
Mutual Dynamic Adaptation of Models and Service

Enactment in ALIVE*

Athanasios Staikopoulos
1
, Sébastien Saudrais

1
, Siobhán Clarke

1
,

Julian Padget2, Owen Cliffe2 and Marina De Vos2

1 Trinity College Dublin, Computer Science, Ireland

{Athanasios.Staikopoulos, Sebastien.Saudrais, Siobhan.Clarke}@cs.tcd.ie
2 University of Bath, Computer Science, UK

{jap, occ, mdv}@cs.bath.ac.uk

Abstract. In complex service-oriented systems, a number of layers of

abstraction may be considered, in particular the models of the organisations

involved, how interactions are coordinated and the services which are used and

made available, are all relevant to the construction of complex service-oriented

systems. As each of these layers is built upon another there is a clear need to

provide a maintenance mechanism, capable of maintaining consistency across

the concepts used in each layer. In addition, over time designs may change

because of the introduction of new requirements and the availability and

capabilities of services may change due to implementation modifications or

service failures, leading to the need to consider a two-way adaptation, namely

between the system design and its run-time. The contribution of this paper is the

description of our (novel) mutual adaptation mechanism and, using an industry

scenario based on the proposed ALIVE framework, its illustration in use of the

kinds of adaptation.

Keywords: Model-driven architecture, web services, workflows, monitoring,

adaptation.

1 Introduction

Today’s software systems are becoming increasingly large and complicated. They are

built upon many different technologies where a variety of abstraction layers are

utilized, making it difficult for software engineering methodologies to support

properly the various stages of their life-cycle, including design, implementation of

artefacts and actual execution. Consequently, there is a clear need to develop

maintenance and monitoring mechanisms allowing the dynamic adaptation,

reconfiguration and self-management of such systems. It becomes increasingly clear

that such mechanisms can provide a fundamental framework, where other more

elaborate mechanisms can be established moving systems towards the vision of

* This work has been carried out in the framework of the FP7 project ALIVE IST-215890,

which is funded by the European Community. The author(s) would like to acknowledge the

contributions of his (their) colleagues from ALIVE Consortium (http://www.ist-alive.eu)

autonomic computing [1], where under certain circumstances a system may (re-)

configure itself and adapt automatically to changing environments.

The work described in this paper is carried out in the context of the EU-funded

ALIVE project [2, 3]. The premise behind the project is that current service-oriented

architectures (SOAs) are typically incremental developments of existing Web service

frameworks, making them fragile and inappropriate for long-term deployment in

changing environments. Our proposed solution is to utilize the rich body of

experience found in human organisations through the formalization of organisational

theory and the coordination mechanisms that underpin the interactions between the

entities. This provides us with a range of strategies that have been tried-and-tested in

(human) social and economic contexts and that, with the provision of sufficient

appropriate information about the state of the environment and the enactment of a

workflow, can be applied to the dynamic adaptation of SOAs. A key element of our

solution is the use of model-driven architectural descriptions of the SOA design –

representing the organisational and coordination artefacts mentioned earlier – that

admit formal adaptation and are thus able to capture and reflect changes in the

deployed system.

In this paper we propose a bidirectional adaptation approach for maintaining

design models with their run-time execution. The models visualising the service

organisations and coordination as specified in ALIVE are used in a model-driven

approach, while service enactment is a result of a model transformation process.

In SOA functional components are exposed as services, each of which is associated

with an externalised description of the service's interface and functionality. These

services are composed and linked in a loosely-coupled pattern in such a way that

individual services may be replaced and re-used without modification. Current

approaches to SOAs build on existing Web service (WS) technologies, such as SOAP,

WSDL and BPEL to describe and execute service interactions. Given a set of

services, process descriptions in the form of workflows may be constructed and

executed using existing workflow interpreters, which take a given language such as

BPEL and invoke services in accordance with the specified flow of control.

Model Driven Engineering (MDE) refers to the systematic use of models as

primary artefacts for the specification and implementation of software systems. The

Model Driven Development (MDD) methodology is based on the automatic creation

of implementation artefacts from abstracted models via a predefined model

transformation process. So far, model-driven approaches are primarily focused on the

design, implementation and deployment stages of software development. However,

MDD can similarly support the maintenance, requirements and testing phases. In

those cases, MDD can be applied in the opposite direction, for the purpose of building

or recovering high-level models from existing implementation artefacts to support

round-trip engineering. Thus, it is possible to bridge the gap and provide consistency

among design models and actual executions.

The remainder of the paper is organised as follows: Section 2 provides an overview

of the research context. Section 3 presents our mutual adaptation approach for models

and enactments. Section 4 highlights our approach with an example drawn from an

ALIVE use-case scenario. Section 5, provides various discussion points and compares

our approach with related work. Finally, section 6 outlines our conclusions and

summarises the fundamental characteristics of our approach.

2 Dynamic Model Adaptation

Dynamic model adaptation refers to applying automated modifications on models

often representing executing systems at run-time. Model-driven development often

produces design artefacts that are lost during the execution and yet may be needed if

the architect wants to change the actual execution when something goes wrong. The

use of run-time models permits the complete or partial reuse of the current design

models and their adaptation to the actual execution of systems. In particular [4] gives

examples where run-time models can be useful in adaptation of systems. These

examples are relevant to our two-way dynamic model adaptation mechanism.

The first case where run-time models are useful is the observation of the execution.

The execution utilizes real code to perform the functions prescribed by the models.

The use of a run-time model, based on the observation of the execution, allows for the

creation of an abstract view of the execution, which in turn may be used by an

adaptation module. The set of events which are observed in this process have to be

generated from the design models.

The second case is the automatic adaptation of the system depending on the

execution’s observation. Patterns of adaption are usually defined by the architect

during the design phase by taking account of some critical execution events. When a

predefined set of events is triggered, the adaptation is performed on the run-time

model and then changes are applied in the generated execution.

Finally, the third case is redesigning the actual execution using the run-time

models. The architect, by looking at the run-time models, may decide to modify or

add new functionalities to the system. These modifications are then transferred to the

execution by production of run-time changes.

3 An Approach for Mutual Dynamic Adaptation

In this paper, we propose an approach for the dynamic adaptation of models and

executables based on model transformations and the monitoring of the service

enactment. The adaptation of models and executables is performed dynamically; both

automatically and at run-time. Moreover, their dynamic adaptation is not based on the

direct execution of models, so they are not compiled by model compilers and they do

not run on specialised virtual machines - where executable models are monitored, but

rather the adaptation is based on monitoring the enactment of native code that is the

product of a model driven transformation process. Next, a monitoring mechanism

monitors changes on service enactment and on design models by listening to specific

significant events. Depending on the events generated the corresponding handling

module is triggered to maintain/adapt the design models and generate the new

enactment that will be loaded and executed from tools. The connectivity of external

tools and the monitoring mechanism is maintained by the instrumentation framework.

The approach is mutual, meaning that adaptations can be performed both a) from run-

time execution to design models and b) from design models to run-time execution.

Another important characteristic that distinguishes our approach from others is that

in our case model adaptations are applied both on structural models defining the

organisation of Multi Agent Systems (MAS) [5] and behavioural models defining

their coordination. Furthermore, adaptations are applied on agent/service allocation

and deployment, which are subject to various criteria such as availability of resources

and generation of unexpected faults.

More specifically, our approach is influenced by the three levels identified in the

ALIVE project, namely; the organisation, coordination and services. Each of the

levels plays an important role in MAS. For example, organisation provides the

structure, relation and rules of agents, coordination specifies the allowable patterns of

interaction and services provide the rules of engagement in terms of services. This

multi-layer conceptual separation of concerns provides a number of architectural

advances, based on the fundamental concepts of decoupling and modularisation.

In order to reflect this architectural alignment within the ALIVE project the

adaptation process has to cross both directions (bottom-to-top and top-to-bottom) in

the multi level hierarchy. Thus, changes in the service level may require adaptations

of the coordination model and in turn changes in the coordination model may require

changes of the organisation structure. Very similarly, this adaptation dependency is

implied in the opposite direction from organisation to coordination and services. In

that way, the ALIVE architecture remains highly adaptive across its inner and cross

levels. At implementation level, the dependency of inner adaptations is maintained by

linking the Organisation, Coordination and Service handlers, whereas cross

dependency via transformations.

Fig. 1. Maintaining Multi-Levels of Model Adaptation

3.1 Adaptation steps and process

Conceptually, within MDE each of the ALIVE levels is formalised and represented

with a corresponding metamodel. The models which are diagramming instances of the

ALIVE metamodel are created by designers using specialised graphical tools. After

models have been constructed, model transformations are defined to create executable

process specifications in languages such as BPEL. Specialised tools (engines) can

then load the executables and initiate the enactment of the modelled ALIVE scenario.

Process executions are instrumented with a monitoring framework, which listens

for significant events during the execution of a given process. When a significant

event occurs the monitor is notified and the control is transferred on the

corresponding handler. The handlers are interlinked to reflect the architectural

dependencies among levels, and maintain the process of inner adaptation.

Connectivity among external tools (engines) and the monitoring mechanism is

maintained by a middleware instrumentation framework.

Fig. 2. Our Mutual, Multi-Layered Adaptation Approach.

The process steps can be distinguished into three phases as follows:

Initialisation phase: The initialisation phase corresponds to the design time and

the generation of the executable code. The first step is the creation of the organisation,

coordination and service models by the architect (1) using design tools. The models

which are instances of the ALIVE metamodel depict a particular use case scenario

such as Thales. At design-time the designer can also specify automatic execution

adaptations that will be executed by the adaptation module. The models are next sent

to predefined model transformations (2) to automatically create executable code (3),

such as BPEL and WSDL. Then, execution tools load the executable code and initiate

enactment (4). During the execution (5), a monitor mechanism observes execution

and listens for specific significant events (6) controlled by conditions, rules etc.

Model adaptations due to events/failures in service enactment: During the

execution of the application, adaptations may occur depending on the significant

events. Initial plans may not be possible to be performed due to limited availability of

resources, failures and other external reasons. These (critical) events are captured by

the monitoring mechanism and passed on the corresponding (organisation,

coordination, service) model handler for an adaptation action (7) whereas the current

service enactment is suspended (8). As a result, the corresponding model handler

dynamically updates/adapts existing models to new ones (9). Depending on the rules,

adaptations may be propagated internally between the successive inner levels of

ALIVE. Once the new models are produced, the generation process produces new

executions by using steps (2-3-4) and the service enactment restarts (5).

Adaptation of service enactment due to design alterations: Alternatively,

adaptations can occur as a result of a manual modification of the models by the

architect while service enactment (10). The monitor mechanism is notified for the

model changes (11) and the current enactment is suspended (8). Once more new

executable code is generated by steps (2-3-4) and an updated enactment restarts (5).

4 Applying the Approach with an ALIVE Scenario

At this point, we present how the two-way dynamic adaptation of models and service

enactment is maintained with a motivation example. The example describes a crisis

management scenario from THALES [6, 7] used in the context of ALIVE project [2].

More specifically, the scenario describes how the Dutch Ministry of Internal Affairs

manages an emergency depending on the severity of an incident, by defining five

GRIP levels of emergency handling. Each level specifies the tasks, roles, authorities

and responsibilities of the members involved in the handling of an incident. For

purposes of simplicity, in this paper we consider an emergency scenario scaled from

GRIP 0 to 1. GRIP 0 describes how to handle a routine accident where no major

coordination is required, whereas GRID 1 describes how many different authorities

coordinate at an operational level.

4.1 Initialisation phase

Initially, at design time the organisation, coordination and service concepts of the

THALES scenario are modelled at GRIP 0 level by the designer. In this example a

combination of UML 2.0 diagrams are used to depict effectively these concepts with

Class/Collaboration, Interaction and Component models respectively.

Organisation: At GRIP-0, the organisation consists of few structures. Most

importantly, the CrisisManagement class has a GripLevel attribute to maintain the

current state of the incident. CrisisManagement is related to at most one (see optional

cardinality [0..1]) Ambulance, Fire_Fighting_Team and PoliceOfficer classes. The

Handle_Incident collaboration depicts how a PoliceOfficer playing the role of

securePlace, an Ambulance by provideTreatment and a Fire_Fighting_Team by

extinguishFire collaborate with one another to handle an incident.

Fig. 3. Organisation models at GRIP 0

Coordination: At GRIP-0, the coordination (describes the possible interactions

among members) for handling an incident is specified in a network-like relation. All

parties have equal responsibility in resolving the situation and communicate via

inform methods and exchange incident information.

Service: At GRIP-0, the services/agents are limited to those of a FireService,

PoliceService and AmbulanceService. The services have to implement the interaction

structures specified at coordination level and expose the relevant operations and

interfaces.

Fig. 4. Coordination (left) and Service (right) models at GRIP 0

Later the coordination patterns and interfaces will be transformed to corresponding

Web service implementations for BPEL and WSDL via predefined model

transformations. At this point we do not present the details of the transformation

process, however there are many approaches in this regard see [8, 9]. Next the

generated artefacts are loaded for execution to an execution engine such as Apache’s

Orchestration Director Engine (ODE) [10].

The significant events need to be marked with stereotypes and tag values on design

models, so appropriate handlers can be created. For example, in fig.3 we have marked

the property GripLevel of CrisisManagement as significant, so an appropriate handler

can be created to monitor the state changes during enactment. Similarly, exceptions

on interface operations can be marked as adapted, indicating that a handler needs to

be generated and the path of enactment needs to be changed.

Finally, specific adaptation rules are defined by the designer and attached to

models. These rules define the adaptation patterns to be followed in case of a

significant event. The rules may be specified in a QVT-like language or refer to other

implementations of ontological or rule-based languages. The handlers are capable to

interpret these rules and perform the adaptations.

4.2 Model adaptations due to events/failures in service enactment

During the execution of the workflow, significant events may be triggered and

processed by the monitoring mechanism. The events may propagate a series of inner

adaptations from their corresponding handlers to design models as seen in chapter 3.

Thus, during the execution of the PoliceService by an agent, an error may occur

due to some unavailable resources. In this case the models have to be adapted at run-

time with new enactment plans which first need to be constructed. The adaptation

process is directed by the adaptation pattern associated with the significant event and

retrieved from the model. The pattern may be specified in model-driven native

specification (QVT based) or other (rule-based) language. In the first case the

adaptation is performed as an ordinary transformation, where in the latter it is

performed by a dedicated tool.

4.3 Adaptation of service enactment due to design alterations

The most obvious adaptation case is when a service execution needs to be updated

due to design alterations. In this case, the initial design models of organisation,

coordination and service has been adapted with new structures/roles, coordination

patterns and service functionalities. In our scenario, this is because the designer due to

some external circumstances has re-evaluated the severity of the incident from Grip-

Level 0 to 1. In the opposite direction now, the changes in models would propagate

events which may cause a sequence of inner adaptations. Finally, from the adapted

models an updated service enactment will be generated.

Fig. 5. After design-adaptation Organisation models at GRIP 1

Organisation: In GRIP-1, a local coordination team (CTPI) is now set up to

supervise the operations and a Mayor entity is introduced. The CPTI team is

composed of the heads of active services, such as Fire_Fighting_Team and Police-

Officer and Paramedic. Additional forces have been reserved, so cardinality has

changed to [1..n]. A new collaboration CTPI_Member defines the additional roles of

fireMember, policeMember and paramedicMember, which can be played by existing

handling members such as a PoliceOfficer. Finally, within the Handle_Incident

participation, all police, ambulance and fire units on the ground communicate through

a CPTI_Member, playing the role of a coordinator.

Coordination: At GRIP 1 the Mayor does not play an active role (there are no out-

coming interactions), however he/she might get informed by the CTPI members. How

information is exchanged and shared among members has also changed from a

network to a hierarchical structure. Now every incident handler has an obligation to

report directly to CTPI members. CTPI has also the right (permission) to delegate

tasks to other non-CTPI members, whereas other non-CTPI members have the

obligation (implement the interface which is accessible only to CPTI_Members) to

perform the tasks delegated to them.

Services: At GRIP 1 two additional services MayorService and CPTIService are

introduced. Previous services have also been altered in order to be consistent with the

new coordination patterns. As a result, a CPTIService utilises the corresponding

provided interfaces of FireService, PoliceService and AmbulanceService to delegate

tasks as well as the MayorService to provide incident reports.

Fig. 6. After design-adaptation Coordination (left) and Service (right) models at GRIP 1

5 Other Related Work & Discussion

Another quite related approach to the concept of run-time models is that of executable

UML [11]. Executable UML is based on rich diagrams that can produce executable

models, which can then be translated directly to code. In this case a virtual machine

interprets the UML models without any intermediate code generation step involved.

In our case the run-time models are represented by ordinary UML diagrams

capturing the organisation and coordination of dynamic instances of an ALIVE

scenario. Consistency among the service enactment (execution) and design models is

maintained by the specification of significant events that are bound with specific state

changes. Thus our approach does not provide a full bidirectional consistency among

real execution (states) and dynamic models as the overhead is significant. Further, our

ALIVE models are not executable; however they generate artefacts which can be

executed via a transformation process. Specific markings are also used to identify the

significant states requiring monitoring and operations that may trigger an adaptation

process.

 6 Conclusions

Providing mechanisms facilitating the dynamic adaptation of design models and run-

time executions is an important property for systems that need to reflect the

environmental and design changes. In this paper we have proposed a mutual

monitoring mechanism for maintaining adaptations among design models and service

enactment. The run-time adaptations are performed automatically, triggered by

significant events, directed by adaptation patterns described at design-time and

implemented via model transformations. In addition, we have shown how the multi-

layers of model abstractions add significant complexity in the adaptation process,

which also needs to be supported by the mechanism.

References

1. Jeffrey, O.K. and M.C. David, The Vision of Autonomic Computing. Computer, 2003.

36(1): p. 41-50.

2. ALIVE. Coordination, Organisation and Model Driven Approaches for Dynamic, Flexible,

Robust Software and Services Engineering. European Commission Framework 7 ICT

Project 2008; Available from: http://www.ist-alive.eu/.

3. Clarke, S., A. Staikopoulos, S. Saudrais, J. Vázquez-Salceda, V. Dignum, W. Vasconcelos,

J. Paget, L. Ceccaroni, T. Quillinan, and C. Reed, ALIVE: A Model Driven approach for the

Coordination and Organisation for Services Engineering, in to appear on International

Conference on Model Driven Engineering Languages and Systems (MODELS 08) Research

Project Symposium. 2008: Toulouse, France.

4. France, R. and B. Rumpe, Model-driven Development of Complex Software: A Research

Roadmap, in 2007 Future of Software Engineering. 2007, IEEE Computer Society.

5. Wooldridge, M. and N. Jennings, Intelligent Agents: Theory and Practice. In The

Knowledge Engineering Review, 1995. 10(2): p. 115-152.

6. Splunter, S.v., T. Quillinan, K. Nieuwenhuis, and N. Wijngaards, Alive Project: THALES

Usecase - Crisis Management. Technical Report ALIVE Project, 2008.

7. Aldewereld, H., F. Dignum, L. Penserini, and V. Dignum, Norm Dynamics in Adaptive

Organisations. 3rd International Workshop on Normative Multiagent Systems (NorMAS

2008), 2008.

8. Bézivin, J., S. Hammoudi, D. Lopes, and F. Jouault, An Experiment in Mapping Web

Services to Implementation Platforms, in Technical report: 04.01. 2004, LINA, University

of Nantes: Nantes, France.

9. Bordbar, B. and A. Staikopoulos, On Behavioural Model Transformation in Web Services.

Conceptual Modelling for Advanced Application Domain (eCOMO), 2004. LNCS 3289: p.

667-678.

10. Foundation, T.A.S. Apache ODE (Orchestration Director Engine) 2008; Available from:

http://ode.apache.org/.

11. Stephen, J.M. and B. Marc, Executable UML: A Foundation for Model-Driven

Architectures. 2002: Addison-Wesley Longman Publishing Co. 368.

http://www.ist-alive.eu/
http://ode.apache.org/

