A Model-Driven Approach for Developing
Self-Adaptive Pervasive Systems*

Carlos Cetina, Pau Giner, Joan Fons and Vicente Pelechano

Research Center on Software Production Methods
Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain
{ccetina,pginer, jjfons,pele}@pros.upv.es

Abstract. Adaptive systems are generally difficult to implement, and
their quality depends much on the designer experience or creativity. This
paper presents a model driven approach to develop adaptive systems by
means of run-time models. Our approach applies techniques from the
Software Product Lines (SPLs) to address the different requirements
of evolution and involution scenarios in Pervasive Systems. Finally, we
show how models drive the adaptation in order to dynamically change
the system architecture.

1 Introduction

Pervasive computing is defined as a technology that “weaves itself into the fab-
ric of everyday life until it is indistinguishable from it” [1]. To be successful, the
pervasive computing functioning should be transparent to the user. Such trans-
parency is achievable only if the software frees users from having to repair and
reconfigure the system when faults or changes occur in the environment.

Pervasive systems are highly dynamic and fault-prone since their components
are liable to appear and disappear at any time. On the one hand, new kinds
of entities (devices such as media players, light sensors or fire alarms) can be
incorporated to the system. When a new resource is added to the system, the
pervasive system should adapt itself to take advantage of the new capabilities
introduced by this resource. On the other hand, existing entities may fail or
be disconnected from the system for a variety of reasons: hardware faults, OS
errors, software bugs, network faults, etc. When some resource is removed, the
system should adapt itself in order to offer its services in an alternative way to
reduce the impact of the resource loss.

In a previous work [2], a methodology based on SPLs principles was defined
to cope with adaptivity of Pervasive Systems. This approach is based on the
reuse of the knowledge from the design of SPLs to support adaptivity in the
resulting systems. By means of model transformations, the SPL knowledge is
systematically reused at run-time.

* This work has been developed with the support of MEC under the project SESAMO
TIN2007-62894 and cofinanced by FEDER.

The present work is focused on providing a model-based support for some
adaptation scenarios very common in Pervasive Systems (evolution and involu-
tion scenarios). These scenarios have different requirements regarding adapta-
tion, and the way in which models are handled at run-time should consider those
particular requirements.

The contribution of this work is twofold. On the one hand, a model-based
approach is introduced in order to organize the knowledge required for adap-
tation according to the specific demands (support for involution and evolution
scenarios) of pervasive systems. In this way, adaptation knowledge is separated
from the structure of the system and different adaptation mechanisms can be
offered depending on how much critical the adaptation is. On the other hand,
we present how models drive the system adaptation within the context of each
scenario.

The remainder of the paper is structured as follows. Section 2 gives an
overview of the different models used to structure the knowledge about the
system. Section 3 defines the architecture proposed for the kind of system this
work is dealing with. Section 4 defines for different scenarios how to achieve the
adaptation of a system that follows the introduced architecture using the pre-
sented models. Section 5 discusses related work. Finally, Section 6 presents some
conclusions to the paper.

2 The Models for System Adaptation

The present work considers system adaptation as a reaction to a change in system
resources. Therefore, two different kind of scenarios are considered: evolution
scenarios (a resource is added) and involution scenarios (a resource is removed).

Evolution and involution scenarios have different requirements regarding
adaptation. On the one hand, in involution scenarios time becomes critical since
these scenarios are normally related to failure-recovery. For example, if an alarm
system fails in a smart home, an alternative system (e.g., house lights blinking)
should be used immediately as a backup. On the other hand, evolution scenarios
are not so demanding in this aspect, and even the opinion of the final users
can be considered (interacting with the users or considering their preferences)
to provide a better adaptation according to user needs.

In order to enable system adaptation, it is required a knowledge about (1)
the current state of the system and (2) the possible ways of changing it. In the
present work, models are used for both purposes, being queried at run-time to
perform the adaptation. On the one hand, models are used for capturing the
state of system components and the communication channels among them. On
the other hand, the space of possible system changes is captured by means of
feature modeling techniques.

The consequences of a change in the system (e.g., enabling the security fea-
ture) can be obtained by reasoning over a model that captures all the possible
system features and their dependencies. This is acceptable for evolution sce-
narios where the system is being upgraded. However, since involution scenarios

require an immediate adaptation, information required for the system reaction
is precalculated in models. In this way, the effort of reasoning over the differ-
ent possibilities of adaptation is avoided. More detail about the different models
involved in the proposal is provided below.

— Feature model. Feature Modeling is a technique to specify the variants of a
system in terms of features [3]. In feature models, features are hierarchically
linked in a tree-like structure and are optionally connected by cross-tree
constraints. This model describes the possible system functionality and its
dependencies in a coarse-grained manner. The impact of activating a feature
is captured in this model. For example, if a security system is installed, other
features depending on a security system such as presence simulation can be
activated.

— Realization model. Realization model defines relationships between fea-
tures and components of the architecture. Atlas Model Weaving has been
extended [4] to define the default and alternative relationships. In this way,
some components of the architecture are labeled as default or alternative
components for supporting a certain feature. In case of failure of a compo-
nent, this model permits to quickly find an alternative to replace it.

— Component model. This model represents the different components that
conform the system. Component state is captured in the model. This model
is in synchronization with the system since components make use of this
model to store and retrieve their state.

— Structural model. This model represents the communication channels es-
tablished between the different components of the system. Since this work
deals with highly dynamic systems, the connection among components change
quite often. This model reflects both, the possible connections and the ones
that are in use in the current state of the system.

The introduced models have been structured in this way in order to decouple
system adaptation (Feature and Realization models) from system description
(Component and Structure models). In addition, precalculated information to
better support involution scenarios is isolated in a model (Realization model).
Next sections describe the use of these models to achieve system adaptation.

3 The Model-Based Adaptation Approach

To perform adaptation, our approach is based upon a framework for adaptive
systems proposed in [5] by analyzing common terminology and synergy between
different approaches. This framework introduces the roles of (1) triggers which
specify the event or condition that causes the need of adaptation; (2) adaptation
actions which realize the actual adaptation; and (3) adaptation rules that define
which triggers cause which adaptation actions. In our approach, these rules are
driven by run-time models to modify the system architecture using adaptation
actions.

. .Adaptation Trigger / Install

=< Adaptation Rule / Start

Quiescent Active
Adaptation Rule / Stop

] | O Adaptation Trigger / Uninstall

System Components

Bindin . i
O Service D Providgr . . Active O D Quiescent — Binding - -- gfs(s;l?llge

Fig. 1. The adaptation architecture.

3.1 The System Architecture

In order to allow a flexible adaptation process, we have considered an archi-
tecture based on communication channels (called bindings). This architecture
for the final system allows an easy reconfiguration process since communication
channels can be established dynamically between the components that form the
system (see left of Fig. 1). These components are classified in Service and Binding
Providers as follows:

— Service. A Service coordinates the interaction between resources to accom-
plish specific tasks (these resources can be hardware or software systems);

— Binding Provider. A Binding provider (BP) is a resource adapter that
handles the issues of dealing with heterogeneous technologies. The BP pro-
vides a level of indirection between Services and resources. Resource oper-
ations interact with the environment (sensors and actuators) and provide
functionality from external software systems. Services coordinate these re-
source operations to offer high-level functionality. If the resource operations
do not match the Service expectations, then a BP is used to adapt these
operations. Hence, the BPs decouple Services from resource operations.

For example, in a smart home a security service is composed of several re-
sources such as presence sensors, movement detectors, sirens, contact detectors,
SMS senders, silent alarms and so on. The security service coordinates the be-
haviour of all these resources.

3.2 Adaptation Actions

The system architecture has to be modified as a result of the dynamic adapta-
tion. Old components must be dynamically replaced by new components while
the system is executing. The adaptation actions are in charge of this dynamic re-
configuration. These actions deal directly with the system components by means
of the following operations: Component State-Shift and Component Binding.

1. Component State-Shift Kramer and Magee [6,7] described how in an
adaptive system, a component needs to transit from an active (operational
state) to a quiescent (idle) state in order to perform the system adapta-
tion. We have applied this approach to our systems by means of the OSGI
framework [8]. The OSGI Framework defines a component life cycle where
components can be dynamically installed, started, stopped, and uninstalled
(see right of Fig. 1). On the one hand, Triggers are in charge of perform
the install /uninstall operations. For example, when a resource fails or a new
resource is installed in the system. On the other hand, Adaptation Rules are
in charge of perform the start/stop operations. For example, when a Binding
Provider must be activated to handle a new resource.

2. Component Binding Once a component transits to an active state, it
needs bindings with other components. These bindings are implemented by
using the OSGI Wire Class (an OSGI Wire is an implementation of the
publish-subscribe pattern oriented to dynamic systems). The OSGI Wires
establish communication channels between components to send messages
one another.

Adaptation actions provide the basics operations to dynamically change the
system architecture. Adaptation rules orchestrate the execution of these actions
by means of the run-time models. The next section details how the adaptations
rules queries the models in order to apply the adaptation actions.

4 Adaptation Rules

In a nutshell, an adaptation rule is in charge of (1) handling the adaptation
triggers, (2) gathering the necessary knowledge from the run-time models and
(3) applying the adaptation actions.

As we state above, evolution and involution scenarios present different re-
quirements. In involution scenarios the system must provide an autonomic re-
sponse in a reduced amount of time. While in evolution scenarios, the system
does not present the same time requirement and even the user might assist the
adaptation. To fulfil theses requirements, we have defined two kinds of adapta-
tion rules taking into account the type of scenario.

4.1 Adaptation in Evolution Scenario

When a component is plugged-in, first the adaptation rule queries the feature
model for which new features could potentially be activated. Then the user
confirms the features activation. Furthermore, activating new features can fulfil
other feature constraints which might be enabled. Therefore, each time the user
confirms a feature activation, the adaptation rule queries the feature model for
new features. Finally, the Component and Structure Models drive the adaptation
actions in order to dynamically reconfigure the system architecture and support
the new features. The steps to perform this adaptation (see Fig. 2) are detailed
next:

_ >Qmuﬁmw__m: Rule: _ _ mmmﬁcﬂm__(_omm_” _ _nOBUo:m_:ﬁZ_oam_” _ _ Structural Model: _

change(type,component) | |

m:ammmﬂc_‘m*noq‘avo:m:c
|
—________7l|o
| features

isActivable(feature) —

activate(feature)

getRelated(feature) @

features

J|
@3003@03_&3&88@

- L _____1l®

comppnents
L

Component:

activate()

bindings

create()

1. By means of the Component model, the adaptation rule identifies those
features which are related to the trigger component. With these features,
the rule creates an ordered set called the evolution set. For each one of the
features, the rule performs the following steps, 2 to 5.

2. The rule checks the possibility of feature activation. This information is in the
Feature Model, specifically it depends on the requires, excludes and manda-
tory relationships between features. If all these constraints are fulfilled, then
the feature can be activated.

3. Once the rule checks the feature activation, it asks the user for confirmation
by means of a dialog in the user interface. The message shows the name of
the feature and a description stored in he Feature Model. The message also
provides three options to the user: “Yes”, “Remind me later” and “No”.

4. Activating a new feature can fulfil other feature constraints. In this step, the
rule checks for new activable features. The rule adds these new features to
the evolution set.

5. In terms of the platform, activating a feature implies performing adaptation
actions to system components. In this step, the rule queries the Component
model for the feature components. For each one of these components, the
rule performs the following steps, 6 and 7.

6. The rule applies the State-Shift action to the component. Therefore, the
component transits from a quiescent state to an active state.

7. To connect the new active component with the rest of the system, the rule
queries the Structural model for the component bindings.

8. Finally, the rule applies the Binding action to create the communication
channels between the components.

Due to space constraints, the sequence diagrams in this section represent only
the general case for adaptation. Diagrams consider only affirmative responses,
lacking alternative behaviour.

In our experience applying this approach to the smart home domain [2], we
have notice that the time response delay comes mainly from these factors: fea-
ture dependency resolution (steps 2 and 4) and user confirmation (step 3). How
much time the user takes to confirm cannot be foreseen, and dependency reso-
lution is more time consuming than other simpler queries (for example, step 7).
However, we consider that installing new resources in the system is not as critical
as handling resource failures. Thus, in evolution scenarios we offer an advance
system response (dependency resolution and user participation) although this
response takes extra time.

4.2 Adaptation in Involution Scenario

Involution scenarios are triggered by the removal of a resource. A fast adaptation
of the system is required to minimize the impact of the lost resource. In order
to offer a good response time, adaptation is automatic (not requiring user inter-
vention) and resource alternatives are precalculated in a model (the realization
model). In this way, the latency of asking the user is avoided and the effort of
reasoning with the feature model (e.g., looking for dependencies) is also reduced.

Adaptation Rule: Realization Model: ‘ ’ComponentModeI: ‘
T T

L | |
change(type, component | |

ﬁndFeature(componelnt)

<= — — — T @

o)
o
Y
5
S
@
»

'0_019 findAlternativeComponent(feature)

alt_component

AlternativeComponent: ‘

activate()

©)

StructuralModel:
|

getBindings(alt_component, feature)

<_ _____________

bindings

IoopJ

destroy()

| ©

Fig. 3. Adaptation process for involution scenarios.

In Fig. 3, the adaptation process for an involution scenario is illustrated.
Given the removal of a component, the affected feature is obtained and an alter-
native component for this feature can be directly retrieved from the Realization
Model. More detail about the process is given below:

1. When a change is produced in the system, the affected features are obtained
in the same way as in the evolution scenario. The following steps are per-
formed for each feature.

2. The rule queries the Realization model to obtain a component that can re-
place the affected one for a given feature. Since this information is expressed
explicitly in this model, queries are straightforward.

3. Once the rule has found an alternative component (initially in the quiescent
state) it is activated.

4. The alternative component may require communication with other compo-
nents. This information is obtained from the Structural model.

5. For each of the required bindings, a wire is created to establish the necessary
communication channel between components.

6. Finally, the affected component is destroyed. This implies the removal of
inactive wires. The destruction of this component is deferred until the end
of the adaptation process, since the priority in involution scenarios is to offer
the new services immediately.

The adaptation rule for involution reduces the delays commented for the
evolution scenarios. On the one hand, model queries are simplified. Reasoning
over a feature model is a time-consuming activity and termination becomes
difficult to guarantee [9]. On the other hand, the user does not participate in
the process, which is a requirement for the autonomic behavior required by this
kind of scenarios.

5 Related Work

Hallsteinsen et al present the Madam approach [10] for adaptive systems. This
approach builds systems as component based systems families with the variabil-
ity modeled explicitly as part of the family architecture. Madam uses property
annotations on components to describe their Quality of Service. For example a
Video Streaming component may have properties such as start up time, jitter
and frame drop. At run-time, the adaptation is performed using these proper-
ties and a utility function for selecting the component that best fits the current
context.

Trinidad et al [11] present a process to automatically build a component
model from a feature model based on the assumption that a feature can be mod-
eled as a component. By means of augmenting the system with a feature model
and a model reasoner, this approach enables systems to dynamically changing
its features at run-time.

Both Hallsteinsen and Trinidad apply SPL techniques to develop adaptive
systems. However, their approaches do not take into account the differences
between evolution and involution scenarios. Therefore, they do not exploit the
specific scenario requirements.

Zhang et al. [12] introduce a method for constructing and verifying adap-
tation models using Petri nets. They address directly the verifications of the
adaptation models by means of visual inspection and automated analysis. On
the other hand, our approach is focused on reuse at run-time the variability mod-
eling of SPLs. However, our approach can benefit from SPL reasoners in order to
check system properties [9]. Finally, Zhang’s approach separates the adaptation
specification and non adaptation specifications as our approach does. However,
our approach introduce precalculated adaptations in order to achieve a faster
response in involution scenarios.

6

Conclusions

In this paper, we provide support for adaptation in pervasive systems by means
of run-time models. Our approach focusses on addressing the differences between
evolution (a resource is added) and involution (a resource is removed) scenarios.
In involution scenarios, we use models with precalculated knowledge in order to
provide an autonomic response in a reduced amount of time. While in evolution
scenarios, we offer an advanced system response (feature dependency resolution
and user participation) because we consider that installing new resources in the
system is not as critical as handling resource failures. Finally, we showed how
models drive the system adaptation within the context of each scenario.

References

1.

10.

11.

12.

Weiser, M.: The computer for the 21st century. SIGMOBILE Mob. Comput.
Commun. Rev. (3) (1999) 94-104

Cetina, C., Fons, J., Pelechano, V.: Applying Software Product Lines to Build Au-
tonomic Pervasive Systems. 12th International Software Product Line Conference,
SPLC 2008. (2008)

Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature mod-
els. In: Proceedings of the Third Software Product Line Conference 2004, Springer,
LNCS 3154 (2004) 266—282

Fabro, M.D.D., Bzivin, J., Valduriez, P.: Weaving models with the eclipse amw
plugin. In: Eclipse Modeling Symposium. (2006)

Bencomo, N., Blair, G., France, R.: Model-driven software adaptation report on
the workshop m-adapt at ecoop 2007. Object-Oriented Technology. ECOOP 2007
Workshop Reader (2008) 132-141 Springer, LNCS.

Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. Software Engineering, IEEE Transactions on Software Engineering (1990)
1293-1306

Kramer, J., Magee, J.: Analysing dynamic change in software architectures: a case
study. Configurable Distributed Systems, 1998. Proceedings. Fourth International
Conference on Configurable Distributed Architecture (1998) 91-100

Marples, D., Kriens, P.: The open services gateway initiative: an introductory
overview. Communications Magazine, IEEE (12) (Dec 2001) 110-114

Benavides, D., Segura, S., Trinidad, P., Ruiz-Corts, A.: FAMA: Tooling a frame-
work for the automated analysis of feature models. In: Proceeding of the First
International Workshop on Variability Modelling of Software-intensive Systems.
(2007)

Hallsteinsen, S., Stav, E., Solberg, A., Floch, J.: Using product line techniques to
build adaptive systems. Software Product Line Conference, 2006 10th International
(Aug. 2006) 21-24

Trinidad, P., , Ruiz-Cortés, A., na, J.P.: Mapping feature models onto compo-
nent models to build dynamic software product lines. International Workshop on
Dynamic Software Product Line (2007)

Zhang, J., Cheng, B.: Model-based development of dynamically adaptive soft-
ware. In: ICSE ’06: Proceedings of the 28th international conference on Software
engineering, New York, NY, USA, ACM (2006) 371-380

