describe adaptation is that it enables to process 
this model at design-time in order to validate it [9]. Based on the meta-model defined 
in the previous section we have defined a simulator and automated the verification of 
invariants. This section describes the way the simulator is built and how it allows 
checking for termination of adaptation rules and verification of invariant properties. 

4.1   Simulation Model and Implementation 
The goal of the simulation is to build a model of the potential configurations and 
adaptations of the application. To do that, the simulation starts from an initial 
configuration and applies the adaptation rules to move to a new configuration. Figure 
7 presents the simulation model. According to this model, a simulation is composed 
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of a set of configurations and a set of adaptations between these configurations. Each 
configuration refers to a set of variants and a set of variable terms. The variants 
correspond to the aspect to be woven in order to build this configuration [7]. The 
Variable terms define the state of the context variables for this configuration. An 
adaptation links a source configuration with a target configuration. An adaptation is 
triggered by a context event and refers to one or more adaptation rules. The context 
event is a change in the values of one or more context variables. 

 

Fig. 7. Simulation model 
 
Based on this simulation model, a prototype simulator has been implemented using 

the Kermeta platform [8]. The simulator starts from an initial configuration and for 
each variation of the context variables it evaluates the guards of the adaptation rules. 
If the guard of an adaptation rule is true in the new context then this rule must be 
applied and the guards of all the rules are evaluated again. Adaptation rules are 
applied until none of their guards evaluates to true. 

4.2   Simulation output 
The output of a simulation can be rendered as a graph in which each node is a 
configuration and each edge is an adaptation. Figure 8 shows an excerpt of the 
simulation graph for the service discovery application. The complete simulation graph 
for this example contains 24 configurations obtained by aspect weaving and 70 
adaptations. In the label of each node, the first line corresponds to the values of the 
context variables and the second line to the set of aspects that should be used to create 
the corresponding configuration. Each edge in the graph corresponds to an adaptation 
to a change of one context variable. The label of the edges starts with the context 
variable change and details the set of adaptation rules that were applied. In the graph 
presented in Figure 8 the configurations have been colored in order to visualize easily 
the battery level. Configurations for which the battery is high are displayed in green 
and configurations with low battery are displayed in orange.  

4.3   Constraint checking and rule termination 
The main benefit of the simulation model is to allow for validating the adaptation 
rules at design-time. As shown in the previous section the adaptation graph can be 
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visualized and colors can be used in order to highlight specific properties. This allows 
for a manual validation of the specified rules. In addition, the simulation process can 
identify live-locks and dead-locks in the adaptation graph and allows to automatically 
verify invariants on the system.  

 

 

Fig. 8. Excerpt of the simulation graph for the SDA 

Dead-locks in the simulation graph correspond to cases where some adaptation 
rules lead to a configuration from which the system cannot adapt. In a design, this 
could be done voluntarily but in most cases this is due to some incorrect or missing 
adaptation rules. Live-locks correspond to cases where the system bounces between 
several configurations while the context is not changing. This situation always reveals 
an error in the adaptation rules. The simulator can identify live-locks while it 
computes the simulation graph. For a single change of the context, no adaptation rule 
should be able to apply twice. Indeed, if after applying a rule (and possibly some 
others), if the same rule can apply again then the rule could be applied an indefinite 
number of times. When this situation is detected by the simulator, it reports an error 
in the rules and provides the configuration in which the problem occurs and the 
sequence of rules which is looping.  

The meta-model presented in Section 3 allows defining invariants on the system. 
These invariants are checked by the simulator on all the configurations that are 
created during the simulation. Any violation of these invariants reveals an error in the 
adaptation model.  

5   Adapting the System at Runtime 
In this section, we present how we actually adapt a running system using the rules we 
presented in Section 3. In order to trigger the rules, we need to monitor the state of the 
system itself and the execution context (e.g., memory, CPU usage, available network 
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bandwidth, battery level). For this purpose we intend to reuse the Intel Mobile 
Platform Software Development Kit [1] that already offers a large set of probes. This 
SDK is freely available and provides a Java API implementing these probes. Using 
these probes, we have to implement the variables related to the execution context, 
e.g., lowBatt. For example, we can specify that:  

lowBatt = batteryInstance.percentRemaining < 15 

However, defining the variable lowBatt in this way may be too strict. For example, 
if the battery level goes under 15%, the system will adapt. But, if the user plugs the 
system to power supply, the battery level will rapidly increase and the system may 
adapt again because the battery is not low anymore. In this case, the system adapts 
twice whereas it would have been preferable to do nothing as the adaptation process 
may be time consuming. 

In order to tackle the instability of rules, we will use WildCAT 2.0, currently still 
under development. WildCAT [3] is an extensible Java framework that eases the 
creation of context-aware applications. It provides a simple but yet powerful dynamic 
model to represent the execution context of a system. The context information can be 
accessed by two complimentary interfaces: synchronous requests (pull mode: 
application makes a query on the context) and asynchronous notifications (push 
mode: context raises information to the application). Internally, it is a framework 
designed to facilitate the acquisition and the aggregation of contextual data and to 
create reusable ontologies to represent aspects of the execution context relevant to 
many applications. A given application can mix different implementations for 
different aspects of its context while only depending on WildCAT’s simple and 
unified API. The version 2.0 of WildCAT allows defining SQL-like requests on the 
environment model and integrate the notion of time. For example, it is possible to 
trigger a rule when the battery has been lower than 15% for more than 3 minutes.  

When a rule is triggered, the associated variants become active. In other words, we 
weave the aspects associated to each variant in the base model. Aspect weaving is 
currently performed with SmartAdapters [5]. Then, we compare the woven model 
with the reference model, obtained by introspection over the running system. This 
comparison generates a diff and match model specifying what has changed in the 
woven model. By analyzing this model, we automatically generate a safe 
reconfiguration script that is then applied to the running system. Aspect weaving and 
automatic adaptation are described in more details in [5, 7].  

6   Discussion and Conclusion 
This paper presents our ongoing work on modeling adaptation. So far, based on the 
meta-model we have modeled, simulated and checked a few toy adaptive applications. 
However we have also identified the need for more expressiveness in order to 
describe the variants, the context and the adaptation rules. Our objective is to build on 
top of the current meta-model in order to identify a restricted set of concepts relevant 
to the modeling of variability and adaptation. At this stage, we have identified two 
specific issues. 

Firstly, in their current form, the number of adaptation rules can quickly grow as 
the number of context elements and variants increase. Our main goal is to tackle the 
problem of an explosive growth in the number of configurations and the artifact to be 
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used in their construction. However, we do not want to move the complexity 
associated into the rules as a consequence. Consequently, as a step towards improving 
our adaptation rules, we aim to express the rules using semantics. In that sense, the 
rule should be of the form “choose a set of variants with properties that match the 
current context”. The above embraces a more declarative approach. Although, 
sometimes we still might want to allow rules on variant configurations since pre-
defined full or partial configurations might be extracted or derived from the 
requirements straightforwardly, as was the case in our variability model. 

Secondly, our current simulation prototype enumerates all the configurations and 
adaptations between them. While this is very useful and works well while the number 
of configurations is manageable, this approach has the typical model-checking 
scalability issues when the number of configuration and adaptation grows. Several 
techniques can be combined in order to keep the simulation space manageable, for 
example, adding constraints on the context, considering sub-sets of variability 
dimensions or using heuristics to limit the depth of simulations. In the context of the 
DiVA project, we plan to experiment with industrial adaptive applications in order to 
choose the most appropriate solutions to this scalability issue. 

For the runtime, as future work we plan to automate as much as possible the 
implementation of the triggers. For example, it is easy to quantify the domain in 
which a battery evolves: 0 to 100. But, defining what a low level for a battery may be 
more difficult. We previously said that a battery is low if the remaining percentage is 
lower than 15 for 3 minutes. However, this kind of information is generally not 
specified in requirement documents and developers have to infer the information from 
their knowledge and/or based on experimentation. We plan to use Fuzzy logic to help 
in defining and implementing triggers. Providing a global domain (0 to 100) and some 
qualifiers (“high”, “medium”, “low”), the fuzzy logic can determine, for a given 
observed value (e.g., 17%) if the battery is “low”, “medium”, etc. Fuzzy logic can 
help us in filling the gap between requirement (qualitative descriptions) and 
implementation (quantitative observations) and allows keeping high-level adaptation 
rules at runtime. 
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Abstract. Ambient Assisted Living systems (AAL) must fulfill several 
challenging requirements as, for instance, the ability to render their services at a 
quality level that is high enough to enable an independent living. This requires a 
sound understanding of the current situation of the users, their environment, 
and, the availability of required resources. Further, AAL systems need the 
ability to adapt and extend the system behavior, as the demands for living 
assistance substantially differs between different individuals (differential aging) 
and changes during a person’s life. Both are requirements for a sound 
adaptation support at runtime that require adequate models. 
In this paper we identify stereotypical adaptation scenarios in the AAL domain, 
elaborate on components and their respective models to support the adaptation 
scenarios, and discuss the evolution of these models. 

Keywords: Self-Adaptation, Ambient Assisted Living, Context Management, 
Adaptation Management, Configuration Management 

1   Introduction 

Driven by demographical and societal changes in most industrialized countries, the 
development of Ambient Assisted Living (AAL) systems seems to be a promising 
answer to the question of how to enable people with specific needs, e.g. elderly or 
disabled people, to live longer independent lives in their familiar residential 
environments [1]. Typical services comprise assistance in daily routine and 
emergency treatment services. In order to succeed with this, AAL systems must meet 
several challenging requirements. Among these are (i) the ability to render their 
services at a quality level that is high enough to enable an independent living, which 
often requires a sound understanding of the current situation of the users and their 
environment and the availability of required resources, and (ii) the ability to adapt and 
extend the system behavior, as the demands for living assistance substantially differs 
between different individuals (differential aging) and changes during a person’s life. 
Due to financial reasons, AAL systems will comprise in most cases just that hardware 
components and resources that are necessary to meet the current assisting demands. 
We call this the "just enough principle". Obviously, the situation awareness and 
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adaptability while tackling with resource constraints are among the stereotypical 
characteristic of AAL systems.  

In the context of the BelAmI [2] project solutions and engineering approaches for 
runtime-adaptable solutions have been investigated in an application-driven manner. 
Among the addressed issues was to identify stereotypical adaptation scenarios, as well 
as to provide a system architecture, respective models and components that meet these 
requirements.  

The investigation of the state-of-the-art on adaptable and adaptive systems revealed 
a substantial amount of approaches and solutions that already exist. However their 
applicability in the AAL context was for various reasons (e.g. impact on performance 
and resource consumption, timeliness, flexibility) not that clear. In addition, the 
relevance of the adaptation scenarios addressed by the approaches was often difficult 
to assess. This complicates the application of those approaches and solutions in the 
AAL domain substantially. 

In order to pave the way for solutions that meet the adaptation demands of the 
AAL domain, the paper (i) identifies stereotypical adaptation scenarios in the AAL 
domain, (ii) elaborates on components and their respective models to support the 
adaptation scenarios, and, (iii) discusses the evolution of these models. 

The paper is structured as follows: Section 2 describes the AAL domain and 
identifies typical adaptation scenarios therein. By means of these scenarios we deduce 
architectural entities and their respective runtime models in section 3, 4 and 5 and 
discuss the evolution of these models. Section 6 gives a brief overview on related 
work. We conclude in section 7 and give a short outlook on future work. 

2   AAL Domain and Adaptation Scenarios 

Ambient Assisted Living (AAL) [1] denotes concepts, products, and services that 
interlink and improve new technologies and social systems, with the aim of enhancing 
the quality of life for all people during all stages of their lives. AAL could therefore 
be translated best as “intelligent systems of assistance for a better and safer life” [3]. 
The potential range of services belonging to the AAL domain is huge. It encompasses 
any assistive service that facilitates daily life. The classification scheme in [5] 
structures this domain into six stereotypical subdomains with clearly separated 
responsibilities. As classification parameters, are used: (i) location where the assisted 
living service is rendered (row), and (ii) assistance types (columns): 

 

Figure 1  A classification scheme for the AAL services [5] 
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Within the BelAmI [2] project our primary interest is on the indoor emergency 
treatment services as they form the kernel of any AAL system that shall enable people 
to live an independent live alone at home.  

In this paper we will use the following system fragment as running example: The 
system automatically senses the location and activities of the user to detect actual 
emergencies, e.g. sudden falls, or noticeable trends that could lead to a critical 
situation, e.g. the sudden increase of toileting activities or the decrease of drinking 
activities. In case of “suspicious” situations, the system checks with the user the real 
situation, and informs adequate assistance personnel if required. The system consists 
of a location device, a cup that senses drinking activities, a concentrator device that 
renders the emergency services, and a series of interaction devices, as pushbuttons, 
and several optional information displays. The concentrator is connected to the 
internet and allows a remote management of the system by a service provider. 

 

Figure 2 Example System 

Within the system, we can identify the following types of adaptation scenarios 
S1:Local Adaptation: Here we refer to adaptation scenarios where the adaptation 

decision is rendered locally, within the component that is to be adapted. Consider the 
following example: The localization device decides to decrease (downscale) it’s 
sampling rate to save energy, if its location has not changed much in the past. 
Conversely, it will increase (upscale) its sampling rate if its location changed. The 
interesting point in this scenario is that the device decides locally its adaptation, and 
that the adapted parameters could be continuous. 
S2:Remote Adaptation: In contrast to local adaptation, this type of adaptation scenario 
refers to adaptation decisions made by an external (dedicated) component. Consider 
the following as an example scenario: A simple drinking reminder is integrated into 
the cup (beeper), and thus enables the cup to render a complete drinking reminding 
service on its own. However, if the device is brought into an environment where a 
better reminder service is available, the reminder on the cup is deactivated and the 
better one is used. This operation is to be reverted if the cup and the concentrator are 
disconnected, or if the information display is deactivated. The characteristic problem 
in this scenario is that the adjustment takes place through the interaction of several 
distributed devices, and that only discrete features, activation or deactivation, are 
affected. 
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S3:Conflict negotiation (local adaptation goals vs. global adaptation goals). If 
both, local and global adaptations, are supported there might be conflicting adaptation 
decisions. The following scenario exemplifies this: The location device tries to save 
energy by switching into a low-power mode after a certain period of inactivity. In an 
emergency situation, an external agent must be able to prevent this default behavior. 
The typical trait of this scenario is that a device has to react reliably according to 
conflicting commands. 

S4:Set point adaptation: In the set point adaptation scenario, a default set point for 
triggering a certain event is adjusted in a specific context, and the machine is 
perceived to adapt its parameter by learning. For example, the set point for triggering 
an alarm if a person has an abnormally high pulse is raised if that person executed a 
temporary exhaustive action. The machine registers that these two events have 
happened together and adapts accordingly, so that it is able to infer abnormal changes 
when a similar event happens again in the future. 

S5:Manual adjustment:  In the manual adjustment scenario, maintenance personnel 
are able to adjust the current composition, adaptation parameters and also adaptation 
rules. A further aspect of this scenario is the exchange of components, i.e. adding new 
components and removing old components. The characteristic point in the manual 
adjustment scenario is the manual intervention with either maintenance or diagnostic 
purposes.  

In the following sections we elaborate on the components and their respective 
models we have added to our system architecture in order to support these adaptation 
scenarios. 

3  Configuration 

We have started with the simplest adaptation scenario, the manual adjustment S5. 
Here the adaptation is conducted by maintenance personnel at runtime. They are 
supported by the system to change the configuration of the system and its 
components, e.g. for the cup the volume of the beeper or the mode (normal, 
energy_saving) can be configured. With configuration we refer to a point in the 
configuration space. The configuration space is spanned by the supported 
configuration parameters (dimensions) and can be constrained by constraints. 
Different component configurations can result in different “internal” behaviors as 
well as in different connection topologies (compositions). A configuration can 
comprise one or many components of the system.  

To realize dynamic (re)configuration we followed the ComponentConfigurator 
pattern of Buschman et al [6]. The aim of this design pattern is to “allow an 
application to link and unlink its component implementations at run-time without 
having to modify, recompile, or statically relink the application.” 

According to the pattern, an interface should be defined which allows to configure 
the implementer. This interface evidently must be implemented by every component 
that should be configurable. Furthermore, a Configurator is required to coordinate the 
(re)configuration of components, being especially of interest, if several components 
have to be configured in a coherent way. The Configurator implements a mechanism 
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to interpret and execute scripts specifying the configuration, which is to be 
instantiated. We correspondingly introduced a Configurator component as an 
interface which is to be implemented by configurable components (cf. Figure 3). 

 
 

Figure 3 Configuration Support 

The responsibilities of the Configurator component (cf. Figure 4) are threefold: 

 
 

Figure 4 Configurator Responsibilities and Configurable Lifecycle 

Component initialization: When a new component is loaded into the system it 
introduces itself to the SystemModelManager (SMM) and to the Configurator. The 
SMM maintains a model of the current system comprising the components and their 
current configurations. The model hence covers both, current component structure 
and parameters. After the registration phase, the Configurator configures the 
component into a predefined configuration.  

Component (re-)configuration: The Configurator’s main task is to manage the 
transition from a current configuration to a target configuration at runtime. In the 
manual adjustment scenario, such target configurations are provided by a maintenance 
engineer. To build a configuration, the maintenance engineer relies on information 
about the available components and their required and provided properties.  

If other components are required to instantiate a certain configuration, the 
Configurator tries to get them from the SMM. For each of these components, the 
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Configurator then suspends the component before he applies the new configuration. If 
the instantiation of the new configuration was successful for all participating 
components the Configurator reactivates all suspended components.  

Component termination: When a component is no longer needed the Configurator 
is responsible for terminating it in a controlled way (i.e. conduct reconfigurations of 
connected components when necessary). 

4  Context-Awareness 

Any sophisticated assistance function in the AAL domain and beyond requires a 
sound understanding of the current situation in order to plan and execute necessary 
actions. Self-adaptation falls into that class of functions, as the system adapts itself 
and thus relieves the system maintainers of this task. Situation awareness can be 
achieved by a rather simple sensor fusion, e.g. in the cup in our example system, or 
through a sophisticated fusion of information from different information channels that 
is known as context awareness in recent years and forms one of the most important 
ingredients for achieving the Ambient Intelligence Fehler! Verweisquelle konnte 
nicht gefunden werden. or Ubiquitous Computing paradigm [7]. Context awareness 
comprises three main functionalities: context sensing, context fusion (aka. context 
interpretation) and context management. Intuitively, many people perceive ‘context’ 
as aspects from the users’ environment like location and temperature. Despite this 
common notion, it is hard to define context precisely. We adopt the general definition 
proposed in [8]: “…Context is any information that can be used to characterize the 
situation of an entity. An entity is a person, place, or object that is considered 
relevant to the interaction between a user and an application, including the user and 
application themselves.” Context-awareness denotes the use of contextual information 
in computer system functionality.  

In order to realize all above listed scenarios that comprise self-adaptation, we 
added a context management system to the architecture as illustrated in Figure 5. It 
supports the various system components with access to context information in a 
device-independent manner. The system provides a push (asynchronous) as well as a 
pull (synchronous) modus to access information. The context information is managed 
by the ContextManager in the system. It encapsulates the context distribution strategy 
in the distributed system and provides the various components with a n:m connector 
for context information distribution. The managed information and its interrelations 
are defined by the ContextModel, which is a meta-model. To make use of the context, 
any application component can register itself with the ContextManager as 
IContextProvider or IContextSubscriber. Basic context information is provided by 
sensors (IContextProvider) that provide data on various parameters in the 
environment, e.g. location of user or objects, and the system itself, e.g. system mode. 
Components that want to be notified on changes in the context information can 
register themselves as IContextSubscriber. Components that produce new context 
information based on basic context information are called IContextAggregators (they 
are subscribers and providers as well). They can be considered as a kind of logical 
sensor. The ContextManager also assures the persistence of context information that 
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should be stored for later retrieval. There are various ways to represent context 
information within the systems. Familiar approaches are Key-value pairs (uses the 
key to refer to the variables and the value of the variable holding the actual context 
data), tagged encoding (the context data is modelled by semi-structured tags, and 
attributes, e.g. in XML), object-oriented models (the context data is embedded in 
object states, and objects provide methods to access and modify the states), and, 
logic-based models (context data are expressed as facts in a rule-based system). 

 

 

Figure 5 Context Management 

We have followed the Tagged encoding approach, which allows us to realize a 
rather lightweight context management approach and provides us with sufficient 
classification facilities. The ContextModel defines the context information that can be 
queried and the quality of the context information. It consists of a list of context 
information topics with the respective attributes. The topics are structured 
hierarchically, which has been inspired by the OSGi event mechanism. This allows an 
efficient registration and broking of a group (subtree) of context information items via 
wildcards. Currently, we are considering migrating to an OWL-based [9] 
classification scheme, to provide more flexility in the type structure. The 
ContextModel is also a suitable place to specify, which context information is 
transient or should be stored for later retrieval. The ContextModel only needs to be 
evolved if new context information should be processed by the system, e.g. when a 
new sensing device is added or an improved ContextAggregator is added.  

All context information within the system is represented as facts as depicted in 
Figure 5. Facts have a general, simple data structure which provides information 
about the type, time, precision, certainty, and cost of the fact, as well as a set of 
properties. Also the quality of the fact is of interest, as the quality of the context 
information can change over time. 

Based on the ContextManager, components that adapt themselves in a situation 
aware way already can be realized, e.g. S1, S4. However, it was our goal to clearly 
separate adaptation logic from functionality in components, in order to make the 
adaptation logic explicit and to support global optimizations. To this end we 
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introduced a third component: the AdaptationManager that is described in the next 
section. 

5  Adaptation Manager 

In order to address the scenarios S2 and S3 the Configurator and ContextManager 
are not sufficient. In these scenarios there is no human in the loop and hence the 
system must be able to take over the maintenance engineer’s tasks. More precisely, 
the system must analyze the current situation and plan corresponding changes when 
necessary. These changes can then be executed by the Configurator as described in 
section 3. To this end, we introduce a further platform component: the 
AdaptationManager (cf. Figure 6). The AdaptationManager consumes the context in 
order to evaluate the current situation and to decide upon possible system changes. To 
this end, all adaptable components have registered their AdaptationModel with the 
AdaptationManager and ConfigurationModel with the Configurator. Whenever the 
AdaptationManager identifies a necessary change, it plans the change 
(ConfigurationPlan) and sends it to the Configurator. The Configurator then takes 
care for the execution of the configuration. As the Configurator, the 
AdaptationManager needs to know which system variants exist. However, the 
information contained in the ConfigurationModel does not suffice. Deeper knowledge 
is required to identify situations in which configuration should take place and to 
define which configuration to take in which situation. Several approaches are 
reasonable to this end: 
Rule-based approaches are widely spread in the domain of embedded systems. One 
reason is that such systems heavily rely on light-weight approaches due to the 
inherent scarcity of resources (e.g. processing time) and must be deterministic. The 
rule sets are to be defined at design time and usually have a “Event-Condition-
Action” (ECA) form.   
 

 
Figure 6 Adaptation Management 

Goal-based approaches equip the system with goal evaluation functions. 
Neglecting available optimization strategies, the brute force approach would 
determine and evaluate all valid system configurations at runtime and choose that 
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variant that meets best the given goals. Thus, goal based adaptation is quite flexible 
and it is likely that optimal configurations are identified at runtime.  

We follow a hybrid approach that allows the combination of both approaches 
depending on the actual adaptation needs. Overall we specify the adaptation behavior 
with AdaptationRules. In their action part, we distinguish between 
PlainConfiguration, which directly sets a predefined configuration or 
OptimizedConfiguration, which relies on an utility function to select an appropriate 
configuration. An example that illustrates the application of the latter is scenario S2, 
where the best output mechanism is used, depending on the current location of the 
user and the devices. Here the utility function maps the distance between the user and 
device to the utility value. 

6 Related Work 

In recent years numerous approaches emerged in the areas of adaptive systems. 
Many of them have been motivated by the upcoming paradigms of ubiquitous 
computing [7] and Ambient Intelligence (AmI). Prominent examples are Robocop, 
Space4U, and Trust4All. Robocop and Space4U extend the KOALA component 
model [10] with respect to different component views with corresponding models [11] 
and dynamic binding of components. Trust4All introduces the notion of 
trustworthiness and provides means to preserve a certain system level of 
dependability and security at runtime [12]. With a particular focus on adaptivity, 
MADAM and the follow-up MUSIC are closely related to our work. These 
approaches enable runtime adaptation by exploiting architecture models and generic 
middleware [13][14]. MUSIC builds upon the results of MADAM and introduces 
different extensions and optimizations [15].  

Apart from the largely middleware centric work in the AmI domain there exist 
recent results in the area of model driven engineering of adaptive systems. Cheng et 
al. introduced a method for constructing and verifying adaptation models using Petri 
nets [16]. An interesting approach using software product lines and model driven 
techniques [17] as well as corresponding tool support [18] to develop adaptive 
systems is proposed by Bencomo et al. Their work will be of particular interest for 
our future work. 

7   Conclusion and Outlook 

Situation awareness and adaptability while tackling with resource constraints are 
among the stereotypical characteristic of AAL systems. Over the last years, a 
substantial amount of approaches and solutions emerged in this context. However, 
their applicability in the AAL context was for various reasons not that clear. In 
addition, the relevance of the adaptation scenarios addressed by the approaches was 
often unclear. Therefore we have elaborated on components and their respective 
models to support typical adaptation scenarios in the AAL domain and have raised 
some issues with regard to the evolution of these models.  
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Currently we are implementing our concepts in our ambient assisted living lab. The 
configurator, adaptation manager and context manager components have been 
realized as OSGi service bundles. As of now, the different adaptation scenarios can be 
supported. However, we still need to do some consolidation and hence corresponding 
refinement and validation of the presented mechanisms is our next step.  
The main goal of our future work is to come up with a solution for variability 
management that can be continuously applied in the lifecycle of a software intensive 
product (family), ranging from development time to runtime. 
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Abstract. Tomorrow’s eternal software system will co-evolve with their context:
their metamodels must adapt at runtime to ever-changing external requirements.
In this paper we present FAME, a polyglot library that keeps metamodels accessi-
ble and adaptable at runtime. Special care is taken to establish causal connection
between fame-classes and host-classes. As some host-languages offer limited re-
flection features only, not all implementations feature the same degree of causal
connection. We present and discuss three scenarios: 1) full causal connection,
2) no causal connection, and 3) emulated causal connection. Of which, both Sce-
nario 1 and 3 are suitable to deploy fully metamodel-driven applications.

Keywords: causal connection, eternal systems, metamodeling at runtime.

1 Why Metamodeling at Runtime?

Metamodeling is at the core of many web- and business applications. It is the means
through which meta-information about the domain of a system is represented. Meta-
modeling is traditionally limited to the static (i.e. design time) representation of meta-
information. Most often, only business data is extendible and editable at runtime, whereas
any change to the business model requires a re-design of the system, often involving ma-
jor engineering effort. For example, an application may allow users to edit the content
of forms, but not their structure and workflow.

In the vision of eternal software [1], running systems are imagined to adapt to vari-
ous, often unanticipated, context changes with little or no engineering effort. An eternal
system must co-evolve with its context: as the business changes over time, the system
is required to extend and adapt its metamodel. Therefore, we advocate to extend com-
mon systems with the ability to not only edit and extend the contained data but also
the metamodel at runtime. To meet this requirement, the structures of meta-information
represented in a metamodel are to be kept accessible and adaptable at runtime. As
such, they can be used to change and extend the metamodel at runtime—that is after
the system has been put in use.

This approach has been realized in a library called FAME, which provides a lightweight
kernel to represent both models (i.e. data) and metamodels using the same structures
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2 Adrian Kuhn and Toon Verwaest

at runtime. FAME has initially been developed as the kernel of Moose [2], a highly-
adaptable Smalltalk application used for research in software- and information visual-
ization. Within the last year, the library has been ported (at varying stages of specifica-
tion conformance) to: Squeak, Java, Python, and partially, C# and Ruby.

This paper presents a complete description of Fame’s API and design, including
its lightweight meta-metamodel (FM3) and text-based exchange format (MSE). Design
decisions and implementation issues are discussed. In particular, as some languages of-
fer limited reflective features only, not all implementations of Fame feature the same
degree of causal connection. We present and discuss three scenarios: 1) full causal con-
nection, 2) no causal connection, and 3) emulated causal connection, of which both
Scenarios 1 and 3 are suitable to deploy fully metamodel-driven applications.

In general, the approach taken by Fame is related to previous work on runtime
metamodeling by Costa et al [3], Jouault et al [4], and Clark et al [5]—please refer to
our previous work [6] for comprehensive list of references and related work. Parts of
Fame’s implementation originate from Renggli’s Magritte library [7].

The remainder of the paper is structured as follows. Section 2 starts with an overview
of FAME and discuss afterwards the core abstractions: in Section 3 the meta-architecture,
in Section 4 the FM3 meta-metamodel, in Section 5 the Fame API, and in Section 6
model serialization. In Section 7 we present and discuss three scenarios for causal con-
nection between fame-classes and host-classes. Finally, Section 8 concludes.

2 Fame in a Nutshell

The purpose of FAME is to attach meta-information to the objects of a running system.
Fame provides a uniform interface on both objects and their meta-information, that is,
both are manipulated with the same API calls.

Since Fame is a polyglot library we have taken special care to ensure that all im-
plementations offer the same core API. Fame has currently been ported to: Smalltalk,
Java, Python, and partially, C# and Ruby. The Java library acts as the reference imple-
mentation, whereas the Smalltalk library offers the most additional features.

At the very heart of Fame is a tower of models with three layers [8]. Each layer
contains elements which conform to the meta-information specified by the layer above.
The bottom layer M1 contains objects of your running application, the middle layer
M2 contains meta-information about your objects, and the top-most layer M3 contains
meta-information about the meta-information of you objects. Thus, we refer to these
layers as model, metamodel and meta-metamodel layer. Even though, at runtime, any
layer is editable, it is common to populate the top-most layer with a static set of ele-
ments. This static set of elements is referred to as FM3, the FAME meta-metamodel.

Additionally, elements of any layer are serializable to text stream and back using the
MSE exchange format. MSE is a generic file format to exchange any kind of objects,
regardless of the metamodel. Thus, FAME-compliant applications can exchange both
data (i.e. models) and metamodels by the same means.

The complete specification of both FM3 and MSE, as well as the sources of FAME
are available at http://smallwiki.unibe.ch/fame under GPL license.
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Fig. 1. Class diagram of FAME: including the FM3 meta-metamodel (left), Fame meta-
architecture and API (center), and MSE serialization/streaming (right, top center).

Design and Core Abstractions of Fame

All FAME implementations are realized using the same design. Figure 1 presents a class
diagram with the main host-classes1, from left to right: Element, Class, Property and
Package implement the FM3 meta-metamodel. Tower, Repository, and MetaRepository
implement the meta-architecture and most of Fame’s API. Parser, ParseClient and its
subclasses are used for serialization and de-serialization of models.

3 Meta-Architecture —– Towers – Models – Elements

The major components of Fame’s meta-architecture are towers, models, and elements.
Towers contain models, models contain elements. There are two kinds of models: meta-
repositories and repositories. The former contain FM3-compliant elements only, whereas
the latter my contain any kind of host-language objects, typically domain objects. Often
the terms model and repository are used interchangeably.

Each tower consists of three layers referred to as, from bottom to top: M1, M2, and
M3. The elements on every layer must conform to the meta-information specified by
the layer above. A typical setup is as follows: at the bottom layer a repository holding
domain objects of the running application, at the middle layer a meta-repository hold-
ing the current domain model, and eventually, at the top-most layer, a meta-repository
holding the self-described FM3 metamodel.

The tower is not implemented as a singleton because more than one application may
run in the same object memory, each with its own tower. These towers may share the
top layers. For example, if each open document of an application is represented by a
concurrent tower, then the towers have different M1 layers but share the other layers.

1 The term class is used by both object-oriented programming and the metamodeling paradigm,
but with different meanings. Hence, we refer to the classes of the host-language as host-classes
and to the classes of FM3-compliant metamodels as fame-classes.
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 name : string

 /fullname : string

 /owner : Element
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Fig. 2. Complete class diagram of FM3 meta-metamodel, including all properties and
associations. Derived properties are marked with a leading slash character.

4 Meta-Metamodel —– Classes – Properties – Packages

All elements contained in a meta-repository must conform to FM3. These are all ele-
ments on the M2 and the M3 layer of a tower. Since the M3 layer is usually populated
with elements that represent FM3, it conforms to itself.

C.A.R Hoare once said that “inside every large program there is a small program
trying to get out,” and in fact—FM3 is MOF 2.0 [8] reduced to the minimum. Meta, a
precursor of Fame, has been used for many years as the kernel of Moose. Meta used
MOF and later EMOF as its meta-metamodel. However, code reviews had shown that
we only ever used a very small subset of EMOF, while many of the rarely used features
had repeatedly been the cause of additional engineering effort.

Figure 2 presents the complete class diagram of FM3. There are three kinds of
elements: packages, fame-classes, and properties. Packages contain classes and prop-
erties, classes contain properties. Packages can also directly contain properties which
were not declared in the fame-class itself. In this case we say that those packages extend
the fame-class and refer to the properties as extensions.

Extensions are one of the two additional FM3 features not present in EMOF. The
other is unique keys. Both facilitate better metamodeling at runtime.

Extension properties are related to packaging and modularization of metamodels.
Given package A and package B, package B can use extension properties to add prop-
erties to classes contained in A without tampering with the definition of A itself. This
is useful for evolving applications. For example, for plugins or libraries that choose to
extend the metamodel of an existing application.

Unique keys are related to the composition of associated elements. A fame-class
must not have more than one keyed property. If an element with a keyed property k
is contained in a container, the value of k must be unique with regard to the set of
all values of k of all elements contained in the same container. This is useful for the
improvement of the performance of runtime elements (discussed below in Section 7).
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 Fame.Repository

 metamodel : MetaRepository

 elements : object[*]

 accept(ParseClient)

 delete(string,object)

 description(object) : FM3.Class

 exportMSE() : String

 get(string,object) : object[]

 create(string) : object

 set(string,object,object[])

 undefined?(string,object) : boolean

 Fame.MetaRepository

 elements : FM3.Element[*] 

 elementNamed(string) : FM3.Element

 importMSE(string) : Repository

 Fame.ParseClient

 

 beginAttribute(string)

 beginDocument()

 beginElement(string)

 endAttribute(string)

 endDocument()

 endElement(string)

 primitive(Object)

 reference(int)

 reference(string)

 serial(int)

 «Interface»

 Fame.MSEPrinter Fame.RepositoryBuilder

 Fame.Parser

 mseSource : string

 accept(ParseClient)

 Fame.MetamodelInferencer

 /result : string /result : MetaRepository /result : Repository

Fig. 3. Class diagram of the Fame API: (left) interfaces for runtime manipulation and
elements and models, (right and bottom) interfaces for serialization and streaming.

The container can keep the composites in a host-dictionary rather than a host-collection,
and thus provide access to composites by key in O(1) rather than O(n) time.

5 Fame API —– Create – Delete – Get – Set – Undefined

Since Fame is a polyglot library we have taken care to ensure that all implementations
provide the same API. Fame offers functionality to

– manage one or more tower of models,
– manipulate elements and their meta-information,
– serialize and de-serialize (meta)models.

All elements (both objects and meta-information) are manipulated with the same API
calls. This is possible since within a tower of models, objects and meta-information are
“meta-described” in the same way. This allows for both models and metamodels to be
serialized to the same exchange format.

Figure 3 presents the Fame API, from left to right/bottom: Repository and MetaRepos-
itory offer functionality to manipulate elements. Whereas Parser, ParseClient and its
subclasses offer functionality to serialize and de-serialize complete (meta)models.

All elements have attributes. Each attribute has a name and optionally refers to
another element. For each property of an element’s fame-class, there must be a corre-
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sponding attribute with the same name as the property. The value of an attribute is either
set (that is, referring to another element) or empty and thus undefined2.

Depending on host-language and scenario, attributes are either realized as instance
variables or using separate host-classes. In particular, bi-directional relations are often
realized as separate host-classes so that manipulation of one end automatically updates
the opposite end.

The Fame API offers these five operations on elements:

– create(name) creates a new element that conforms to the specified fame-class. All
attributes are initially undefined (unless specified otherwise by their type).

– delete(slot, element) resets the value of an attribute to undefined.
– get(slot, element) either returns the value of the attribute or fails if the value is

undefined.
– set(slot,element,value) sets the value of a slot to the specified value.
– undefined?(slot,element) returns true if the slot is undefined or false otherwise.

This set of operations is similar to the five methods of RESTful web-programming [9].
This is not a coincidence, as many of the actions on business objects can be expressed
in terms of common operations on the object graph of a running application. The same
applies to the manipulation of meta-information. Fame does not offer dedicated opera-
tions for the meta-information. Rather, meta-information is manipulated with the same
operations, the only difference being that we are operating another layer of the model-
tower. The operation description(element) is used to navigate from an element to its
meta-information.

Depending on the host-language and scenario, these operations of the Fame API are
offered on the Repository host-class only (as indicated by Figure 3) or on native objects
as well. The latter is not supported by host-languages where host-classes are closed for
extension, which is the case for Java, but not C# and the others.

6 Serialization and Streaming —– Parse – Infer – Print

Elements of any layer are serializable to text stream and back using the MSE exchange
format. MSE is a generic file format to exchange any kind of objects, regardless of the
metamodel. Thus, FAME-compliant applications can exchange both data (i.e. models)
and metamodels by the same means.

Serialization of (meta)models is based on streaming. Figure 3 presents the main col-
laborators of streaming to the right and the bottom. There are two kinds of collaborators:
producers and consumers. Producers are host-classes that offers an accept(ParseClient)
method. Consumers are host-classes that implement the ParseClient interface.

Fame offers two default producers:

Parser parses an MSE-compliant text stream; and
Repository iterates over all contained elements.

2 Please note, that undefined and nil are not the same: according to the FM3 specification, nil
is a predefined instance of Object, whereas undefined describes the value of an attribute. The
value of an attribute that holds a reference to nil is thus not undefined.
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Fig. 4. Three scenarios of causal connection in Fame: (left), (center), (right).

It also offers default consumers:

RepositoryBuilder reads models given the stream of a model;
MetamodelInferencer infers the metamodel given the stream of a model; and
MSEPrinter serializes (meta)models to text streams.

The combination of inferencer and builder is able to import models for which the meta-
model is not known or not available for some reason.

Models are exchanged between producers and consumers by means of a strict proto-
col. This communication is unidirectional. The producers fire a series of events to which
the consumers listen. In case the protocol is not followed, the entire sequence is con-
sidered to be illegal. Each event corresponds to a method in the ParseClient interface.
These methods must be called in following order (given as grammar rules):

Sequence = Document ?
Document = beginDocument Element ∗ endDocument
Element = beginElement serial ? Attribute ∗ endElement
Attribute = beginAttribute Value ∗ endAttribute
Value = Element | reference | primitive

In fact, the above protocol corresponds to the grammar of the MSE exchange for-
mat3 as specified in Appendix A. To avoid dependencies between streaming and meta-
architecture, primitive parameters are only used in event signatures. Thus, serialized
elements can be processed without setting up the entire meta-architecture first.

7 Causal Connection Between Fame-Classes and Host-Classes

Depending on host language and scenario, a causal connection between fame- and host-
classes is maintained or not. Causal connection is required to update elements when

3 The original meaning of MSE has been lost in the dust of history, however MSE is sometimes
refered to as “Moose without objects” in reference to Fame’s origin as kernel of Moose.

Workshop Models@run.time 2008 - Proceedings
63



8 Adrian Kuhn and Toon Verwaest

their meta-information changes. There are three possible scenarios, as illustrated on
Figure 4 from left to right:

– Each fame-class is associated with a corresponding host-class between which full
causal connection is established. Changes to fame-classes are propagated to host-
classes, and vice versa. The scenario is the default use case for languages that sup-
port hot swapping. Currently these are Smalltalk and Ruby, although it is also per-
fectly possible for Python.

– Each fame-class is associated with a corresponding host-class, but no causal con-
nection is established. In fact, both classes are considered immutable and attempts
to change fame-classes results in failure. Even though this scenario partly defies the
purpose of Fame, it is default for Java, C# and Python.

– All model elements are instances of RuntimeElement, a dedicated host-class
which emulates instances of fame-classes by using host-dictionaries. In this case
fame-classes are not associated with host-classes, but rather directly referred to by
the runtime elements. Causal connection between fame-classes and runtime ele-
ments is maintained. Changes to fame-classes are propagated and applied to all
associated runtime elements. Currently this scenario is available for Smalltalk and
Java.

Fame is a polyglot library and has been implemented (at varying stages of standard
conformance) for many languages, each with its strengths and weaknesses. Even though
all implementations offer the same core features, they differ in the degree to which
causal connection between fame-classes and host-classes is maintained.

Due to missing hot swapping support by the host-language, the Java implementation
offers the least degree of causal connection. The Smalltalk one offers the highest degree
of causal connection.

In Smalltalk, FAME has been leveraged to the same level of abstraction and tool
support as the host-language. For example, each manipulation that is applied to a meta-
model is translated into a corresponding refactoring that is applied at runtime to the
host-classes. Furthermore, both IDE and debugging tools have been extended to allow
developers to inspect and manipulate the meta-information of any object at runtime.

Smalltalk development happens at runtime. You can think of its IDE as an advanced
graphical REPL interface, and of editing source code as applying a sequence of runtime
refactorings. It was only natural to extend these runtime development tools with support
for metamodeling.

The degree of causal connection implies the degree to which a Fame implementation
can bridge the gap between host-language and metamodeling at runtime. The above
scenarios differ as follows

– Under Scenario 1 there is almost no gap between the host-language and metamod-
eling. Manipulating elements with host-language constructs or using the Fame API
is equivalent, both have the same semantics.

– Under Scenario 3, RuntimeElement introduces a gap between host-language and
metamodeling. All operations on runtime elements must use the Fame API.

For example, given element e in model m, there are two ways to set the value of a slot
zork: either using host-language constructs e.zork(value), or using the Fame API
m.set("zork",e,value). Scenario 3 supports the latter only.
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Given a fully metamodel-driven application however, the difference between Sce-
nario 1 on the one hand and Scenario 3 on the other hand is moot. Such an application
will typically not require any code that bypasses the Fame API and can thus be realized
under any of those two given scenarios of causal connection. Only Scenario 2 differs
from the others as it is immutable. Any usage of the part of the Fame API which alters
metamodels will result in failure.

A good example of a FAME-based application which is (almost) fully metamodel-
driven is provided by Ducasse et al [6]. They present Moose, a research tool for software-
and information visualization, that

– generates all UIs at runtime based on meta-information,
– exclusively uses the Fame API to interact with domain objects,
– exclusively uses the Fame API to interact with meta-information,
– exclusively uses Fame streaming to (de)serialize its data.

Moose is written in Smalltalk which employs Scenario 1. As long as Fame’s API is
never bypassed using host-language constructs, the same (or at least a similar) applica-
tion could be written using Scenario 3 without loss of features or functionality. How-
ever, it remains open at which cost of runtime performance and development overhead.

8 Conclusion

FAME is a polyglot library for metamodeling at runtime. Fame attaches meta-information
to the objects of a running application. The attached meta-infomration itself is described
by another layer of meta-information, which is eventually described by itself. The API
of Fame offers a common set of instructions to manipulate elements at any layer.

Special care is taken to integrate the meta-information as seamless as possible into
the structures of the host-language. In particular, to establish causal connection between
fame-classes and host-classes. As some hosts only offer limited reflection features, not
all implementations of Fame offer the same degree of causal connection.

Due to missing hot swapping support by the host-language, of all FAME implemen-
tations, the Java one offers the least degree of causal connection. On the other hand, the
Smalltalk one offers the highest degree of causal connection.

Fame supports three different scenarios of causal connection: 1) full causal connec-
tion, 2) no causal connection, and 3) emulated causal connection. All three are presented
and discussed in the paper. We show that fully metamodel-driven applications can be
written for both Scenario 1 and Scenario 3, as long as no host-language constructs are
used to bypass Fame’s metamodeling API.
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A Grammar of MSE Exchange Format
Root := Document ?
Document := OPEN ElementNode * CLOSE
ElementNode := OPEN NAME Serial ? AttributeNode * CLOSE
Serial := OPEN ID INTEGER CLOSE
AttributeNode := OPEN Name ValueNode * CLOSE
ValueNode := Primitive | Reference | ElementNode
Primitive := STRING | NUMBER | TRUE | FALSE | NIL
Reference := IntegerReference | NameReference
IntegerReference := OPEN REF INTEGER CLOSE
NameReference := OPEN REF NAME CLOSE

CLOSE := ")"
FALSE := "false"
ID := "id:"
INTEGER := digit +
NAME := letter ( letter | digit ) * ( "." letter ( letter | digit ) ) *
NUMBER := "-" ? digit + ( "." digit + ) ? ( "e" "-" ? digit + ) ?
OPEN := "("
REF := "ref:"
STRING := ( "’" [ˆ’] * "’" ) +
TRUE := "true"
comment := "\"" [ˆ"] * "\""
digit := [0-9]
letter := [a-zA-Z_]
whitespace := "\f" | "\n" | "\r" | "\s" | "\t"

All MSE text streams must use UTF-8 encoding.

References

1. Nierstrasz, O., Denker, M., Gı̂rba, T., Kuhn, A., Lienhard, A., Röthlisberger, D.: Self-aware,
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Abstract. The pervasiveness of complex communication services and
the need for end-users to play a greater role in modeling communication
services have resulted in the development of the Communication Model-
ing Language (CML). CML is a domain-specific modeling language that
can be used to declaratively specify user-centric communication services.
CML models are automatically realized using the Communication Vir-
tual Machine (CVM). The dynamic nature of end-user driven communi-
cation results in communication models being updated at runtime. This
paper focuses on CML runtime models in the Synthesis Engine (SE), a
layer in CVM, which is responsible for synthesizing these models into
executable control scripts. We describe how the CML models are main-
tained at runtime and how they can evolve during the realization of a
communication service.

Key words: Communication Model, Model Realization, Model evolu-
tion, Runtime

1 Introduction

Electronic communications have become pervasive in recent years. The improve-
ment in network capacity and reliability facilitates the development of commu-
nication intensive services and applications. These applications range from IP
telephony, instant messaging, video conferencing, to specialized communication
applications for telemedicine, disaster management and scientific collaboration
[1–3]. Deng et al [4] investigated a new technology for developing and rapidly
realizing user-centric communication services to respond to increasing commu-
nication needs. We limit the scope of the term communication in this paper to
denote the exchange of electronic media of any format (e.g., file, video, voice)
between a set of participants (humans or agents) over a network (typically IP).
The development process uses a domain-specific modeling language, the Com-
munication Modeling Language (CML), which is supported by an automated
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model realization platform, the Communication Virtual Machine (CVM). The
time and cost of developing communication services can be significantly reduced
by using the CVM platform for formulating, synthesizing and executing new
communication services.

A key part of rapidly realizing communication services is that users can
change CML models during execution. In addition, several models associated
with the communication service being realized can exist at runtime. These is-
sues raise the question of how to maintain CML runtime models and evolve
them in a seamless manner without affecting the current executing communica-
tion services. In this paper, we focus on handling CML runtime models in the
Synthesis Engine (SE) to address the challenges of model evolution as well as
model execution. SE is a layer in CVM, which is responsible for transforming
CML models into executable control scripts. These control scripts are executed
by the User-Centric Communication Middleware (UCM), a layer below the SE
in the CVM. The functionalities of SE includes: (1) maintaining and evolving
CML models at runtime, (2) the parsing and interpretation of CML models, and
(3) the generation of control scripts.

The rest of the paper is organized as follows. Section 2 introduces the CVM
technology. Section 3 presents a motivating scenario form the healthcare domain.
Section 4 describes the approach used to manipulate communication models at
runtime. Section 5 presents the related work and we conclude in Section 6.

2 Modeling and Realizing Communication Services

In this section we introduce the technology to support the model creation and
realization of user-centric communication services.

2.1 Communication Modeling Language (CML)

Clarke et al. [5] developed a language, Communication Modeling Language (CML),
for modeling user-centric communication services. There are currently two equiv-
alent variants of CML: the XML-based (X-CML) and the graphical (G-CML).
The primitive communication concerns that can be modeled by control CML
include: (1) participant, (2) attached device, (3) connection, and (4) data, in-
cluding simple medium and structured data, which can be transferred. Figure
1(a) shows a simplified version of X-CML using EBNF notation. The EBNF
notation represents an attributed grammar where attributes are denoted using
an “A” subscript, terminals are bold face and non-terminals are in italics.

A CML model is referred to as a communication schema or simply schema.
A schema consists of two parts: the control schema (CS) part which specifies an
instance of a topology (participant ids and the types of the exchanged media),
and the data exchange schema (DS) part which specifies actual media (name or
urls) to be exchanged across each connection. We refer the interested reader to
[5] for more details.
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User / Application (Participant)

User Communication Interface 
(UCI)

Synthesis Engine (SE)

User-Centric Comm. 
Middleware (UCM)

Network Communication Broker 
(NCB)

Communication Networks

CVM

1. userSchema ::= local connectionNT

  {connectionNT}

2. connectionNT ::= mediaAttached connection

 remote {remote}

3. local ::= person isAttached deviceNT

4. remote ::= deviceNT isAttached person

5. mediaAttached ::= {medium} {formNT}

6. deviceNT ::=  device deviceCapability

  {deviceCapability} 

7. formNT ::= {formNT} {medium} | form

8. person ::= personNameA personIDA
personRoleA

9. device ::= deviceIDA
10. medium ::= builtinTypeA mediumURLA

suggestedApplicationA

11. deviceCapability ::= builtinTypeA

12. form ::= suggestedApplicationA actionA
13. actionA ::= “send” | “doNotSend” | 

“startApplication”

(a) (b)

Fig. 1. (a) EBNF representation of X-CML. (b) Layered architecture of CVM

2.2 Communication Virtual Machine (CVM)

The Communication Virtual Machine (CVM) [4] provides an environment that
supports the model creation and realization of user-centric communication ser-
vices. Figure 1(b) shows the layered architecture of the CVM. The CVM archi-
tecture divides the major communication tasks into four major levels of abstrac-
tion, which correspond to the four key components of CVM: (1) User Commu-
nication Interface (UCI), which provides a language environment for users to
specify their communication requirements in the form of a schema using X-CML
or G-CML; (2) Synthesis Engine (SE), generates an executable script (commu-
nication control script) from a CML model and negotiates the model with other
participants in the communication; (3) User-centric Communication Middleware
(UCM), executes the communication control script to manage and coordinate
the delivery of communication services to users, independent of the underly-
ing network configuration; (4) Network Communication Broker (NCB), which
provides a network-independent API to UCM and works with the underlying
network protocols to deliver the communication services.

3 Motivating Scenario

The authors have been collaborating with members of the cardiology division of
Miami Children’s Hospital (MCH) to study the applications of the CVM tech-
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Fig. 2. G-CML models for the scenario. (a) Initial G-CML model of communication
between Dr. Burke and Nurse Smith, and (b) G-CML model after all communication
connections are established.

nology in the healthcare domain. One of the scenarios we reviewed is described
below.

Scenario: After performing surgery on a patient, Dr. Burke (surgeon) returns
to his office and establishes an audio communication with Ms. Smith (nurse)
to discuss the post-surgery care for the patient. During the conversation with
Ms. Smith, Dr. Burke establishes an independent video communication with
Dr. Monteiro (attending physician) to obtain critical information for the post-
surgery care of the patient. Dr. Burke later decides to invite Dr. Sanchez (re-
ferring physician) to join the conference with Dr. Monteiro to discuss aspects of
the post-surgery care. Dr. Sanchez’s communication device does not have video
capabilities resulting in only an audio connection being used in the conference
between Dr. Burke, Dr. Monteiro and Dr. Sanchez.

Figure 2 shows two of the three G-CML models created by Dr. Burke during
the execution of the scenario. Figure 2(a) shows Dr. Burke’s initial request for
audio communication with Ms. Smith and Figure 2(b) shows the final G-CML
model after Dr. Sanchez is added to the communication. Due to space limitations
we do not show the intermediate G-CML model containing only Dr. Burke, Ms.
Smith and Dr. Monteiro. A video clip of a similar scenario can be accessed at
http://www.cis.fiu.edu/cml/ that shows an interface for novice users.

4 CML Runtime Models

In this section we provide an overview of how a CML model (schema) is realized
by the CVM and the process of synthesizing a schema in the SE. In addition,
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Fig. 3. (a) Execution of a schema in the CVM. (b) Execution of a schema in the
synthesis engine (SE). CS - Control schema; DS - Data exchange schema

we describe our approach to handling the different CML models that may exist
at runtime.

4.1 Overview of Model Realization

Figure 3(a) shows the process of realizing a CML model (schema) in the CVM.
Each participant in the communication has a working CVM. UCI provides the
environment for users to create new schemas or load schemas from a repository.
SE accepts a schema from UCI or schema events from remote users via the UCM,
handles the negotiation process, coordinates the delivery of media, and synthe-
sizes control scripts. UCM is responsible for executing control scripts resulting
in API calls to the NCB running on top of a communication frameworks such
as Skype [6].

We limit the scope of this paper to the CML models that evolve and are
maintained in the SE layer at runtime. Our approach to maintain and evolve
the schemas at runtime in the SE involves three main processes: schema analysis,
(re)negotiation and media transfer as shown in Figure 3(b). SE accepts a local
UCI schema or a UCM event which contains a schema from the remote user,
shown on the left side of Figure 3(b). The schema analysis process interprets the
schema and generates events based on the runtime control schema (CS) or a data
exchange schema (DS). There are two groups of events generated: (1) CS event -
passed to (re)negotiation process and (2) DS event - passed to the media transfer
process. These two processes work concurrently and both generate control scripts
after processing their respective events. The dispatcher sends a control script to
the UCM for execution or an updated schema to the UCI to be displayed to the
user.

During the execution of a communication schema in the SE there may be
several CML control models being manipulated at the same time. These CML
models include: (1) the executing schema (may have several active connections)
which supports the media transfer process to provide a communication service,
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connectionTermination

TerminateConnection

H
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Renegotiation

MediaTransfer

Fig. 4. State machine for a ConnectionProcessor.

(2) an intended schema that represents a user’s request to change the executing
schema (per connection), and (3) a negotiating schema providing a transition
from the executing schema to the intended schema.

While it is possible to have multiple connections in a CML model, we dis-
cuss the runtime CML model in SE based on a single connection because each
connection operates independently of each other. Figure 4 shows the high-level
state machine for the ConnectionProcessor that represents the behavior of a
connection. The state machine in Figure 4 consists of four submachines (Nego-
tiation, Renegotiation, MediaTransfer and Terminate Connection). The subma-
chines Negotiation, Renegotiation, and MediaTransfer represent the behavior of
the processes with similar names in Figure 3.

4.2 Schema Analysis

The schema analysis process compares a received CS/DS for a connection with
the locally held CS/DS copy and produces specific events based on the results of
the comparison. These events may trigger a transition into the negotiation/rene-
gotiation process, media transfer process, or both (see Figure 3). Figure 5 pro-
vides a simplified algorithm of analyzing the CS to illustrate the idea of generat-
ing CS events. The algorithm takes the received schema and current schema as
input. Based on the source of the received schema (either from UCI or UCM),
the role of the local user (whether or not the initiator) and the current schema,
it would generate different CS events (line 4, 12, 18, 24 in Figure 5). We have a
detailed version of the algorithm that will be presented in a future publication.

4.3 Negotiation/Renegotiation

The ConnectionProcessor accesses the SchemaAnalysis subprocess to generate
CS events and DS events. CS events always affect the negotiation of a new CS or
the renegotiation based on an executing CS. DS events carry media transfer re-
quest supported by an executing CS. CS events include initiateNegotiation-
Event, receivedInvitationEvent, sameControlSchemaEvent, changeControl-
SchemaEvent, and terminateConnectionEvent. These events trigger actions for
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1: analyzeSchema Control (receivedSchema, currentSchema)
/*Input: receivedSchema - new schema from the UCI or UCM

currentSchema - reference to schema in the (Re)Negotiation process
2: if receivedSchema is from UCI then
3: currentSchema ← receivedSchema
4: generate initiateNegotiationEvent /*handled by Negotiation/Renegotiation */
5: else if receivedSchema is from UCM and currentUser.isInitiator then
6: store receivedSchema in an internal recipient list
7: if all schemas from remote participants are received then
8: if mergeSchemas(all schemas) = currentSchema then
9: generate sameControlSchemaEvent /* the end of negotiation */

10: else
11: currentSchema ← mergeSchemas(all schemas)
12: generate changeControlSchemaEvent /*another round of negotiation */
13: end if
14: end if
15: else if receivedSchema is from UCM and !currentUser.isInitiator then
16: if currentSchema is null then
17: update currentSchema to include local capabilities
18: generate receivedInvitationEvent /*display the invitation */
19: else
20: if mergeSchemas(receivedSchema, currentSchema) = currentSchema then
21: generate sameControlSchemaEvent /* the end of negotiation */
22: else
23: currentSchema ← mergeSchemas(receivedSchema, currentSchema)
24: generate changeControlSchemaEvent /*the reply to a negotiation */
25: end if
26: end if

27: end if

Fig. 5. Algorithm to analyze control schema during negotiation.

creating control scripts and state transitions to handle a non-blocking three-
phase commit protocol for schema negotiation [7]. Similarly, DS events trigger
the transition of MediaTransfer submachine. Using part of the negotiation sub-
machine as an example, the initiateNegotiationEvent will trigger an action
sendSchemaRequest, which generates control scripts for sending an invitation,
and move the submachine to the waitingResponse state. Only the receipt of
the sameControlSchemaEvent, which indicates all invitees accept the invita-
tion, can trigger the action sendConfirmation for creating control scripts to
send confirmation of the negotiation and move the negotiation submachine from
waitingResponse to the negotiationComplete state.

4.4 Applying Runtime Model to Scenario

Three different intended CML models (schemas) are processed in the motivating
scenario (see Section 3). This subsection describes how SE maintains and evolves
the executing schema into an intended schema at runtime. Figure 6 shows the
SE environment. The intended schema (shown at the top of the figure) is sent
by UCI to SE for processing at runtime. This schema reflects that Dr. Burke (A)
wants to invite Dr. Sanchez (C) to join the discussions with Dr. Monteiro (B).
The executing schema is shown in ellipse labeled SE Global Schema, in which
Dr. Burke has already established two independent connections, one with Ms.
Smith (D)(handled by ConnectionProcessor C1 shown at the bottom of Figure
6) and the other with Dr. Monteiro (handled by ConnectionProcessor C2). Each
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Fig. 6. CML model (control schema) being updated at runtime.

ConnectionProcessor contains two concurrent processes, one for renegotiation
and the other for media transfer.

When SE accepts the intended schema from the UCI, it is decomposed into
connection schemas and dispatched to the appropriate ConnectionProcessor.
ConnectionProcessor C1 finds no in CS or DS, which means no change in the con-
nection between Dr. Burke and Ms. Smith. For Connection Processor C2, it ac-
cesses the schema analysis process to compare the new intended CS (UCI schema
in Figure 6) with the executing one (the SE Global Schema). The schema analysis
process finds differences between these two CSs, which means the currently ex-
ecuting CS needs to be changed. It then generates initiateNegotiationEvent
to trigger the Renegotiation process to initiate schema evolution. The negotiat-
ing schema is held in Renegotiation process. While the renegotiation is occurring,
the MediaTransfer process in ConnectionProcessor C2 is still supporting the au-
dio and video connection between Drs. Burke and Monteiro using the executing
schema. When the renegotiation is complete, a confirmation from Dr. Sanchez’s
CVM triggers both processes in ConnectionProcessor C2. The Renegotiation
process moves to the Idle state and waits for the next request to evolve the CS.
The executing schema in ellipse labeled SE Global Schema is replaced by the
negotiated schema.
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4.5 Discussion

Our approach for evolving models is similar to the typical control loop mecha-
nism found in control theory [8]. Schema analysis plays the role of the observer
and the CommunicationProcessor acts as the controller. Using CML for specify-
ing user-centric communication services, the types of changes that could occur
during runtime is predictable and enumerable resulting in a more stable system.
Evolution of a currently executing schema into a new schema includes negoti-
ating the schema and switching to the new negotiated schema with minimum
effect on the existing services. There are however several remaining questions to
be addressed: (1) If the schema evolution is unsuccessful due to an exception,
how can the SE rollback to the previous schema? (2) How to keep track of the
evolution history of the runtime models? and (3) How to effectively maintain
consistency between the executing SE schema and the execution state of the
lower layers in the CVM? These open questions would motivate future research
in this area.

5 Related Work

Addressing the maintenance and evolution of runtime models in a constantly
changing and interactive environment is a major research problem in the area
of MDE. Depending on the problem at hand, models might need to evolve to be
synchronous with the runtime application through dynamic adaptation, or the
runtime system needs to be adapted as the input model evolves. We will see how
these problems are addressed in the community.

In Prawee et al [9], the authors developed a framework for co-evolution of
system models and runtime applications. As a system is described in the forms of
ADLs models and then projected toward an implementation platform, dynamic
system adaptation can cause the running system to be out-of-synchronous with
its model. The proposed framework enables a system/model evolution and pro-
vides architects with consistent views of running systems and their models. We
use a different methodology to adapt our CVM at runtime. New communication
requirements are represented by an intended CML model and result in a model
evolution which leads to the runtime environment adaptation.

Van der Aalst [10] use a generic workflow process model to handle dynamic
change of executing processes. Since the change of an executing control flow is a
more complicated process, whereby new tasks could be added, old ones replaced,
and the order of tasks changed, the number of types of model changes that could
occur during runtime becomes significant. How to keep track of different vari-
ants of the processes and decide on the safe states for migration is challenging.
The paper proposed a generic process model with a minimal representative for
each process family to give a handle to deal with these problems. We address
similar problems in that we need to manage various CML models during run-
time and perform a safe migration of an executing CML model into a new one.
However since we are only limited to the communication domain, the types of
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possible model changes are fewer and ways of effecting the change could be more
dedicated then the general workflow model update.

6 Conclusions and Future Work

In this paper we provided an approach that shows how the Synthesis Engine
(SE), a layer in the Communication Virtual Machine (CVM), maintains and
evolves runtime models during the realization of user-centric communication
services. Three processes were presented that support these activities includ-
ing: schema analysis, (re)negotiation and media transfer. In addition, a scenario
from the healthcare domain was used to show how these processes can be applied
during the execution of a communication service. Our future work involves inves-
tigating techniques for handling schema rollback, maintaining a schema history
and ensuring the consistency of runtime models in the different layers of CVM.
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Abstract. One concern when building application by assembling software com-
ponents is to validate component interactions, e.g., to ensure that components
exchange compatible messages. This validation requires examining data values
that are only known at runtime. In current practice, this validation is often per-
formed manually at the code level, i.e., architects need to insert validation code
into the application code. This situation makes the interaction validation costly.
Moreover, few platforms provide sufficient tools for supporting this validation.
As a solution, we propose CALICO, a model-based framework for runtime in-
teraction validation. CALICO enables architects to specify validation concerns
in the application model. It automatically propagates this specification to appli-
cation code so that component interactions in the application can be checked at
runtime. Based on the detected errors, CALICO allows architects to revisit the
design to fix the detected errors, and then to repeat the runtime validation in an
iterative process. This paper focuses on the integration of tools in CALICO for
linking between validation specification at design time and validation realization
at runtime. Moreover, we show how to extend CALICO to support multiple plat-
forms with small development effort.

1 Introduction

CBSE is a widely used paradigm for creating complex software. It consists in building
an application by assembling software component [1]. To ensure application reliability,
CBSE software development usually includes checking the consistency of component
interactions, which concerns the values of messages exchanged by components, and the
order in which components exchange them. This validation aims to detect errors, such
as an incompatibility of message values exchanged by components.

In a typical software process, architects perform this validation while iterating over
the design, implementation and debugging tasks. The design task consists in elaborating
application models describing a component assembly, which we refer to as Architecture
Description (AD) models. This task also includes static validation of the AD models to
ensure the consistency of component interactions [2]. The implementation task corre-
sponds to generating and writing code for each component. The debugging task aims

? This work was partially funded by the French ANR TL FAROS project.
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at checking whether the modeled application can execute correctly on a given plat-
form. It consists in loading the components specified in the AD models on the target
platform, and in detecting runtime errors on component interactions. This detection re-
quires analysis of data whose values can only be known at runtime. To take into account
runtime errors detected during the debugging task, architects reiterate over the design,
implementation and debugging tasks, i.e., they edit the AD models to fix the problems,
reimplement the added or modified components and redebug the application.

These three tasks require using the combination of several software artifacts, such as
models, code, configuration files, and involve multiple tools, such as model editor and
model analysis tools for the design task, a code generator tool for the implementation
task and a deployment tool for the debugging task. However, provided by different
vendors, these tools are usually poorly integrated, making difficult to architects to use
them in an iterative way. Indeed, the architects usually have to manually transfer data
among tools and to convert data among the formats required by the different tools. This
task is tedious and prone to errors.

Furthermore, few platforms provide a sufficient tool set for enabling architects to
develop a reliable application. For example, platforms such as CCM [3] and Fractal [4]
provide no support to statically check component interaction inconsistency at design-
time. Thus, when developing an application on such a platform, architects suffer from
the lack of tools for detecting inconsistencies in an early phase of the software develop-
ment process. Moreover, few platforms provide mechanisms for debugging component
interactions at runtime; consequently, architects can suffer from workload in coding the
debugging support in their application code.

To enable architects to perform efficient iterative software development on a plat-
form of their choice, we propose CALICO, the Component AssembLy Interaction Con-
trol framewOrk. CALICO provides architects with a set model-based tools for edit-
ing AD models and checking model consistency during the design task, for generating
skeleton code during the implementation task and for validating component interactions
at runtime during the debugging task. First, CALICO enables architects to address vali-
dation concerns at the model level, i.e., it allows architects to specify, on the AD models,
the component interactions they need to check. For example, architects can specify the
assertion that the data a component receives must be of valid format. CALICO ensures
that this verification is performed at runtime, i.e., during the debugging task. When an
error is detected, architects can use CALICO to fix the problems in the AD models.
Each modification in the models is propagated to the running system by performing
dynamic updates of the component assembly. Architects can reiterate over the design,
implementation and debugging tasks until the system becomes stable.

This paper focuses on the set of tools that CALICO proposes for bridging the gap
between the design and the runtime debugging. When designing CALICO tools, we
aimed to provide genericity, i.e., the tools manipulate AD concepts that are common
to several platforms, and extensibility, i.e., the tools can be extended with functionali-
ties to validate applications running on different platforms. We explain how these tools
are integrated to enable architects to perform iterative software process in a continuous
way. We describe how CALICO can be extended to support multiple platforms, so that
architects can gain the ability to develop reliable software even on platforms that cur-
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Fig. 1. Overview of CALICO

rently lack support for component interaction validation. Complementary to this paper,
details on the AD model semantics and the model analysis techniques for validating
component interactions are presented in our previous papers [5] and [6].

This paper is organized as follows. Sections 2 gives a rapid overview of CALICO
and illustrates how it can be used in an iterative software development process. Sec-
tions 3 describes how CALICO handles the multi-platform support and the iterative
software development process. Finally, Section 4 compares CALICO with other work
and Section 5 concludes.

2 Iterative Software Development

CALICO is a framework for designing and debugging component-based applications
on multiple platforms. It covers three tasks in an iterative software development pro-
cess: design, implementation and debugging (c.f. Figure 1). CALICO integrates these
tasks to enable continuity between them. This integration is based on using common ap-
plication’s AD models. The AD models are created during the design task, used to both
generate code during the implementation task and finally load the application during
the debugging task.

2.1 Overview

In the design task, CALICO enables the architect to design and analyze the specifica-
tion of an application. The application is described with a set of AD models containing
both the Platform Independent Model (PIM) part and Platform Specific Model (PSM)
part. The PIM part includes the system structure model, which depicts the application
architecture in terms of components and connections. It also contains three models to
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express, respectively, the structural constraints, the control flow going in and out of
components, and the constraints on the values of the exchanged messages. The PSM
part refines the PIM part by adding platform-specific details.

During the design phase, CALICO offers a platform-independent approach to ad-
dress validation concerns. First, to address static validation, it provides architects with a
tool to statically verify model consistency regarding component interactions. Second, to
address runtime validation, CALICO offers also the notion of validation points, which
specify the interactions that needs to be checked at runtime, i.e., the value and order of
the messages exchanged between connected components.

In the implementation task, CALICO provides the generation of skeleton code,
i.e., component interfaces and component implementation classes, which are to be filled
with business code. This code generation reduces manual errors that architects could
have made in code writing. It guarantees that the component implementation respects
the component specification expressed in the system structure AD model.

CALICO also addresses validation concerns by translating validation points into
components, called interceptors. The interceptors are responsible for performing, at
runtime, the checks described in the validation points. Furthermore, CALICO automat-
ically instruments the whole application code to add the debugging support. The instru-
mented code reifies runtime information, e.g., control flow of component interactions,
that the interceptors require for performing the checks. This instrumentation is generic
enough to allow the architect to develop a reliable system on any given platform, even
if the platform lacks support for reifying the runtime information. From the architect’s
viewpoint, the instrumentation is driven by models, and the mechanisms to realized the
instrumentation are transparent to the architect.

During the debugging task, CALICO loads the application onto the underlying
platform and instantiates the needed interceptors. At runtime, the interceptors check
the component interactions and report to the architects the detected errors. The error
detection may lead architects to revisit the design task, i.e., updating the AD models,
for fixing the detected error. Then, when the architect iterates over the implementation
and debugging tasks, CALICO dynamically propagates the changes into the running
system, without reloading the whole system.

2.2 An Iterative Scenario: the PHR System

To illustrate the use of CALICO, we present an example software development scenario
for the French Personal Health Record system (PHR) system [7]. The PHR system aims
to enable heterogeneous clients, used by health-care staffs, to access Health Record
documents stored in servers. Several clients are connected to the Web Portal service,
which is in charge of dispatching the client requests to the corresponding Data Store
servers. In this system, each client only supports particular document formats, e.g.,
HTML and plain text, while the format of documents provided by heterogeneous servers
may be different. Consequently, when an architect executes tests on the system, he/she
notices the following errors: some clients receive documents in unsupported formats.

Consider now that the PHR system has been designed and implemented with CAL-
ICO (cf. Figure 2). To debug the PHR system, the architect needs to identify which
clients, servers and documents are causing the errors. Accordingly, the architect can
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Fig. 2. PHR system

place validation points on the server ports, in order to detect errors as early as possible.
The validation points express the checks to perform on the documents returned by the
servers, to identify potential incompatibility with requesting clients. These checks rely
on control flow information to determine the client involved in each control flow. CAL-
ICO propagates the validation points into the running system by generating and loading
the interceptors. After the interceptor insertion, the architect can run tests again. The
inserted interceptors enable the architect to obtain the source of the errors.

Having identified the error source, the architect is able to provide a solution to fix
the problem. This solution consists in inserting Data Converter components between
the Web Portal and incompatible clients to convert the data returned by the servers
into a format compatible to the client, e.g., converting Microsoft Word into plain text
documents. This solution is realized during another software development iteration, i.e.,
using CALICO to update the design and to propagate the changes to the running system.

3 The CALICO Architecture

We describe in this section two parts of CALICO: the model and tool parts. With re-
spect to the model part, we present the system structure AD metamodel that is used
by architects to define an application architecture, i.e., AD model. Based on this meta-
model, we define the Update metamodel representing the changes in the AD model
performed by the architects at each software development iteration. The tool part con-
cerns the framework architecture that allows the integration of tools involved in the
design, implementation and debugging tasks, and enables the framework extension to
support multiple platforms.

3.1 The Metamodels Part

The system structure AD metamodel offers metaclasses that represent the concepts of
Component, Port and Connector, which are common concepts in component-based plat-
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Fig. 3. AD metamodel and Update metamodel

forms (cf. Figure 3). These concepts have already been presented in [6], in this paper
we focus on the concepts concerning the iterative software development support and
the multi-platform support.

Linking the design to runtime debugging. The system structure AD metamodel
enables architects to insert validation points on component ports, which specifies that
a message sent or received through the port needs to be reified for debugging purpose.
A validation point contains a message filtering condition. This condition is a boolean
operation that is evaluated on the data values contained in the messages. In the PHR
example, this operation checks if the documents sent by the server is compatible with
the client. The condition specification greatly reduces the architect’s workload when
debugging, by selecting the reified information that the architect needs to analyze.

Supporting Multiple Platforms. Each platform usually requires extra information
in the AD model in order to define platform-specific configuration, such as component
implementation or connection type, e.g., synchronous, asynchronous, etc. [8]. CALICO
offers means to specify Platform Specific Model (PSM) properties and to validate them.
The AD metamodels adopts the concept of property of Acme [9] for defining these PSM
properties. A property is a name-value information entity that can be attached to a model
element. The validation is encapsulated in a Platform Profile. A Platform Profile defines
a set of PSM properties that an architect is allowed to specify, and the set of constraints,
written in OCL, that must be satisfied by the application model in order to make sure
that the application can be loaded on a given platform.

For example, the Platform Profile of CCM defines the property impl-class for
specifying the implementation class of each component, and the property type for
specifying whether the component port is a facet, receptacle, event sink or
event source. This Platform Profile specifies also that only ports with compatible
types can be connected.
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Fig. 4. Tool integration in CALICO

Supporting Iteration. Based on the AD metamodel, we define the Update meta-
model, which represents the changes between two versions of an AD model (cf. Fig-
ure 3). The Update model contains the sequence of Add/Remove operations that define
the addition/removal of model elements, i.e., components, connectors and validation
points, to/from the AD model. The Add operation specifies the model element to be
added and the location to add it, i.e., the parent model element. For example, the opera-
tion AddValidationPoint specifies the validation point to be added, and the compo-
nent port where to attach the validation point.

The Update model is only used internally within CALICO, the architect does not
need to have access or edit the instance of this metamodel. Rather this instance is gen-
erated automatically by comparing the two model versions: the version representing the
running application and the version that has been modified by the architect.

3.2 Tool Part

CALICO offers a set of tools for supporting the design, implementation and debugging
tasks (cf. Figure 4). During the design task, an architect uses the Model Editor tool to
edit the AD model, and refine it with PSM properties. Then, the Interaction Analysis
tool checks the constraints on the AD model to ensure consistency. During the imple-
mentation task, the architect uses the Code Generator tool both to generate the skeleton
code of the components and to instrument the application code to support debugging.
During the debugging task, the Application Loader tool updates the running application,
accordingly to the AD model.

Linking the design to runtime debugging. To support debugging, CALICO offers
translation of validation points into interceptors in the running application. An inter-
ceptor is a non-business component inserted between two ports of interacting business
components. It provides a pair of client and server ports to forward the messages sent
and received by the business components. Its role consists in evaluating if the method
arguments of the port respects the condition specified by the validation point. We have
chosen to realize the interception mechanisms using regular components for genericity
purpose, i.e., this approach can be realized on any platforms. Moreover, this approach
enables us to dynamically add interception mechanisms to the running application.
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Supporting Multiple Platforms. We propose the notion of plugins to integrate
platform-specific functionalities into the framework. A plugin contains the following
elements: a Platform Profile, a Code Generator and a Platform Driver.

The Platform Profile is an OCL file defining the PSM properties that are checked
by the Interaction Analysis tool during the design task.

The Code Generator implements the Code Generator interface, defined in CALICO.
It defines three main operations. The operation genSkeleton generates the skeleton
code of the business components from the system structure AD model. The operation
genInterceptor produces the implementation of the interceptors. Its implementation
can be based on platform-specific code templates. The operation instrument is used
for instrumenting the whole application code for inserting the debugging support, e.g.,
reifying control flow. Its implementation is based on aspect weaving.

The Platform Driver implements the Platform Driver interface. Its role consists in
masking the heterogeneity of platform APIs from Application Loader. It defines seven
operations for initializing the platform, creating/removing components/connectors and
pausing/resuming components. The Application Loader tool masks the notion of vali-
dation points from the Platform Driver by translating them into interceptor components.
The Platform Driver does not need to make a distinction between the interceptor compo-
nents and the business components. Thus, the developer of the driver only needs to pro-
vide mechanisms for realizing the Add/Remove operations of components/connectors.
This approach enables the validation point translation mechanism to be refactored, so
that it can be reused in multiple platforms.

In the design of the Platform Driver interface, we address the problem that plat-
form APIs require heterogeneous parameters. As a solution, we make the AD model,
which contains PSM properties, available to the Platform Driver. This approach enables
architects to extend the AD model so that it contains sufficient platform-specific infor-
mation for being loaded on an underlying platform. For example, in order to instantiate
a component, the driver can access the PSM properties of the component definition for
identifying the binary code of the component.

Supporting Iteration. To support iteration, CALICO enables an architect to up-
date the running application through the system structure AD model. The Application
Loader offers an operation for updating the running application, accordingly to the new
AD model that the architect has edited. This update is performed as follows. First,
the Application Loader generates the Update model by comparing the new AD model
with the one it has preserved since last reconfiguration, i.e., the AD model of the cur-
rently running application. The comparison consists in matching structural elements of
both models. The elements that do not match are identified as added or removed ele-
ments. This comparison mechanism is applicable for both hierarchical-component mod-
els, e.g., Fractal [4], and flat-component models, e.g., OpenCCM [3], OpenCOM [10].
Furthermore, if the behavior of a component changes, this component is identified as
removed and added, since in our approach we consider components as black boxes.
Accordingly, the only way to change the component behavior is to change the compo-
nent code and to reload the component in the system. In the second step, the Appli-
cation Loader translates the operations “add/remove validation points” of the Update
model into operations for adding/removing interceptor components. Finally, the Plat-
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form Driver executes the operations in the Update model. To avoid that an update to a
model puts the system into an inconsistent state, the Update model is first applied on a
clone of the AD models, which is statically verified, before applying the update on the
running system.

4 Related Work
Several script languages, such as FScript [11], are intended to support dynamic re-
configuration of component-based applications. In these approaches, architects define
system update in terms of operations such as adding/ removing components. These ap-
proaches do not prevent architects from writing a script that creates system inconsisten-
cies. In CALICO, the Update model, equivalent to a script, is automatically generated
by comparing the model of the running system and the new model designed by archi-
tects. Our approach is result-oriented: it allows architects to check the preview of the
update result. Furthermore it simplifies the architect’s task in updating the application
design, by eliminating the architect’s need to learn the script language.

Plastik is an ADL/Component runtime integration meta-framework [12]. Like CAL-
ICO, it offers a platform-independent language to describe the software architecture, by
using an extension of Acme/Armani [9], and mechanisms for loading the application
on the underlying platform. However, to our knowledge, it is implemented only for the
OpenCOM platform [10]. Moreover, there is a gap between the design, implementa-
tion and debugging tasks. First, architects must manually write the component code
accordingly to the architecture description. Second, architects have to implement their
components so that they are able to reify runtime information. These manual efforts can
be error-prone. On the contrary, CALICO automates the transition between the design,
development and deployment tasks, by automatically generating skeleton code and in-
terceptor code.

5 Conclusion

This paper presents CALICO a generic and extensible framework for bridging the gap
between the design, implementation and debugging tasks. Building such a framework
requires dealing with different information involved in each of the tasks. The model
task requires high-level specifications of component structures and behaviors, for en-
abling consistency checking; the implementation and debugging tasks require platform-
specific, low-level specifications, which enable the executability of the modeled ap-
plication. To tackle this challenge, we propose a tool integration approach based on
generic, yet extensible, AD models. This approach reduces the workload of architects
in realizing transitions between the design, implementation and debugging tasks: from
the architect point of view, it may look like that the execution and debugging tasks are
directly performed on the application model. Moreover, the multiple platform support
of CALICO enables an analysis tool to be written once and for all, and each platform
supported by CALICO can then benefit from this tool.

CALICO has been implemented and is fully integrated with Eclipse 1. This allows
architects to do all iterative development tasks without leaving the integrated environ-

1 CALICO is available at http://calico.gforge.inria.fr
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ment, i.e., graphically designing the application model, checking model consistency,
examining and correcting the model inconsistency, generating skeleton code, adding
business code, compiling the code, and executing and debugging the application. The
entire framework uses EMF to manipulate the models, which are the core data used by
all tools.

We have successfully extended the framework with plugins for three platforms:
OpenCCM [3], Fractal [4] and OpenCOM [10]. For each plugin, the implementation
efforts consist in studying the platform-specific component model to define the Platform
Profile, in developing the code templates and code instrumentation aspects to implement
Code Generator, and, in implementing the Platform Driver, based on the Platform’s API.
As experience feedback, we have found out that parts of the code templates and aspects
can be reused in several platforms. Moreover, by refactoring the Application Loader’s
mechanism that translates validation points to interceptors, we were able to reuse it
in several platforms. Our experience shows that, extending a CALICO to support new
platforms, OpenCCM or OpenCOM, can be done with small effort, i.e., one man-week
for each platform.

In near future, we plan to add the support for iterative development on service-
oriented platforms, in particular those based on Web Services, such as SCA. We also
consider implementing Platform Drivers that support complex component connectors,
such as stream-based, secured and broadcasting connectors.
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Abstract. Adaptive systems are generally difficult to implement, and
their quality depends much on the designer experience or creativity. This
paper presents a model driven approach to develop adaptive systems by
means of run-time models. Our approach applies techniques from the
Software Product Lines (SPLs) to address the different requirements
of evolution and involution scenarios in Pervasive Systems. Finally, we
show how models drive the adaptation in order to dynamically change
the system architecture.

1 Introduction

Pervasive computing is defined as a technology that “weaves itself into the fab-
ric of everyday life until it is indistinguishable from it” [1]. To be successful, the
pervasive computing functioning should be transparent to the user. Such trans-
parency is achievable only if the software frees users from having to repair and
reconfigure the system when faults or changes occur in the environment.

Pervasive systems are highly dynamic and fault-prone since their components
are liable to appear and disappear at any time. On the one hand, new kinds
of entities (devices such as media players, light sensors or fire alarms) can be
incorporated to the system. When a new resource is added to the system, the
pervasive system should adapt itself to take advantage of the new capabilities
introduced by this resource. On the other hand, existing entities may fail or
be disconnected from the system for a variety of reasons: hardware faults, OS
errors, software bugs, network faults, etc. When some resource is removed, the
system should adapt itself in order to offer its services in an alternative way to
reduce the impact of the resource loss.

In a previous work [2], a methodology based on SPLs principles was defined
to cope with adaptivity of Pervasive Systems. This approach is based on the
reuse of the knowledge from the design of SPLs to support adaptivity in the
resulting systems. By means of model transformations, the SPL knowledge is
systematically reused at run-time.
? This work has been developed with the support of MEC under the project SESAMO

TIN2007-62894 and cofinanced by FEDER.
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The present work is focused on providing a model-based support for some
adaptation scenarios very common in Pervasive Systems (evolution and involu-
tion scenarios). These scenarios have different requirements regarding adapta-
tion, and the way in which models are handled at run-time should consider those
particular requirements.

The contribution of this work is twofold. On the one hand, a model-based
approach is introduced in order to organize the knowledge required for adap-
tation according to the specific demands (support for involution and evolution
scenarios) of pervasive systems. In this way, adaptation knowledge is separated
from the structure of the system and different adaptation mechanisms can be
offered depending on how much critical the adaptation is. On the other hand,
we present how models drive the system adaptation within the context of each
scenario.

The remainder of the paper is structured as follows. Section 2 gives an
overview of the different models used to structure the knowledge about the
system. Section 3 defines the architecture proposed for the kind of system this
work is dealing with. Section 4 defines for different scenarios how to achieve the
adaptation of a system that follows the introduced architecture using the pre-
sented models. Section 5 discusses related work. Finally, Section 6 presents some
conclusions to the paper.

2 The Models for System Adaptation

The present work considers system adaptation as a reaction to a change in system
resources. Therefore, two different kind of scenarios are considered: evolution
scenarios (a resource is added) and involution scenarios (a resource is removed).

Evolution and involution scenarios have different requirements regarding
adaptation. On the one hand, in involution scenarios time becomes critical since
these scenarios are normally related to failure-recovery. For example, if an alarm
system fails in a smart home, an alternative system (e.g., house lights blinking)
should be used immediately as a backup. On the other hand, evolution scenarios
are not so demanding in this aspect, and even the opinion of the final users
can be considered (interacting with the users or considering their preferences)
to provide a better adaptation according to user needs.

In order to enable system adaptation, it is required a knowledge about (1)
the current state of the system and (2) the possible ways of changing it. In the
present work, models are used for both purposes, being queried at run-time to
perform the adaptation. On the one hand, models are used for capturing the
state of system components and the communication channels among them. On
the other hand, the space of possible system changes is captured by means of
feature modeling techniques.

The consequences of a change in the system (e.g., enabling the security fea-
ture) can be obtained by reasoning over a model that captures all the possible
system features and their dependencies. This is acceptable for evolution sce-
narios where the system is being upgraded. However, since involution scenarios
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require an immediate adaptation, information required for the system reaction
is precalculated in models. In this way, the effort of reasoning over the differ-
ent possibilities of adaptation is avoided. More detail about the different models
involved in the proposal is provided below.

– Feature model. Feature Modeling is a technique to specify the variants of a
system in terms of features [3]. In feature models, features are hierarchically
linked in a tree-like structure and are optionally connected by cross-tree
constraints. This model describes the possible system functionality and its
dependencies in a coarse-grained manner. The impact of activating a feature
is captured in this model. For example, if a security system is installed, other
features depending on a security system such as presence simulation can be
activated.

– Realization model. Realization model defines relationships between fea-
tures and components of the architecture. Atlas Model Weaving has been
extended [4] to define the default and alternative relationships. In this way,
some components of the architecture are labeled as default or alternative
components for supporting a certain feature. In case of failure of a compo-
nent, this model permits to quickly find an alternative to replace it.

– Component model. This model represents the different components that
conform the system. Component state is captured in the model. This model
is in synchronization with the system since components make use of this
model to store and retrieve their state.

– Structural model. This model represents the communication channels es-
tablished between the different components of the system. Since this work
deals with highly dynamic systems, the connection among components change
quite often. This model reflects both, the possible connections and the ones
that are in use in the current state of the system.

The introduced models have been structured in this way in order to decouple
system adaptation (Feature and Realization models) from system description
(Component and Structure models). In addition, precalculated information to
better support involution scenarios is isolated in a model (Realization model).
Next sections describe the use of these models to achieve system adaptation.

3 The Model-Based Adaptation Approach

To perform adaptation, our approach is based upon a framework for adaptive
systems proposed in [5] by analyzing common terminology and synergy between
different approaches. This framework introduces the roles of (1) triggers which
specify the event or condition that causes the need of adaptation; (2) adaptation
actions which realize the actual adaptation; and (3) adaptation rules that define
which triggers cause which adaptation actions. In our approach, these rules are
driven by run-time models to modify the system architecture using adaptation
actions.
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Fig. 1. The adaptation architecture.

3.1 The System Architecture

In order to allow a flexible adaptation process, we have considered an archi-
tecture based on communication channels (called bindings). This architecture
for the final system allows an easy reconfiguration process since communication
channels can be established dynamically between the components that form the
system (see left of Fig. 1). These components are classified in Service and Binding
Providers as follows:

– Service. A Service coordinates the interaction between resources to accom-
plish specific tasks (these resources can be hardware or software systems);

– Binding Provider. A Binding provider (BP) is a resource adapter that
handles the issues of dealing with heterogeneous technologies. The BP pro-
vides a level of indirection between Services and resources. Resource oper-
ations interact with the environment (sensors and actuators) and provide
functionality from external software systems. Services coordinate these re-
source operations to offer high-level functionality. If the resource operations
do not match the Service expectations, then a BP is used to adapt these
operations. Hence, the BPs decouple Services from resource operations.

For example, in a smart home a security service is composed of several re-
sources such as presence sensors, movement detectors, sirens, contact detectors,
SMS senders, silent alarms and so on. The security service coordinates the be-
haviour of all these resources.

3.2 Adaptation Actions

The system architecture has to be modified as a result of the dynamic adapta-
tion. Old components must be dynamically replaced by new components while
the system is executing. The adaptation actions are in charge of this dynamic re-
configuration. These actions deal directly with the system components by means
of the following operations: Component State-Shift and Component Binding.
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1. Component State-Shift Kramer and Magee [6, 7] described how in an
adaptive system, a component needs to transit from an active (operational
state) to a quiescent (idle) state in order to perform the system adapta-
tion. We have applied this approach to our systems by means of the OSGI
framework [8]. The OSGI Framework defines a component life cycle where
components can be dynamically installed, started, stopped, and uninstalled
(see right of Fig. 1). On the one hand, Triggers are in charge of perform
the install/uninstall operations. For example, when a resource fails or a new
resource is installed in the system. On the other hand, Adaptation Rules are
in charge of perform the start/stop operations. For example, when a Binding
Provider must be activated to handle a new resource.

2. Component Binding Once a component transits to an active state, it
needs bindings with other components. These bindings are implemented by
using the OSGI Wire Class (an OSGI Wire is an implementation of the
publish-subscribe pattern oriented to dynamic systems). The OSGI Wires
establish communication channels between components to send messages
one another.

Adaptation actions provide the basics operations to dynamically change the
system architecture. Adaptation rules orchestrate the execution of these actions
by means of the run-time models. The next section details how the adaptations
rules queries the models in order to apply the adaptation actions.

4 Adaptation Rules

In a nutshell, an adaptation rule is in charge of (1) handling the adaptation
triggers, (2) gathering the necessary knowledge from the run-time models and
(3) applying the adaptation actions.

As we state above, evolution and involution scenarios present different re-
quirements. In involution scenarios the system must provide an autonomic re-
sponse in a reduced amount of time. While in evolution scenarios, the system
does not present the same time requirement and even the user might assist the
adaptation. To fulfil theses requirements, we have defined two kinds of adapta-
tion rules taking into account the type of scenario.

4.1 Adaptation in Evolution Scenario

When a component is plugged-in, first the adaptation rule queries the feature
model for which new features could potentially be activated. Then the user
confirms the features activation. Furthermore, activating new features can fulfil
other feature constraints which might be enabled. Therefore, each time the user
confirms a feature activation, the adaptation rule queries the feature model for
new features. Finally, the Component and Structure Models drive the adaptation
actions in order to dynamically reconfigure the system architecture and support
the new features. The steps to perform this adaptation (see Fig. 2) are detailed
next:
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1. By means of the Component model, the adaptation rule identifies those
features which are related to the trigger component. With these features,
the rule creates an ordered set called the evolution set. For each one of the
features, the rule performs the following steps, 2 to 5.

2. The rule checks the possibility of feature activation. This information is in the
Feature Model, specifically it depends on the requires, excludes and manda-
tory relationships between features. If all these constraints are fulfilled, then
the feature can be activated.

3. Once the rule checks the feature activation, it asks the user for confirmation
by means of a dialog in the user interface. The message shows the name of
the feature and a description stored in he Feature Model. The message also
provides three options to the user: “Yes”, “Remind me later” and “No”.

4. Activating a new feature can fulfil other feature constraints. In this step, the
rule checks for new activable features. The rule adds these new features to
the evolution set.

5. In terms of the platform, activating a feature implies performing adaptation
actions to system components. In this step, the rule queries the Component
model for the feature components. For each one of these components, the
rule performs the following steps, 6 and 7.

6. The rule applies the State-Shift action to the component. Therefore, the
component transits from a quiescent state to an active state.

7. To connect the new active component with the rest of the system, the rule
queries the Structural model for the component bindings.

8. Finally, the rule applies the Binding action to create the communication
channels between the components.

Due to space constraints, the sequence diagrams in this section represent only
the general case for adaptation. Diagrams consider only affirmative responses,
lacking alternative behaviour.

In our experience applying this approach to the smart home domain [2], we
have notice that the time response delay comes mainly from these factors: fea-
ture dependency resolution (steps 2 and 4) and user confirmation (step 3). How
much time the user takes to confirm cannot be foreseen, and dependency reso-
lution is more time consuming than other simpler queries (for example, step 7).
However, we consider that installing new resources in the system is not as critical
as handling resource failures. Thus, in evolution scenarios we offer an advance
system response (dependency resolution and user participation) although this
response takes extra time.

4.2 Adaptation in Involution Scenario

Involution scenarios are triggered by the removal of a resource. A fast adaptation
of the system is required to minimize the impact of the lost resource. In order
to offer a good response time, adaptation is automatic (not requiring user inter-
vention) and resource alternatives are precalculated in a model (the realization
model). In this way, the latency of asking the user is avoided and the effort of
reasoning with the feature model (e.g., looking for dependencies) is also reduced.
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Fig. 3. Adaptation process for involution scenarios.

In Fig. 3, the adaptation process for an involution scenario is illustrated.
Given the removal of a component, the affected feature is obtained and an alter-
native component for this feature can be directly retrieved from the Realization
Model. More detail about the process is given below:

1. When a change is produced in the system, the affected features are obtained
in the same way as in the evolution scenario. The following steps are per-
formed for each feature.

2. The rule queries the Realization model to obtain a component that can re-
place the affected one for a given feature. Since this information is expressed
explicitly in this model, queries are straightforward.

3. Once the rule has found an alternative component (initially in the quiescent
state) it is activated.
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4. The alternative component may require communication with other compo-
nents. This information is obtained from the Structural model.

5. For each of the required bindings, a wire is created to establish the necessary
communication channel between components.

6. Finally, the affected component is destroyed. This implies the removal of
inactive wires. The destruction of this component is deferred until the end
of the adaptation process, since the priority in involution scenarios is to offer
the new services immediately.

The adaptation rule for involution reduces the delays commented for the
evolution scenarios. On the one hand, model queries are simplified. Reasoning
over a feature model is a time-consuming activity and termination becomes
difficult to guarantee [9]. On the other hand, the user does not participate in
the process, which is a requirement for the autonomic behavior required by this
kind of scenarios.

5 Related Work

Hallsteinsen et al present the Madam approach [10] for adaptive systems. This
approach builds systems as component based systems families with the variabil-
ity modeled explicitly as part of the family architecture. Madam uses property
annotations on components to describe their Quality of Service. For example a
Video Streaming component may have properties such as start up time, jitter
and frame drop. At run-time, the adaptation is performed using these proper-
ties and a utility function for selecting the component that best fits the current
context.

Trinidad et al [11] present a process to automatically build a component
model from a feature model based on the assumption that a feature can be mod-
eled as a component. By means of augmenting the system with a feature model
and a model reasoner, this approach enables systems to dynamically changing
its features at run-time.

Both Hallsteinsen and Trinidad apply SPL techniques to develop adaptive
systems. However, their approaches do not take into account the differences
between evolution and involution scenarios. Therefore, they do not exploit the
specific scenario requirements.

Zhang et al. [12] introduce a method for constructing and verifying adap-
tation models using Petri nets. They address directly the verifications of the
adaptation models by means of visual inspection and automated analysis. On
the other hand, our approach is focused on reuse at run-time the variability mod-
eling of SPLs. However, our approach can benefit from SPL reasoners in order to
check system properties [9]. Finally, Zhang’s approach separates the adaptation
specification and non adaptation specifications as our approach does. However,
our approach introduce precalculated adaptations in order to achieve a faster
response in involution scenarios.
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6 Conclusions

In this paper, we provide support for adaptation in pervasive systems by means
of run-time models. Our approach focusses on addressing the differences between
evolution (a resource is added) and involution (a resource is removed) scenarios.
In involution scenarios, we use models with precalculated knowledge in order to
provide an autonomic response in a reduced amount of time. While in evolution
scenarios, we offer an advanced system response (feature dependency resolution
and user participation) because we consider that installing new resources in the
system is not as critical as handling resource failures. Finally, we showed how
models drive the system adaptation within the context of each scenario.
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Abstract. In model-driven development, high level models are pro-
duced in the analysis or design phases, and then they are transformed
and refined up to the implementation phase. The output of the last step
usually includes executable code because it needs to introduce the de-
tails that are required for execution. However, some explicit structural
information is lost or scattered, making it difficult to use information
from the high level models to control and monitor the execution of the
systems.

In this paper we propose the usage of a platform based on extensible,
executable models, which alleviates the loss of information. When these
models are used, the similarity between the structure of high level models
and of the elements in runtime eases the construction and usage of the
system. Moreover, it becomes possible to build reusable monitoring and
control tools that are only dependent on the platform, and not on the
specific applications. Our proposal is shown in the specific context of
workflow-based applications, where monitoring and control is critical.

1 Introduction

In many applications, runtime information is necessary for a variety of reasons.
For instance, it might be because it is necessary to take swift corrective actions
during execution, or because historical data is required to check and improve
performance. Runtime information might be difficult to manage and interpret,
and thus it is desirable to have powerful tools to handle it. Furthermore, since
such tools are difficult to build and maintain, then it is desirable to have reusable
tools that can serve to monitor and control different applications.

Additionally, these tools should also be capable of managing high-level con-
cepts. Modern systems allow business experts to have more direct control over
the applications, instead of relying on technology experts as in the past. Because
of this, it is expected for those applications to offer information in terms of high
level business concepts. Similarly, the control interfaces should offer high level
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http://ssel.vub.ac.be/caramelos/ and by Colciencias

Workshop Models@run.time 2008 - Proceedings
107



operations instead of only low-level operations that require technical knowledge
about implementation details.

One possible alternative to manage these requirements, is to build model-
based tools to do runtime monitoring and control of applications. Given the
flexibility offered by unsing models, such tools would be reusable and have the
ability to manage high level concepts and information. However, the feasibility of
building such tools depends on features required in the monitored applications.
As we will see in this paper, these features are not always available.

Many platforms used to execute applications today have limitations. In the
first place, the interfaces offered to gather runtime information or to control
the execution of the applications are nor standardized; they do not even have
commonalities among several applications. Thus, it is difficult to have reusable
monitoring tools that manage information beyond the virtual machine or the
operating system level. Furthermore, the interfaces are limited in the quality of
information offered, which can be insufficient to adequately control the execution.

Another problem is that runtime information might be difficult to interpret in
terms of business concepts. This happens because the mapping from implemen-
tation elements to high level concepts can be difficult to establish. As shown in
figure 1, the analysis and design artifacts, which contain all the relevant business
information, are somehow used to produce implementation artifacts. Depending
on the strategy used, this step can produce different kinds of traceability infor-
mation that can be later used to reconstruct the transformations. This figure
also shows that monitoring and control tools are between the business and the
implementation level. The functionalities of these tools depend on low level im-
plementation data, events, notifications, actions, etc. However, the users that use
the tools expect to see all those low level elements in terms of the corresponding
business concepts. How to make this translation is thus the problem that has to
be solved.

Fig. 1. Dependencies of monitoring tools.

One example of the previous ideas could be an application where employees
have to perform a certain number of activities, and someone wants to monitor the
percentage of activities finished by each employee in a given period. In this case,
employee and activity are very precise business concepts, but they can be scat-
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tered in the implementation. For instance, to retrieve the required performance
information it might be necessary to get low level information about sessions,
services invoked, database accesses and other. One alternative to preserve this
information could be to keep traceability information. However, there are other
kind of problems associated to the complexity of keeping track, managing and
interpreting this information.

The proposal presented in this paper targets the creation of platforms that
support the execution of a wide range of applications and offers the necessary
features to develop reusable monitoring and control tools with the requirements
discussed previously. In the first place, this proposal advocates for the devel-
opment of model-based applications. In second place, it proposes a reusable
platform for model execution, where runtime information is easily obtainable.
Furthermore, since the elements in execution have a structure that is very close
to the structure of elements in design, then it is easy to establish a mapping
between implementation and business elements.

This paper focuses on presenting the Cumbia platform. This platform is based
on extensible, executable models and it offers several advantages to runtime
monitoring and control of the applications that are executed on it.

Nowadays, workflows and wokflow-based applications are very important and
new ones are built permanently. Furthermore, in this context monitoring and
controlling are critical. In this paper, the Cumbia platform is illustrated in the
workflow context, but its advantages are also explained for more general contexts.

The structure of the paper is as follows. Section 2 presents the problem
of monitoring and controlling runtime systems and, in particular, workflows.
Afterwards, section 3 presents the details of our proposal, and section 4 shows
how it eases the runtime monitoring, management and adaptation of model-
based systems. Finally, some related works and the conclusions are presented.

2 Runtime monitoring and workflows

As we discussed previously, in many applications it is necessary to have access to
runtime information that can be used, for example, to support runtime decision-
making. Additionally, to have useful and powerful monitoring and control tools
it is necessary to have the means to raise the level of abstraction of the available
runtime information. This raise allows users of the tools to make analysis and
decisions from the business perspective instead than from the implementation
point of view. For instance, a non technical user might prefer to know that the
level of service offered by a partner application has dropped below the limit
specified in a contract, instead of having to understand reports about timeouts
or communication failures.

Part of the complexity associated to raising the level of abstraction is to be
found in the implementation of the applications. In many cases, applications
have structures and architectures that are very different from the structure of
the problems that are supposed to be modeled and solved. Thus, it is difficult
to reconcile low level runtime information with high level concepts, as required
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by monitoring and control tools. This problem, as well as the limitations in
the interfaces to gather low-level information, becomes even more critical when
monitoring requirements appear late in the life-cycle of the applications.

Based on the promises made by approaches like MDA [1] or xUML [2], model-
based applications should face less problems to accommodate monitoring and
control tools. However, in these approaches not all the discussed problems are
solved because the last transformation or compilation step has as output ex-
ecutable code, which consistently scatters or loses some information that was
originally available on the models. One approach that can be applied to over-
come this problem inolves the usage of transformation models and traceabiliy
information [3]. Although this might solve the inmediate problem of the lack
of information, it creates other problems related to the interpretation of the
information.

In the context of workflows and workflow-based applications these problems
are also present. In the first place, in this context models are widely used by busi-
ness experts, which use domain-specific languages to describe business processes
taking into account the so-called business rules. Afterwards, these processes are
deployed into workflow engines to be executed. At runtime, process designers ex-
pect to see the same concepts that they used in the definition. In order to make
decisions, they have rules and policies that are based on that kind of information.

Normally, the execution of the processes is monitored and controlled either
with low-level applications, such as engines’ consoles, or with tools such as BAMs
(Business Activity Monitoring). In general, BAMs are rather flexible and config-
urable, and they have as main goal raising the level of abstraction of execution
information in order to make real time measurements of certain Key Performance
Indicators (KPI) described by domain experts. However, BAMs are also tightly
coupled to workflow engines’ implementation, and to the workflow definition
languages. As a result, the same BAM cannot be used with different engines.
Moreover, even small changes to an engines’ implementation, or to a language,
can render unusable an entire BAM. This is something critical in this context
because business rules and processes tend to evolve rapidly and the tools have
to evolve along.

Finally, an increasingly important requirement in workflow applications is
the ability to handle dynamic adaptation of the processes. This means that de-
pending on internal or external events, the structure of processes might change
at runtime, either in an autonomic fashion or following instructions specified by
business experts. These changes have an impact on monitoring because the tools
have to adapt and reflect the modifications. Furthermore, the tools used to de-
scribe the modifications should be integrated with the tools to do the monitoring
and they should share the same high level language and concepts. It is expected
that whoever directs the dynamic adaptation uses runtime information to make
the necessary decisions.
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3 Extensible executable models

The proposal presented in this paper is part of the Cumbia project of the Soft-
ware Construction group of the Universidad de los Andes. In this project, we
have developed the Cumbia platform for extensible, executable models. Origi-
nally, we developed this platform with the main goal of supporting extensible
workflow-based applications, which might include complex monitoring require-
ments. Nevertheless, the platform is sufficiently generic and offers benefits that
can be valuable in other contexts as well.

From the point of view of monitoring and control, a very important feature of
the platform is the usage of executable models, which keep during execution all
the structural information of the models. Since there is no loss of information,
it is easier to rise the level of abstraction; in this case, creating the mapping
between implementation and design elements is trivial. Another advantage of
the platform is that it offers runtime information about every object in the
model, that can be easily consulted from external applications. Moreover, the
platform offers interfaces that can be used to easily integrate other applications,
such as monitoring tools.

In order to support the execution of models, the platform manages the corre-
sponding metamodels. The platform is very flexible in the support for metamod-
els, and also in the support for changes to the metamodels: they can grow and
evolve without any significant impact to the platform. In section 3.1 it will be
shown that the only requirement for metamodels is that they should be defined
in terms of open objects, which are the special kind of executable elements that
we defined for our platform. In this section, we will first briefly present XPM
(eXtensible Process Metamodel), which is a simple metamodel for the definition
of workflow processes that can be used in our platform. Afterwards, the main
details about open objects will be discussed with the goal of explaining how
monitoring and control are supported. More details about open objects can be
found in [4].

3.1 XPM and Open Objects

The purpose of this section is to present one sample metamodel we have devel-
oped for the platform; we do not pretend to argue here about the completeness
of the metamodel or its suitability to represent workflow processes. In order to
present XPM we will use the sample process shown in figure 2, which was taken
from the context of workflows for financial services. It defines a sequence of steps
to study and approve a credit request. This process is initiated when a customer
applies for a credit. Then, it requires an in-depth study of the submitted request
and of the financial history of the customer. Finally, someone has to approve or
reject the request based on the results generated by both studies.

This particular process shows most elements of the XPM metamodel. The
process is composed by four activities that are connected through ports and
dataflows. Each activity has a distinct workspace and each workspace executes
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Fig. 2. A sample XPM process

a specific atomic task; activities serve to enclose them and handle all the syn-
chronization and data management issues.

Every metamodel in Cumbia is based on something that we have called open
objects, and thus they are the base for our platform. Every metamodel that is to
be executed in our platform, has to be defined using open objects as its building
block. As it will be shown, this means that every element in the metamodel has
to be defined as a specialized open object. The workflow engine that we use to
execute XPM processes was built using this approach and it has the open objects
platform at its base.

The fundamental characteristic of an open object is that it is formed by
an entity, a state machine associated to the entity, and a set of actions. An
entity is just a traditional object with attributes and methods. It provides an
attribute-based state to the open object and in its methods part of its behavior
can be implemented. The state machine materializes an abstraction of the life-
cycle of the entity, allowing other elements to know its state and react to its
changes. Finally, actions are pieces of behavior that are associated to transitions
of the state machine. When a transition is taken, its actions are executed in a
synchronized way.

Fig. 3. The specialized open object that represents XPM activities.
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The interaction between open objects is based on two mechanisms: event
passing and method calling. In the specification of a state machine, each tran-
sition has an associated source event: when that event is received by the open
object, that particular transition must be taken. This mechanism not only serves
to synchronize open objects, but also serves to keep the state machine consistent
with the internal-state of the entity: each time the latter is modified, it gener-
ates an event that changes the state in the automaton. Finally, other events are
generated when transitions are taken and it is thus possible to synchronize open
objects using state changes. The other interaction mechanism, method calling,
is synchronous and is used to invoke the methods offered by the entities of open
objects. These entities can receive method calls from two sources: there can be
calls coming from external sources, such as user interaction or other related
applications; additionally, the actions associated to transitions usually invoke
methods of other entities, and thus they play a central role in the coordination
of the entire model.

Figure 3 shows an open object that has been specialized to behave as an
XPM activity. It has four states, and the state machine changes of state because
of events generated by the entity or by other open objects. For instance it goes
from the state Inactive to the state Active whenever the method activate( )
is called, which in turn generates the event that moves the state machine. In ad-
dition, when this transition is taken, the action called RetrieveData is executed.

Several features of the platform and of the open objects facilitate the in-
teraction with monitoring and control tools. In the first place, the platform is
metamodel-based and changes to the metamodel can be seamlessly supported.
This makes the platform particularly suitable to handle applications used in
rapidly evolving contexts. In addition, open objects expose their state through
the state machines, and this is an advantage for monitoring because the amount
of available information. Furthermore, the interfaces provided by the platform
offer powerful ways of interaction from external applications: it is possible to
capture events to receive notifications, and it is also possible to invoke methods
of the entities to control them (see figure 4). Another big advantage is that the
mechanism of actions offers something similar to the interception meta-space de-
scribed for the Lancaster Open ORB project [5, 6]: since actions can be installed
and removed at runtime, it is possible to introduce extra-behavior between the
processing of interactions. This additional behavior can be used to add further
interactions with the monitoring applications. Finally, another big advantage
offered by the platform is the inspection interface that allows to navigate the
complete structure of the models, from the root level element (a process in XPM)
to the last action or event.

Besides building the XPM engine, we have developed other metamodels and
their corresponding “engines”. For instance, we have built the metamodels and
the engines for BPMN [7] and BPEL [8]. In order to use the platform for them,
the first step was to design the metamodels and implement the required open
object specializations. Since the platform itself is responsible for managing the
instantiation and execution of the models and their open objects, then some
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Fig. 4. Monitoring runtime models.

other specific services had to be defined for the engines in an ad-hoc way. For
instance, in the case of the BPEL engine, the web-services based interface had
to be specially developed.

4 Monitoring and control

By taking advantage of the features of the platform described, it is possible
to build very powerful and reusable monitoring applications. The combination
of using explicit metamodels and the existence of a single executable platform
leads to monitoring tools that are highly configurable. Since these applications
are only dependent on the platform, they can be easily adapted for the usage
with systems based on other metamodels that can be executed in the platform.

When using the platform, monitoring tools can manage and offer four kinds
of information about the running applications. The first kind represents the
structure of the models, which normally is fairly static. The second kind is infor-
mation about the current state of the elements in the models. The third kind is
historical information about the state of the elements in the model, that is the
trace or the history of the execution. In these three cases, we are dealing with
elements available in the model, and accordingly to what was said previously,
this means that we are dealing with high level concepts that are put into execu-
tion. Similarly, although all the notifications received from the platform are low
level, they could be transformed and interpreted as high level notifications. For
instance, a notification about a transition taken in the state machine of an ac-
tivity, might be transformed into a high level notification about the completion
of the activity.

The fourth and last kind of information that can be monitored is composed
by derived information, which is not directly part of the model or its execution,
but can be calculated. This derived information has to be defined for each con-
text, including the rules necessary to calculate it using the information provided
by the platform. To define, manage and analyze this kind of information, it is
useful to have model-based monitoring tools, where the definition of the relevant
information can be easily made. In the context of workflows, a possible example
of derived information would be the average time required to execute the activ-
ities of a process. Another example, would be the name of the employee that
performed more activities in a given month.
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We have developed some examples of applications that monitor the execu-
tion of applications based in open objects by managing the first three kinds of
information described. The most basic of those applications is an open objects
viewer. For a given open object, this application allows the observation of the
structure of the state machine and shows its state changes.

Fig. 5. Screenshot of the XPM Viewer.

Another application that we have developed is a viewer for XPM processes
(see figure 5). This application not only shows the structure of the processes that
are running inside the XPM engine, but also animates the elements shown by
changing the color of the activities that are executed. This application has other
two interesting characteristics. The first one is the possibility of using a domain
specific language that describes what the viewer has to do when it receives
notifications about state changes in XPM elements. Although the language itself
is not very powerful (it only allows some basic stuff like changing the color figures
based on types and state changes), it gives some flexibility to the viewer and turns
it into an example of a simple configurable monitoring tool for open objects.

The second characteristic is that this application was developed as decoupled
from the XPM engine as possible. As a result, the XPM engine ignores totally
the existence of the viewer, while the viewer only has dependencies towards the
open objects platform and the XPM metamodel (not the XPM engine).

The most complex monitoring application that we have built for the plat-
form is called the “Cumbia Test Framework” (CTF). Although users do not
interact with the tool, this application observes the execution of the models and
interacts with them following the instructions in a script. Afterwards, the CTF
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observes the execution, receives notifications and analyzes the traces to validate
assertions. Moreover, the control statements in the script are described using a
high level language. We have used the CTF to test the implementation of several
metamodels, and in each case, the required specializations to the CTF have been
minimal.

5 Conclusions

In this paper we have discussed about the importance of runtime monitoring
and control and we have identified some useful requirements for monitoring ap-
plications. Among these requirements, the one that creates most of the imple-
mentation problems, is the need of giving high level information to the users of
the tools, instead of providing implementation level information. Other problems
that we explored were the limitations on the quantity and quality of the available
runtime information, and the limited possibility of reuse for monitoring tools.

The proposal that we presented in this paper has two parts. First, it advo-
cates for the use of model-based development techniques. Then, it proposes the
usage of a platform based on extensible, executable models. This proposal has
several advantages that, in the paper, were illustrated in the context of work-
flows. Among these advantages there is the usage of explicit metamodels, and
the ease of integration with other applications besides control and monitoring
tools.

The various benefits offered by the proposed platform are useful for the con-
struction of monitoring and control tools. In particular, it makes possible the
development of new, reusable monitoring tools that can be applied to several
contexts which are to be executed on the platform.
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Abstract. This paper considers some specific issues relating to model-driven 
system management applied to complex systems. Examining dynamically 
coupled systems-of-systems on the one hand and highly distributed devices for 
service access on the other, we define a common meta-model of (semi-) 
automated management applicable in both domains. Taking monitoring by way 
of illustration, we then show how this meta-model is put into practice along two 
complementary aspects: management modelling and runtime event processing 
support. 

Keywords: system management, runtime modelling, complex event processing. 

1   Introduction 

Previous work has looked at exploiting design-time architectural models at runtime 
in order to evaluate and validate potential changes to the current managed system 
[12], [8] and [9]. Although well motivated, because of power limitations [9] in the 
managed devices, or to check that potential changes would be of optimal use in the 
current environment [7] and so forth, there are issues about what can and cannot be 
captured at design-time. Kodase et al [10] suggest  non-functional requirements are 
difficult to capture in design-time models, for instance; and Ulbrich et al [13] propose 
that quality-of-service management can only effectively be handled by message path 
manipulation during operation. In addition, most work from the seminal Oreizy et al 
paper on self-adaptation 11] to Rainbow [8] and the MADAM proposals for (mobile) 
telecommunication services [7] focus only on runtime modification of the managed 
system itself.  There are, therefore, a number of important gaps here.  Can we, for 
instance, introduce non-functional as well as functional aspects into our design time 
models? And can we now address omissions such as historical data, domain-specific 
rules and policy management (see the Future Work section in [7] for instance)? Most 
significantly, perhaps, can we make dynamic, context adaptive changes to the system 
management components using a design-time model just as we would for the 
managed system? This work attempts to address some of the issues raised in current 
model-driven approaches to system management. In this work, we seek to address 
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some of these questions. To begin with, we introduce our autonomic approach to 
system and device management (Section 2) and present the top-level meta-model we 
are defining for system management. Next, we consider specific issues related to 
management and system runtime modelling (Section 3), and finally (Section 4) we 
consider how to allow for runtime adaptation of the management system itself and the 
introduction of dynamically changing functional as well as non-functional 
requirements. 

2   Model-Based Management Common Framework 

Within the context of the MODELPLEX project, we have begun to define and 
evaluate common models for system management [1]. Although sharing some 
features with other approaches, notably OASIS, SMDS and a number of OMG 
initiatives op.cit., we have focused our work on common issues which affect different 
aspects of system management. One specific area of interest involves the automatic 
and semi-automatic management of complex systems. 

 
For system management purposes, we recognize a number of key concepts as 

summarized in Fig 1. A ManageableElement is the central and fundamental object 
which may be defined as any and all elements within a system that need to be 
managed.  Each element is associated with one or more ManageabilityCapabilities 
that describe what and how that element needs to and can be managed. The elements, 
though, are not confined to those concepts and objects which are subject to being 
monitored and controlled. We must also include elements of the management system 
themselves, as well as the definitions of the criteria and rules by which the system is 
managed. So we need to be aware that ManageableElements may well include 
ManageableSystemElements or ManagementRules respectively. 

 

Fig 1: Top level common model for managing systems 

 
From these central concepts, and in line with the work done by the Autonomic 

Computing Initiative (ACI) [2], we are in the process of evaluating the applicability 
of the MAPE-K autonomic management control loop. This provides for monitoring, 
data analysis, change planning and then execution of that plan on the basis of static 
and dynamic system knowledge, hence the acronym MAPE-K. We have extended the 
top-level model above with those concepts that relate specific to this approach. 
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Fig 2: Design-time model of the MAPE-K control loop 

Fig 2 illustrates a design-time model of the MAPE-K system management 
processes. Within the context of the MODELPLEX project, it derives from the 
common meta-models for system management described above. The MAPE 
management phases are themselves seen as ManageableElements as defined within 
the common meta-model [3], in much the same way as the KnowledgeStore itself 
containing both static data, or management Policies, and dynamic data from the 
ManagedEntities, held as History. These objects – Policies and History – are of 
particular interest at runtime in providing some way of potentially modifying 
management behaviours. Our challenge in evaluating such a model for system 
management lies in how it needs to be implemented, not least to establish whether the 
data objects can be changed effectively at runtime. This may provide a mechanism for 
changing the design-time management model. We need to consider further whether 
other factors need to be examined as well for a truly adaptive management operation. 

3   Modelling Management and System Runtime 

As far as management modelling is concerned, the MAPE-K loop and the common 
management meta-models (section 2) provide a conceptual basis. The current 
challenge is to develop a concrete expression for this framework. This requires 
defining precisely how models will be used in management, what shape they should 
take and how they relate to the design process. This section discusses these issues and 
sketches an experimental system management demonstrator for the monitor and 
analysis phases that we are implementing. We will begin in this section to consider 
the initial management phases (monitor and analyze) as they relate to specific aspects 
of System of Systems (SoS) management. 

Enabling model-based system management obviously requires at least two features 
from the management models. First, since they are used by management operators to 
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observe and analyze system execution, they need to provide a runtime image of the 
managed system. Beyond that, it should contain management processing information, 
i.e. define how runtime information is handled (the Monitoring and Analyze phases of 
the MAPE loop) and – which is beyond the scope of this discussion – how corrective 
actions are deduced from this information (the Plan and Execute phases of the MAPE 
loop). On top of these base capabilities, management models should enable more 
complex management actions, such as determining the root cause of a runtime event 
(root cause analysis). Ideally, it should also be possible to act not only on the system 
but also on the management layer itself, i.e. an action on a management rule in the 
model would result in an actual action on the system management software. Finally, a 
model-based management tool suite should also allow the consequences of changes 
on the system or on the management system to be determined before they are 
performed. 

Provided the tool support is adequate, the management concepts we have defined 
(Fig 3) meet these desired features in theory: 

• To begin with, ManageableElements represent the monitored system 
elements. They own collected data (raw runtime data) and indicators 
(complex monitoring data built from processed collected data). Indicators 
can be processed to produce Symptoms, which are expressions of a 
departure from normal SoS function (note that symptoms are not related 
to any specific ManageableElement). Monitoring system execution thus 
comes down to observing ManageableElements, CollectedData and 
Indicators. 

• Then, ManagementRules contain the management information: 
MonitoringRules express how CollectedData is processed to produce 
Indicators (logical and / or algebraic expressions the operands for which 
include CollectedData) and AnalysisRules express how Indicators are 
processed to produce Symptoms. 

 

Fig 3: Some of the Management Meta-Model Concepts 
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However, as usual, concepts need to be put into to practice. In this respect, two 
concerns prevail: first, the modelling language (i.e. the concrete syntax associated 
with the meta-models); and subsequently, the tool support. As far as concrete syntax 
is concerned, it is possible to build runtime models by customizing design models (for 
instance in UML by creating and using a profile dedicated to management modelling). 
But this has one major drawback: the resulting models would provide too much detail 
compared to what is needed for management purposes, and that would reduce 
readability. We thus chose a different approach. Since we work in the scope of 
architecture frameworks, we propose to define a specific management viewpoint 
which will contain the management models. Doing so, these will not be confused with 
system models for other viewpoints. However, relationships will be defined between 
them in order to show how ManageableElements relate to actual system elements. For 
the definition of a management modelling language, we considered two equivalent 
options: either build a UML profile or define a DSL. We had favoured a DSL-based 
solution in order to enable fast and iterative prototyping. 

In order to validate our choices, we have designed an initial experiment: a basic 
system management prototype which focuses on availability monitoring and analysis. 
The considered system is a set of cameras whose temperatures and states are 
monitored. The simulation scenario introduces runtime events (state and temperature 
changes) from which the monitoring / analysis chain would infer a faulty situation. 
One of the main outcomes of this prototype was the definition of a DSL for 
management modelling which gives a concrete shape to the concepts previously 
described (e.g. symptoms). This DSL was defined in the Microsoft DSL tool, which 
provides facilities to define the DSL meta-model and the associated concrete syntax 
and generates the corresponding domain-specific modelling environment. By way of 
illustration, Fig 4 shows an excerpt of a model of the system described above, built 
thanks to this DSL. This excerpt represents a ManageableElement associated with a 
camera (Camera 1 ME) owning collected data (StateCD1 and TempCD1) and 
indicators (S1, T1), and a monitoring rule (CDFilteringRule1) which processes 
TempCD1 to issue T1. 

 

 

Fig 4: Excerpt of a management DSL model 

In order to test our conceptual assets further, we also associated a C# script to each 
of the monitoring and analysis rules implementing their behaviour. Each time 
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incoming data values change (e.g. in the case of CDFilteringRule1, TempCD1 
changes), the script is executed and output data is issued (e.g. T1 indicator for 
CDFiltering1). Messages are also displayed when events of interest arise (e.g. when a 
symptom is raised). In this way, the progress of monitoring and analysis can be 
observed directly on the model. To complete our experiment, a service-oriented Java 
application was implemented, which simulates the cameras and processes the 
scenario. This simulation performs dynamic updates of the model in the Microsoft 
DSL repository, which in turn trigger the model-level monitoring / analysis chain 
described above. These initial results are quite encouraging, since they demonstrate 
the global feasibility of our approach on a basic example. We now plan to extend the 
DSL, in order to enable more complex configurations, e.g. for layered management. 
We also envisage making some connections with more monitoring infrastructures, 
like the one described in the next section. 

4   Complex Events Processing Architecture 

The MAPE-K control loop introduced above provides a useful and extensible design-
time model for the semi and fully automatic management of systems or devices. 
Pickering et al [5] have begun to assess its applicability to highly-distributed devices 
within a service provider network.  In this section, we will focus on the runtime 
modelling of the monitoring phase specifically. 

 

Fig 5: Monitoring Activities at Runtime 

Our initial approach to autonomic computing via the MAPE-K framework would 
suggest a unidirectional process flow for management. Monitoring data are retrieved 
from the services or devices managed during the initial phase.  These are processed 
and evaluated using policy data from the knowledge store by the analysis and plan 
phases. The results from these are then sent to the execution phase to effect either are 
reconfiguration of the managed system or the deployment of a new or modified 
service. This basic unidirectional flow from monitoring data collection based on 
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policies (ManagementRules or service level agreements) to configuration change or 
service deployment (via the Execution) phase is shown in Fig 5.  

 

Fig 6: MAPE-K and Event Processing 

The Policies can be regarded as the set of domain-specific operations applied to the 
data obtained by the monitoring process. We use a rule engine for complex event 
processing to aggregate and analyze the data and then make inferences to decide what 
to do next. The IBM WebSphere® Business Events platform is the best candidate for 
this rule engine in our architecture since it provides both simple and complex event 
processing (CEP). We might begin by seeing the rule engine in this case assuming the 
role of analysis and plan phases in the MAPE-K approach. This preserves the cyclical 
nature associated with control loops: monitor (or observe), decide and take action; 
then return to the monitor step. In addition to the execution of simple rules related to 
relatively simple events, such as threshold checking for instance, the rule engine 
needs to be able to detect complex event patterns in order to provide a complete 
monitoring process in terms of data aggregation. Complex events may be defined in 
IBM WebSphere Business Events as rules about the co-occurrence or order of events, 
but may also be extended to use additional event data for the definition of correlation 
patterns. With this complex filtering, we do well to reconsider whether the rule engine 
does fulfill the function of the Analysis and Plan phases in MAPE-K. 
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Fig 6 summarises how we use the rule engine within our MAPE-K 
implementation. Irrespective of MAPE phase, the management process retrieves 
operational rules (policies, SLA parameters, management rules) from the Knowledge 
Store at runtime. But also, as data are handled, MonitoringData in the case of the 
monitoring phase, then the rule engine is presented with the data (via an Event) to 
correlate in accordance with the event filters, which as stated may be simple or 
complex. The result of this processing may result in a change to the operational rules 
(signaled via an Action event to the Knowledge Store); this introduces dynamic data 
and rule control for our system management model.  

In practice, we don’t see the sort of uniform behaviour whereby data from a service 
are monitored, undergo initial processing and are then passed on to the next 
management phase. Suppose for instance that circumstances change. For instance, 
rerouting delivery across the network may affect the service provider’s ability to meet 
agreed throughput levels. Such changes will result from the managed system. Equally, 
some changes may be commercially motivated: customer status or service features 
may change with a knock-on effect for policy handling.  The changes are externally 
motivated, and independent of the managed system itself. We must therefore allow 
feedback about the policies and rules from the management system back into the 
knowledge store from a number of sources. This can be handled as outlined above and 
summarised in Fig 6: the operational rules are modified by IBM WebSphere Business 
Events via an Action to the Knowledge Store. This in turn may modify how the 
monitoring is done. As such, the process flow must include a non-device-affecting 
path back to the knowledge store as well as to the MAPE phases themselves. In Fig 6, 
Actions may therefore return to the MAPE phase as well as to the Knowledge Store. 
Such Actions may be directives (phase I/O parameters or configuration settings), 
which may include, of course, the next MAPE phase to be called, if any. Our control 
loop flow is therefore bi-directional.  We are able, therefore, to modify how we 
process the management data from the managed system, but also how the 
management system itself operates at runtime. Such dynamic changes are reflected 
back as temporary or permanent modifications to our design-time system 
management model. 

5   Related Works 

In section 3, we focused on issues related to runtime system and monitoring 
operations modeling. This work is based on the common meta-models introduced in 
section 2 and as such builds on the results of [2] for autonomic management. Our 
contribution also sits well amidst earlier works on architecture-based system 
management, like [8], or works about models simulation like [17]. As far as 
management modelling support is concerned, we are also deriving some benefit from 
works within domain-specific modelling, such as [16]. Since runtime information 
layout is one of our concerns, we also have a connection with work such as [15] about 
dynamic models layouts, though our scope is far more comprehensive. Turning to 
Section 4, we considered issues pertaining to operational models for system 
management. Continuing work on autonomic management presented by González et 
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al [6], we took the ACI MAPE-K framework [2] as our starting point, and more 
specifically the monitoring phase. Using complex event processing (CEP) [14], we 
have been able to introduce elements of dynamism to the management system itself; 
we are now free to generate modified managed system configurations at runtime in 
contrast to the preloading proposed by Illner et al [9] for the service provider domain. 
In addition, instead of relying on the fixed design-time model of our management 
control loop, we are also able to introduce changes to the management system itself, 
and not just adaptation to apply to the managed system along (see [7], 11] and so 
forth). Further, by viewing management policies, SLAs, and monitoring parameters as 
dynamic data which can be modified at runtime in response to some CEP-type 
filtering. Integrating multiple, dynamic data sources of these types introduces the 
concepts Floch et al [7] call for with MADAM. 

6   Conclusion 

This paper has presented an approach to model-based management for complex 
systems with a focus on two adjacent aspects. The first is modelling support for 
management, which entails both model-level visualization of the running system as 
well as the model-based definition of management functions; and the second is 
runtime support for complex event processing. On the first aspect, we have proposed 
a viewpoint dedicated to management concerns. This viewpoint enables – thanks to a 
dedicated domain-specific language – both monitoring and analysis rules which 
specify the management logic as well as a runtime view of the system as a set of so-
called "manageable elements" to be modelled. This view is then continuously updated 
as system execution progresses. The second point we deal with relates to runtime 
management support. We provide an infrastructure based on IBM WebSphere which 
performs complex and basic runtime event processing (i.e. processes the monitoring 
and analyze management chain). In accordance with the conceptual model presented 
in section 2, runtime events can concern the system itself and – something which is 
not that usual - the management rules themselves. This infrastructure thus permits the 
terms of management to be modified at runtime. 

The added value of our work mainly lies in its comprehensiveness, since we aim at 
providing support for the whole management chain, from its model-based 
specification to its realization. Moreover, our strict MDD stance – we clearly place 
models at the foreground of the development process, both for management 
specification and system representation at runtime – is not very widespread for such 
management facilities. Finally, the way we propose to act on the management itself 
(i.e. to manage the management) at runtime can also be regarded as an original 
contribution to the field. 

On top of implementation and experimentation issues, the next steps will deal with, 
the improvement of our modelling support. In particular, we plan to enhance the 
management domain-specific language to enable hierarchical monitoring data 
processing. This requires in particular the definition of aggregation mechanisms for 
high-level management indicators (indicators, symptoms), which we have not 
considered yet. In managing the management system, we are also planning to 

Workshop Models@run.time 2008 - Proceedings
125



examine further the implications of distributed management: how to maintain 
currency or some level of versioning between the original design-time, centralized 
models and those adapted at runtime; and how and under what circumstances we can 
distribute complex event processing across the hierarchical network topologies of 
typical service-providers. 
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Abstract. Software systems should often provide continuous services and can-
not easily be stopped. However, in order to meet new requirements from the user
or the marketing, systems should be able to evolve in order to provide new ser-
vices or modify existing ones. Adapting software systems at runtime is notan
easy task and should be realized with attention. In this paper, we present K@RT,
our generic and extensible framework for managing dynamic softwareproduct
lines. K@RT is composed of three parts:i) a generic and extensible metamodel
for describing running systems at a high-level of abstraction,ii) a set of meta-
aspects that extends the generic metamodel with constraint checking, supervis-
ing and connections with execution platformsiii) some platform-specific causal
connections that allow us to supervise systems running on different execution
platforms.

1 Introduction

Developing, testing and validating adaptive systems is a daunting task. Indeed, such
systems can propose a wide range of possible configurations at runtime [13, 17]. These
systems can be seen as Dynamic Software Product Lines (DSPL)that can reconfigure
themselves at runtime.

In order to facilitate the development, test and validationof DSPLs, we propose
K@RT, our aspect-oriented and model-oriented framework for supervising component-
based systems. This generic framework is independent from any underlying execution
platform and proposes to maintain a reference model at runtime [6]. Using this high-
level view of the running system, we can navigate the runtimearchitecture using model-
oriented languages [19] and invoke services that are delegated to the running system.
K@RT also allows to adapt the running system by modifying itsruntime model, check-
ing constraints on the modified model and comparing the actual reference model to the
modified model. This process produces a safe reconfigurationscript that is executed
on the running system. The modified model may be obtained withhigh-level model-
transformation languages [19] or Aspect-Oriented Modeling (AOM) approaches [11,
15, 17, 18], avoiding users to write low-level platform-specific reconfiguration scripts.

The remainder of this paper is organized as follows. Section2 introduces our generic
and extensible metamodel for representing models at runtime. Section 3 briefly presents

⋆ This work was funded by the DiVA project (EU FP7 STREP, Theme 1.2: Service and Software
Architectures, Infrastructures and engineering, Contract 215412)

Workshop Models@run.time 2008 - Proceedings
127



our causal link between a running system and a runtime model.Section 4 details the
aspect-oriented architecture of K@RT. Section 5 evaluatesour framework. Finally, Sec-
tion 6 concludes and outlines future works.

2 A Generic and Extensible Metamodel for Runtime Models

In this section, we present our generic metamodel1 for representing component-based
systems at runtime. This metamodel does not aim at representing high-level architec-
tures but focuses on abstracting a running system. This metamodel is independent from
any execution platform and can easily be mapped on Fractal [7, 8], OpenCOM [9], or
SCA [1].

Fig. 1.A Generic and Extensible Metamodel

Our generic metamodel is separated in three packages, as illustrated in Figure 1.
The type package defines the notion of component type. A component type contains
some ports. Each port has a UML-like cardinality (upper and lower bounds) indicating
if the port is optional (lowerBound== 0) or mandatory (lowerBound> 0). It also in-
dicate if the port only allows single bindings (upperBound== 1) or multiple bindings
(upperBound> 1). A port also declares a role (client or server) and is associated to a
service. A service encapsulates some operations, defined bya name, a return type and
some parameters. Basically, a service has a similar structure than a Java interface.

1 In this paper, “metamodel” refers to the MOF terminology, not the middleware terminology.

Workshop Models@run.time 2008 - Proceedings
128



The instancepackage defines the actual topology of a running system. A compo-
nent has a type and a state (ON/OFF), specifying whether the component is started
or stopped. It can be bound to other instances by a collaboration binding, linking a
provided service (server port) to a required service (client port). A composite instance
can additionally declare sub-instances and delegation bindings. Note that our meta-
model allows shared components as a component may have several super components.
A delegation binding specifies that a service from a sub-component is exported by the
composite instance.

The implementation package contains metaclasses responsible for encapsulating
the platform-specific attributes needed to implement components for a given platform.
For example in Fractal, we should specify the implementation class (contentDesc) and
a controller (controllerDesc) in order to be able to create a component.

We prefered to define a domain-specific metamodel (DSM) rather than reusing for
example the UML 2.0 metamodel. Indeed, a reference model conforming to this meta-
model is causally connected to the running system. Using a DSM allows us to reduce
the number of entities that have to be maintained at runtime and consequently limit the
memory overhead. This metamodel is strongly-typed and allows us to define algorithms
with few casts whereas it is often necessary to perform castswhen working at the plat-
form level as they often deal with losely-typed objects. Moreover, this metamodel is
aligned on the Service Component Architecture (SCA) [1] metamodel proposed by in-
dustrial partners like IBM, Sun, Oracle, SAP or Siemens. Ourmetamodel can be seen as
a ligthweight version of SCA. This allows us to easily map ourmetamodel to SCA [1]
and reuse the tools provided by SCA, such as a graphical editor to visualize the runtime
architecture.

3 A Model-Driven Causal Connection

This section briefly presents our model-driven causal connection between a reference
model, conforming to the metamodel we have presented in Section 2, and an execution
platform. Currently, we have implemented such a causal connection for the Fractal [7, 8]
platform but it can also be implemented for other component-based execution platforms
like OpenCOM [9], if they provide reflection and dynamic reconfiguration mechanisms.
The architecture of this causal connection is illustrated in Figure 2 and is detailed in the
next two subsections.

TheModel2Platformcomponent is in charge of reflecting the changes of the model
to the platform. This components will be detailed in this section. Identically, thePlat-
form2Modelcomponent reflects the changes of the running system to the model. These
two components use theFactorycomponent in order to instantiate model elements from
runtime entities, and vice-versa. TheRootcomponent is a composite component that
contains the system designed by the user. This component is not really part of the causal
link and may be deployed on a different site than the other components implementing
the causal connection.
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Fig. 2.Architecture of our Causal Connection

3.1 From Platform to Model

This subsection describes how we generate and update a reference model that repre-
sents, at a higher level of abstraction, the running system.

Fractal [7, 8] and all the reflective component-based execution platforms propose
mechanisms for introspecting a running system. These mechanisms allows to discover
which components actually compose the system, how they are bound to each others, etc.
We extend the introspection operations provided by middleware approaches in order to
discover the operations and their parameters that are provided/required by ports. In
the Java-based distribution of Fractal or OpenCOM, each port (provided or required
interface) is associated to a Java interface. We use thejava.lang.reflect API to
discover these operations and give a more precise view of thesystem.

Using reflection is very useful to instantiate a model from scratch. But, if we want to
keep the model up-to-date, instantiating a complete model periodically may be time and
resource consuming if only minor changes occurs. We have instrumented the Fractal
platform to observe and notify all the architectural reconfigurations that appear in the
running system. This allows us to update the reference model.

Finally, it is possible to visualize the runtime architecture in the graphical editor
provided by SCA. Indeed, we have defined a model transformation in Kermeta [19],
that maps the concepts of our metamodel to the concepts of SCA.

3.2 From Model to Platform

This subsection describes the other part of our causal connection. In K@RT, the only
way to adapt a running system is to submit a new model to the causal link (see Sec-
tion 4). When a new model is submitted to the causal link, we perform a difference
analysis between the modified model and the actual referencemodel. In the current
implementation of K@RT, we use EMF Compare [2] in order to realize this analysis.
EMFCompare provides a generic comparison engine that can becustomized for any
domain-specific metamodel.

After analyzing the output provided by the comparison engine, we can determine
what has been removed from the model, added into the model or updated. However,
we cannot directly adapt the running system using these elements. Indeed, we cannot
ensure that the order we discover the modifications during the analysis will result in
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a consistent adaptation of the running system. For example,if we discover that some
bindings and some components have been removed, it would probably lead to dangling
bindings in the running system if we directly adapt the system. In order to adapt the
running system in a consistent way, we reify every significant modification as a com-
mand. Each command declares a priority (e.g., a command that removes a binding has
a higher priority than a command that removes a component). These commands are
automatically ordered with a Comparator. Once all the commands are instantiated, they
are executed in the right order in order to actually adapt therunning system. We first
stop the components that needs to be stopped, we remove all the bindings and the com-
ponents, add the new components and the bindings and finally restarts the components.

4 K@RT: Kermeta at RunTime

This section presents our aspect-oriented and model-oriented framework for supervis-
ing component-based systems at runtime. This framework is based on the generic and
extensible metamodel presented in Section 2 (Figure 1) and is implemented in Ker-
meta [19]. Three Kermeta meta-aspects,constraint checker, supervising and plat-
form adapter extends the generic metamodel, as illustrated in Figure 3. Kermeta meta-
aspects allows us to statically introduce new features in existing model elements: adding
classes in packages, adding super classes in the inheritance tree, adding and implement-
ing new operations and adding contracts (invariants, pre/post conditions).

4.1 Constraint checker meta-aspect

This subsection details the constraint checker meta-aspect. This aspect weaves invari-
ants into metaclasses. These invariants can be written in OCL [3] and translated into
Kermeta thanks to the OCL Kermeta plugin, or directly written in Kermeta. We illus-
trate this aspect by detailing one of the invariants we have implemented.

The completeCollaborationBindingsinvariant illustrated in Figure 4 specifies that
all the client (PortRole.CLIENT) and non optional ports defined in the type (self.type) of
the component should be targeted (b.client) by the client reference of a binding owned
by the component (self.binding).

This invariant uses the OCL-compliant operators provided by Kermeta (e.g.select,
forAll, exists, etc), which significantly reduce the complexity of writing invariants. The
same invariants implemented in Java/EMF needs 15 lines of code and would even be
more complex if it was directly implemented using the platform API.

Specifying constraints on the metamodel allows us to check well-formedness rules
that all the runtime models, and consequently all the running systems must respect.
Using model-oriented constraint languages like OCL or Kermeta allows designers to
rapidly implement such invariants as these languages propose high-level operators for
manipulating models. Note that it is possible to define additional constraints in the
constraint checker aspect. For example, if the underlying execution platform do not
support shared component, an invariant can check that components have no more than
one super component. Currently, 6 invariants are implemented in the constraint checker
aspect.
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Fig. 3.K@RT overview

4.2 Supervising meta-aspect

The supervising aspect implements an administration console. It introduces two meta-
classes:DisplayContextandDisplayElement. TheDisplayContextmetaclass is respon-
sible for managing the history of the administration console and provides some useful
method for displaying information. TheDisplayElementsimply defines an abstract op-
erationdisplay(context : DisplayContext). In the aspect, this metaclass is introduced as
a super class for all the elements that may be displayed:Component, ComponentType,
Binding, etc. Thedisplayoperation is implemented in each subclass. TheDisplayCon-
text andDisplayElementmetaclasses can be seen as an interactive and history-aware
visitor pattern allowing to display the elements chosen by the user and to go back to the
previously visited elements.

4.3 Adapter meta-aspect

This aspect is responsible for connecting Kermeta to the execution platform. Kermeta
proposes a seamless mechanisms for calling Java programs. Thus, it is possible to con-
nect our K@RT framework with Java-based distribution of Fractal (Julia, AOKell),
OpenCOM, etc. Currently, the Fractal adapter is fully functional and other adapters
are under development. The adapter aspect proposes operations for:
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1 aspect c l a s s Component {
2 inv completeCollaborationBindings i s do
3 self.type.ports.select{p |
4 not p.isOptional and p.role == PortRole.CLIENT}
5 .forAll{p |self.binding.exists{b |
6 b.client == p}}
7 end
8 }

Fig. 4.Component metaclass aspectized with an invariant

– Instantiating the reference model from scratch using the introspection API provided
by the underlying middleware platform. In Fractal, we use the content, binding,
name, lifecycle and attribute controllers.

– Getting the current reference model using the notification mechanisms provided
by the underlying middleware platform. This allows updating the reference model
instead of generating it from scratch. We have implemented anew controller for
Fractal that notifies all the runtime architectural changesto registered observers.

– Loading a model. It loads the model, analyzes the diff and match models and com-
putes a safe reconfiguration script, as described in Section3.

– Invoking services. Fractal does not propose controllers for easily accessing and
invoking methods in a reflective way. We tackle this issue by directly using the
java.lang.reflect API in order to discover which operations can be called
and actually call them from Kermeta. We plan to integrate this implementation in a
Fractal controller.

4.4 Discussion

K@RT is implemented according to our generic metamodel, instead of directly refering
to an underlying execution platforme.g.Fractal, OpenCOM, etc. It allows us to reuse
it for different platforms provided that they could be mapped, in both directions, to
the metamodel. However, if the execution platform cannot directly be mapped to the
metamodel, it is possible to aspectize the metamodel and therelated meta-aspects to
extend them with new concepts.

Fractal Explorer [4] is a tool for managing Fractal-based applications via a graphical
console. Currently, our console is textual but it would be possible to connect K@RT to a
Java-based graphical console, as Kermeta programs can be connected to Java programs.
The main differences between Fractal Explorer and K@RT are summarized below:

– K@RT is technology independent while Fractal Explorer is based on Fractal. In-
deed, K@RT is based on our generic and extensible metamodel that allows us to
connect it to different execution platforms

– K@RT offers a higher level of abstraction. Indeed, in Fractal Explorer all the details
of the Fractal component model are displayed in the console:content-controller,
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binding-controller, lifecycle-controller, etc. In K@RT,a Fractal component that
declares a binding-controller and a lifecycle-controlleris simply represented by
a component that contains some bindings and declares a state. The Fractal-specific
notion of controller is abstracted.

– K@RT offers a higher level reconfiguration process. Indeed,K@RT proposes to
adapt the running system by modifying the reference model. It is possible to use any
transformation languages like Kermeta [19] or Aspect-Oriented Modeling tools [11,
15, 18] to modify the model. Then, this modified model is checked and automati-
cally translated in a safe reconfiguration script. Fractal explorer is limited to fine
grained reconfiguration.

5 Evaluation of K@RT

In order to evaluate K@RT, we have implemented a prototype inFractal. This example
is based on the service discovery system [12]. A service discovery system can either
advertiseor requestservices. It can also provide both functionalities. A service discov-
ery system can communicate via several technologies (at least one). In this example,
we propose WiFi and Bluetooth (BT). Figure 5 shows the complete architecture of the
service discovery system, with both roles and both communication technologies. This
model is automatically generated from the running system and mapped to SCA.

We define each functional role (Advertiser or Requester) as an aspect and each com-
munication technology (WiFi or Bluetooth) as an aspect. We use an Aspect-Oriented
Modeling tool (SmartAdapters [14–16]) to weave these aspects and produce all the
possible configurations [15, 20]. There exists 9 possible configurations for the service
discovery system: Advertiser role, Requester role or both and WiFi, Bluetooth or both.
Consequently there is 9*(9-1) = 72 possible transitions from one configuration to an-
other. Our causal link succeed to reconfigure the system at runtime for all these 72
transitions. The average time for reconfiguration was 200 ms.

Since all the aspects are independent from each others, it would be possible to han-
dle the adaptive behavior of the service discovery systems with 8 scripts, for adding/re-
moving each aspects. The identification of aspect dependencies and the generation of
the minimal set of reconfiguration scripts will be subject tofuture work.

6 Conclusion and Future Works

In this paper, we have presented K@RT, our framework for developing, testing and
validating Dynamic Software Product Lines (DSPL). This framework allows us to con-
struct adaptive systems by defining model transformations [19] or weaving aspects into
a base model [15, 17, 20]. It is possible to check the different configurations of the sys-
tem, represented by platform independent models that can bevisualized in a graphical
editor. Using our causal link, it is possible to adapt a system at runtime and switch from
one configuration to another, without writing reconfiguration scripts. The metamodel
we use is generic and the tool is currently implemented for the Fractal platform. The
mapping with OpenCOM may not be problematic because of the similarities between
both component models.
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Fig. 5.Service Discovery Runtime Architecture

In future work, we plan to reuse an existing framework for monitoring interesting
properties of the environment and develop a reasoning framework that will automati-
cally select or generate (e.g., by weaving some aspects into a base model [17]) the most
adapted configuration. After checking some constraints, our causal link will automati-
cally reconfigure the running system. We plan to use the WildCAT monitoring frame-
work [10] in combination with the Intel Mobile Platform Software Development Kit [5]
that provides a set of implemented probes. Another interesting future work would be
to implement the mapping toward an OSGi platform (Equinox for example). Indeed,
OSGi is largely used in the industry: mobile phone industry with Nokia, automotive
industry with BMW. In the context of the DiVA project, our industrial partner CAS2

proposes a Customer Relationship Management application based on Equinox/OSGi.
This application would help us in testing and our tool in an industrial context.
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18. B. Morin, J.Klein, O. Barais, and J. M. Jéźequel. A Generic Weaver for Supporting Product
Lines. InEA@ICSE’08: Int. Workshop on Early Aspects, Leipzig, Germany, May 2008.
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