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Abstract. In complex service-oriented systems, a number of layers of 

abstraction may be considered, in particular the models of the organisations 

involved, how interactions are coordinated and the services which are used and 

made available, are all relevant to the construction of complex service-oriented 

systems. As each of these layers is built upon another there is a clear need to 

provide a maintenance mechanism, capable of maintaining consistency across 

the concepts used in each layer. In addition, over time designs may change 

because of the introduction of new requirements and the availability and 

capabilities of services may change due to implementation modifications or 

service failures, leading to the need to consider a two-way adaptation, namely 

between the system design and its run-time. The contribution of this paper is the 

description of our (novel) mutual adaptation mechanism and, using an industry 

scenario based on the proposed ALIVE framework, its illustration in use of the 

kinds of adaptation.  
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1   Introduction 

Today’s software systems are becoming increasingly large and complicated. They are 

built upon many different technologies where a variety of abstraction layers are 

utilized, making it difficult for software engineering methodologies to support 

properly the various stages of their life-cycle, including design, implementation of 

artefacts and actual execution. Consequently, there is a clear need to develop 

maintenance and monitoring mechanisms allowing the dynamic adaptation, 

reconfiguration and self-management of such systems. It becomes increasingly clear 

that such mechanisms can provide a fundamental framework, where other more 

elaborate mechanisms can be established moving systems towards the vision of 
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autonomic computing [1], where under certain circumstances a system may (re-) 

configure itself and adapt automatically to changing environments.  

The work described in this paper is carried out in the context of the EU-funded 

ALIVE project [2, 3]. The premise behind the project is that current service-oriented 

architectures (SOAs) are typically incremental developments of existing Web service 

frameworks, making them fragile and inappropriate for long-term deployment in 

changing environments. Our proposed solution is to utilize the rich body of 

experience found in human organisations through the formalization of organisational 

theory and the coordination mechanisms that underpin the interactions between the 

entities. This provides us with a range of strategies that have been tried-and-tested in 

(human) social and economic contexts and that, with the provision of sufficient 

appropriate information about the state of the environment and the enactment of a 

workflow, can be applied to the dynamic adaptation of SOAs. A key element of our 

solution is the use of model-driven architectural descriptions of the SOA design – 

representing the organisational and coordination artefacts mentioned earlier – that 

admit formal adaptation and are thus able to capture and reflect changes in the 

deployed system. 

In this paper we propose a bidirectional adaptation approach for maintaining 

design models with their run-time execution. The models visualising the service 

organisations and coordination as specified in ALIVE are used in a model-driven 

approach, while service enactment is a result of a model transformation process.  

In SOA functional components are exposed as services, each of which is associated 

with an externalised description of the service's interface and functionality. These 

services are composed and linked in a loosely-coupled pattern in such a way that 

individual services may be replaced and re-used without modification. Current 

approaches to SOAs build on existing Web service (WS) technologies, such as SOAP, 

WSDL and BPEL to describe and execute service interactions. Given a set of 

services, process descriptions in the form of workflows may be constructed and 

executed using existing workflow interpreters, which take a given language such as 

BPEL and invoke services in accordance with the specified flow of control. 

Model Driven Engineering (MDE) refers to the systematic use of models as 

primary artefacts for the specification and implementation of software systems. The 

Model Driven Development (MDD) methodology is based on the automatic creation 

of implementation artefacts from abstracted models via a predefined model 

transformation process. So far, model-driven approaches are primarily focused on the 

design, implementation and deployment stages of software development. However, 

MDD can similarly support the maintenance, requirements and testing phases. In 

those cases, MDD can be applied in the opposite direction, for the purpose of building 

or recovering high-level models from existing implementation artefacts to support 

round-trip engineering. Thus, it is possible to bridge the gap and provide consistency 

among design models and actual executions. 

The remainder of the paper is organised as follows: Section 2 provides an overview 

of the research context. Section 3 presents our mutual adaptation approach for models 

and enactments. Section 4 highlights our approach with an example drawn from an 

ALIVE use-case scenario. Section 5, provides various discussion points and compares 

our approach with related work. Finally, section 6 outlines our conclusions and 

summarises the fundamental characteristics of our approach. 



2   Dynamic Model Adaptation 

Dynamic model adaptation refers to applying automated modifications on models 

often representing executing systems at run-time. Model-driven development often 

produces design artefacts that are lost during the execution and yet may be needed if 

the architect wants to change the actual execution when something goes wrong. The 

use of run-time models permits the complete or partial reuse of the current design 

models and their adaptation to the actual execution of systems. In particular [4] gives 

examples where run-time models can be useful in adaptation of systems. These 

examples are relevant to our two-way dynamic model adaptation mechanism. 

The first case where run-time models are useful is the observation of the execution. 

The execution utilizes real code to perform the functions prescribed by the models. 

The use of a run-time model, based on the observation of the execution, allows for the 

creation of an abstract view of the execution, which in turn may be used by an 

adaptation module. The set of events which are observed in this process have to be 

generated from the design models.  

The second case is the automatic adaptation of the system depending on the 

execution’s observation. Patterns of adaption are usually defined by the architect 

during the design phase by taking account of some critical execution events. When a 

predefined set of events is triggered, the adaptation is performed on the run-time 

model and then changes are applied in the generated execution.  

Finally, the third case is redesigning the actual execution using the run-time 

models. The architect, by looking at the run-time models, may decide to modify or 

add new functionalities to the system. These modifications are then transferred to the 

execution by production of run-time changes. 

3   An Approach for Mutual Dynamic Adaptation  

In this paper, we propose an approach for the dynamic adaptation of models and 

executables based on model transformations and the monitoring of the service 

enactment. The adaptation of models and executables is performed dynamically; both 

automatically and at run-time. Moreover, their dynamic adaptation is not based on the 

direct execution of models, so they are not compiled by model compilers and they do 

not run on specialised virtual machines - where executable models are monitored, but 

rather the adaptation is based on monitoring the enactment of native code that is the 

product of a model driven transformation process. Next, a monitoring mechanism 

monitors changes on service enactment and on design models by listening to specific 

significant events. Depending on the events generated the corresponding handling 

module is triggered to maintain/adapt the design models and generate the new 

enactment that will be loaded and executed from tools. The connectivity of external 

tools and the monitoring mechanism is maintained by the instrumentation framework. 

The approach is mutual, meaning that adaptations can be performed both a) from run-

time execution to design models and b) from design models to run-time execution.  

Another important characteristic that distinguishes our approach from others is that 

in our case model adaptations are applied both on structural models defining the 



organisation of Multi Agent Systems (MAS) [5] and behavioural models defining 

their coordination. Furthermore, adaptations are applied on agent/service allocation 

and deployment, which are subject to various criteria such as availability of resources 

and generation of unexpected faults. 

More specifically, our approach is influenced by the three levels identified in the 

ALIVE project, namely; the organisation, coordination and services. Each of the 

levels plays an important role in MAS. For example, organisation provides the 

structure, relation and rules of agents, coordination specifies the allowable patterns of 

interaction and services provide the rules of engagement in terms of services. This 

multi-layer conceptual separation of concerns provides a number of architectural 

advances, based on the fundamental concepts of decoupling and modularisation. 

In order to reflect this architectural alignment within the ALIVE project the 

adaptation process has to cross both directions (bottom-to-top and top-to-bottom) in 

the multi level hierarchy. Thus,  changes in the service level may require adaptations 

of the coordination model and in turn changes in the coordination model may require 

changes of the organisation structure. Very similarly, this adaptation dependency is 

implied in the opposite direction from organisation to coordination and services. In 

that way, the ALIVE architecture remains highly adaptive across its inner and cross 

levels. At implementation level, the dependency of inner adaptations is maintained by 

linking the Organisation, Coordination and Service handlers, whereas cross 

dependency via transformations.  

 

 

Fig. 1. Maintaining Multi-Levels of Model Adaptation 

3.1   Adaptation steps and process 

Conceptually, within MDE each of the ALIVE levels is formalised and represented 

with a corresponding metamodel. The models which are diagramming instances of the 

ALIVE metamodel are created by designers using specialised graphical tools. After 

models have been constructed, model transformations are defined to create executable 

process specifications in languages such as BPEL. Specialised tools (engines) can 

then load the executables and initiate the enactment of the modelled ALIVE scenario. 

Process executions are instrumented with a monitoring framework, which listens 

for significant events during the execution of a given process. When a significant 



event occurs the monitor is notified and the control is transferred on the 

corresponding handler. The handlers are interlinked to reflect the architectural 

dependencies among levels, and maintain the process of inner adaptation. 

Connectivity among external tools (engines) and the monitoring mechanism is 

maintained by a middleware instrumentation framework.  

 

Fig. 2. Our Mutual, Multi-Layered Adaptation Approach.  

The process steps can be distinguished into three phases as follows: 

Initialisation phase: The initialisation phase corresponds to the design time and 

the generation of the executable code. The first step is the creation of the organisation, 

coordination and service models by the architect (1) using design tools. The models 

which are instances of the ALIVE metamodel depict a particular use case scenario 

such as Thales. At design-time the designer can also specify automatic execution 



adaptations that will be executed by the adaptation module. The models are next sent 

to predefined model transformations (2) to automatically create executable code (3), 

such as BPEL and WSDL. Then, execution tools load the executable code and initiate 

enactment (4). During the execution (5), a monitor mechanism observes execution 

and listens for specific significant events (6) controlled by conditions, rules etc.  

Model adaptations due to events/failures in service enactment: During the 

execution of the application, adaptations may occur depending on the significant 

events. Initial plans may not be possible to be performed due to limited availability of 

resources, failures and other external reasons. These (critical) events are captured by 

the monitoring mechanism and passed on the corresponding (organisation, 

coordination, service) model handler for an adaptation action (7) whereas the current 

service enactment is suspended (8). As a result, the corresponding model handler 

dynamically updates/adapts existing models to new ones (9). Depending on the rules, 

adaptations may be propagated internally between the successive inner levels of 

ALIVE. Once the new models are produced, the generation process produces new 

executions by using steps (2-3-4) and the service enactment restarts (5). 

Adaptation of service enactment due to design alterations: Alternatively, 

adaptations can occur as a result of a manual modification of the models by the 

architect while service enactment (10). The monitor mechanism is notified for the 

model changes (11) and the current enactment is suspended (8). Once more new 

executable code is generated by steps (2-3-4) and an updated enactment restarts (5). 

4   Applying the Approach with an ALIVE Scenario 

At this point, we present how the two-way dynamic adaptation of models and service 

enactment is maintained with a motivation example. The example describes a crisis 

management scenario from THALES [6, 7] used in the context of ALIVE project [2]. 

More specifically, the scenario describes how the Dutch Ministry of Internal Affairs 

manages an emergency depending on the severity of an incident, by defining five 

GRIP levels of emergency handling. Each level specifies the tasks, roles, authorities 

and responsibilities of the members involved in the handling of an incident. For 

purposes of simplicity, in this paper we consider an emergency scenario scaled from 

GRIP 0 to 1. GRIP 0 describes how to handle a routine accident where no major 

coordination is required, whereas GRID 1 describes how many different authorities 

coordinate at an operational level.  

4.1   Initialisation phase 

Initially, at design time the organisation, coordination and service concepts of the 

THALES scenario are modelled at GRIP 0 level by the designer. In this example a 

combination of UML 2.0 diagrams are used to depict effectively these concepts with 

Class/Collaboration, Interaction and Component models respectively. 

Organisation: At GRIP-0, the organisation consists of few structures. Most 

importantly, the CrisisManagement class has a GripLevel attribute to maintain the 

current state of the incident. CrisisManagement is related to at most one (see optional 



cardinality [0..1]) Ambulance, Fire_Fighting_Team and PoliceOfficer classes. The 

Handle_Incident collaboration depicts how a PoliceOfficer playing the role of 

securePlace, an Ambulance by provideTreatment and a Fire_Fighting_Team by 

extinguishFire collaborate with one another to handle an incident. 

 

 

Fig. 3. Organisation models at GRIP 0 

Coordination: At GRIP-0, the coordination (describes the possible interactions 

among members) for handling an incident is specified in a network-like relation. All 

parties have equal responsibility in resolving the situation and communicate via 

inform methods and exchange incident information.  

Service: At GRIP-0, the services/agents are limited to those of a FireService, 

PoliceService and AmbulanceService. The services have to implement the interaction 

structures specified at coordination level and expose the relevant operations and 

interfaces.  

 

 

Fig. 4. Coordination (left) and Service (right) models at GRIP 0 

Later the coordination patterns and interfaces will be transformed to corresponding 

Web service implementations for BPEL and WSDL via predefined model 

transformations. At this point we do not present the details of the transformation 

process, however there are many approaches in this regard see [8, 9]. Next the 

generated artefacts are loaded for execution to an execution engine such as Apache’s 

Orchestration Director Engine (ODE) [10]. 

The significant events need to be marked with stereotypes and tag values on design 

models, so appropriate handlers can be created. For example, in fig.3 we have marked 

the property GripLevel of CrisisManagement as significant, so an appropriate handler 

can be created to monitor the state changes during enactment. Similarly, exceptions 

on interface operations can be marked as adapted, indicating that a handler needs to 

be generated and the path of enactment needs to be changed.  



Finally, specific adaptation rules are defined by the designer and attached to 

models. These rules define the adaptation patterns to be followed in case of a 

significant event. The rules may be specified in a QVT-like language or refer to other 

implementations of ontological or rule-based languages. The handlers are capable to 

interpret these rules and perform the adaptations.  

4.2   Model adaptations due to events/failures in service enactment  

During the execution of the workflow, significant events may be triggered and 

processed by the monitoring mechanism. The events may propagate a series of inner 

adaptations from their corresponding handlers to design models as seen in chapter 3. 

Thus, during the execution of the PoliceService by an agent, an error may occur 

due to some unavailable resources. In this case the models have to be adapted at run-

time with new enactment plans which first need to be constructed. The adaptation 

process is directed by the adaptation pattern associated with the significant event and 

retrieved from the model. The pattern may be specified in model-driven native 

specification (QVT based) or other (rule-based) language. In the first case the 

adaptation is performed as an ordinary transformation, where in the latter it is 

performed by a dedicated tool. 

4.3   Adaptation of service enactment due to design alterations 

The most obvious adaptation case is when a service execution needs to be updated 

due to design alterations. In this case, the initial design models of organisation, 

coordination and service has been adapted with new structures/roles, coordination 

patterns and service functionalities. In our scenario, this is because the designer due to 

some external circumstances has re-evaluated the severity of the incident from Grip-

Level 0 to 1. In the opposite direction now, the changes in models would propagate 

events which may cause a sequence of inner adaptations. Finally, from the adapted 

models an updated service enactment will be generated. 

 

 

Fig. 5. After design-adaptation Organisation models at GRIP 1 



Organisation: In GRIP-1, a local coordination team (CTPI) is now set up to 

supervise the operations and a Mayor entity is introduced. The CPTI team is 

composed of the heads of active services, such as Fire_Fighting_Team and Police-

Officer and Paramedic. Additional forces have been reserved, so cardinality has 

changed to [1..n]. A new collaboration CTPI_Member defines the additional roles of 

fireMember, policeMember and paramedicMember, which can be played by existing 

handling members such as a PoliceOfficer. Finally, within the Handle_Incident 

participation, all police, ambulance and fire units on the ground communicate through 

a CPTI_Member, playing the role of a coordinator.  

Coordination: At GRIP 1 the Mayor does not play an active role (there are no out-

coming interactions), however he/she might get informed by the CTPI members. How 

information is exchanged and shared among members has also changed from a 

network to a hierarchical structure. Now every incident handler has an obligation to 

report directly to CTPI members. CTPI has also the right (permission) to delegate 

tasks to other non-CTPI members, whereas other non-CTPI members have the 

obligation (implement the interface which is accessible only to CPTI_Members) to 

perform the tasks delegated to them. 

Services: At GRIP 1 two additional services MayorService and CPTIService are 

introduced. Previous services have also been altered in order to be consistent with the 

new coordination patterns. As a result, a CPTIService utilises the corresponding 

provided interfaces of FireService, PoliceService and AmbulanceService to delegate 

tasks as well as the MayorService to provide incident reports.  

 

Fig. 6. After design-adaptation Coordination (left) and Service (right) models at GRIP 1 

5   Other Related Work & Discussion 

Another quite related approach to the concept of run-time models is that of executable 

UML [11]. Executable UML is based on rich diagrams that can produce executable 

models, which can then be translated directly to code. In this case a virtual machine 

interprets the UML models without any intermediate code generation step involved.  

In our case the run-time models are represented by ordinary UML diagrams 

capturing the organisation and coordination of dynamic instances of an ALIVE 

scenario. Consistency among the service enactment (execution) and design models is 

maintained by the specification of significant events that are bound with specific state 

changes. Thus our approach does not provide a full bidirectional consistency among 

real execution (states) and dynamic models as the overhead is significant. Further, our 

ALIVE models are not executable; however they generate artefacts which can be 



executed via a transformation process. Specific markings are also used to identify the 

significant states requiring monitoring and operations that may trigger an adaptation 

process.  

 6   Conclusions 

Providing mechanisms facilitating the dynamic adaptation of design models and run-

time executions is an important property for systems that need to reflect the 

environmental and design changes. In this paper we have proposed a mutual 

monitoring mechanism for maintaining adaptations among design models and service 

enactment. The run-time adaptations are performed automatically, triggered by 

significant events, directed by adaptation patterns described at design-time and 

implemented via model transformations. In addition, we have shown how the multi-

layers of model abstractions add significant complexity in the adaptation process, 

which also needs to be supported by the mechanism.  
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