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Abstract. This contribution presents an approach to maintain state
machine model semantics in object-oriented structures. A framework is
created that reads and executes these structures at run time and is com-
pletely aware of the model semantics. The goal is to embed such struc-
tures in arbitrary large systems and delegate program control to the
framework. Hence we can debug and validate the system at run time
and apply monitoring with respect to state machine model characteris-
tics.

1 Introduction

State machines can be comprehensively specified, simulated and verified at de-
sign time. We present an approach to retain model semantics in executable sys-
tems to allow debugging, validation and monitoring at run time. Our approach
will be introduced by a real-world example and formalized later on. The example
depicts a load generator application in which we implemented a state machine
model that controls program execution and invokes existing business logic.

Traditional ways to translate models into source code by either manual imple-
mentation or automated code generation [1] are not suitable for this application:
The inherent loss of semantic information entails that models are related to
developed systems only by the developer’s knowledge [2], thus preventing auto-
matic back tracking of changes [3]. Model Round-Trip Engineering concepts [4]
make code synchronisation possible but require manual effort and are thus error-
prone [5]. Additionally, generation tools often lack the capabilities to integrate
their output into existing systems like our load generation application. Even if
only one modeling language is used, the need to regenerate parts of the source
code after local changes contradicts a gradual integration [6].

Model execution engines (e.g. Executable UML [7]) can avoid the mentioned
problems by interpreting model descriptions. This is not appropriate either, when
the system can not be entirely defined in an executable model. This leads to a
loss of type information at integration layers between model and residual source
code. In addition, bad performance might be experienced due to heavyweight
integration layers or necessary data conversion.

Common to these approaches is the permanent existence of different types
of model representations at several development stages or parts of the run time



system. Our approach aims at avoiding these differences by storing state ma-
chine model semantics explicitly in object-oriented structures. The goal is to
embed such structures in arbitrary large systems and delegate program control
to the framework. The framework analyzes the code structures and extracts an
internal run time representation of the state machine. It walks through the state
machine by evaluating guards and updates and invokes methods that represent
transitions accordingly. These methods contain arbitrary code and connect the
state machine to the application logic. Our approach naturally ensures that the
executed system is equivalent to the designed model. Moreover, we can debug
and validate the system at run time and apply monitoring with respect to state
machine model characteristics. This benefits come at the cost of having to obey
rules while writing the related source code structures, but without the (often
not realized) effort to maintain the source code and a separate model at the
same time. Section 2 of this contribution demonstrates the basic ideas by ex-
ample, while sections 3 and 4 explain the formal approach and its mapping to
a JAVA implementation in detail. Sections 5 and 6 show related work and draw
the conclusions.

2 Example

We illustrate our approach on the basis of the mentioned load generator appli-
cation that has been developed using JAVA. The control mechanism is modelled
as a state machine. The program flow starts with some preparations for the
measurement. Then an actual measurement run is performed wherein load is
generated by worker threads. The result is evaluated and the number of workers
is increased and decreased in order to explore the load behaviour of a system un-
der test. The last two steps are repeated until a measurement result is achieved.
The states before and after the measurement have transitions that fire depend-
ing on the last measurement results. During transitions the application will e.g.
increase or decrease workers.

In order to maintain these state machine semantics in the source code in
addition to application logic, we create classes that represent states. Methods
in these state types represent transitions that invoke business logic and are dec-
orated with meta data referencing the transition target state. This leads to a
network of state classes being connected by transition methods that represent
the state machine in object-oriented structures, which is partly shown in figure
1.

The state machine starts at the initial state and performs some preparations
with the first transitions. Then it performs an actual measurement and reaches
a state named “AfterMeasurement” depicted at the top of figure 1. The imple-
mentation of this state is shown in listing 1.1 with minor omissions. It shows the
way classes and methods are interpreted as states and transitions and how the
actual application components are invoked.

State classes are simply marked with the 1state interface. Transition methods
are marked by an annotation that refers to the target state class and a contract
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Fig. 1. State classes and transition methods. The node descriptions are class names,
the edge labels represent method names.

public class AfterMeasurementState implements IState {
QTransition(target = AfterMeasurementState.class, contract = RestartContract.class)
public void restartMeasurement(MeasurementModule actor) {
actor.increaseNumberOfRestarts();
actor.doMeasure("Restarted measurement");

}

QTransition(target = UpUpState.class, contract = BeginUpUpContract.class)
public void beginUpUp(MeasurementModule actor) {

actor.resetRestarts();

actor.beginUpUp();

actor.doMeasure ("Exploration by,distance upwards");

}
// -

QTransition(target = TerminationState.class, contract = AbortContract.class)
public void abortMeasurement(MeasurementModule actor) {
actor.terminateMeasurement();
}
}

Listing 1.1. Class AfterMeasurementState With some outgoing transitions

public class BeginUpUpContract implements IContract<IMeasurementVariables> {
public boolean checkCondition(IMeasurementVariables vars) {
return (!vars.getAbort() && !vars.getRestart() && vars.getTooLow());

}
public boolean validate(IMeasurementVariables before, IMeasurementVariables after) {
return (after.getNumberOfWorkers() == (before.getNumberOfWorkers() + before.
getWorkerDistance()));
}

Listing 1.2. Guards and updates in BeginupUpContract
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Fig. 2. The state machine model of the load generator

class containing guards and updates for this transition. The method contents
use a facade object actor that encapsulates the application logic and separates it
from the model structures.

Listing 1.2 shows the class containing guards and updates for the Beginupup
transition. Variable values defining the state space are provided by another en-
capsulating type, denoted vars, and used to evaluate guards in the checkCondition
method. State changes during transitions can be verified with the validate method,
that does not perform the actual update, but checks whether it has taken place
in the implementation as desired. Simple comparisons and logical operations in
both methods are mapped one-to-one. Updates are represented as tests for equal-
ity as shown in listing 1.2, where the worker increment is validated by checking
that numberO fWorkers' = (numberO fWorkers + distance).

Embedding model semantics in code structures allows us to read the complete
model at design time and validate it in state machine modeling tools. So far a
complete extraction is possible for UPPAAL [8]: The state machine shown in
figure 2 is completely extracted from the existing source code and just laid out
manually. How to do this is discussed in section 3.4.

As can be seen, these structures are able to cover states, transitions, guards
and updates and hence include nearly all state machine semantics. The only
missing item is the initial state, which is covered by the execution component
necessary to walk through the machine. This will be discussed in section 3.3,
after the formalization of our approach.

3 Formalization of the Approach

The code structures containing the state machine model semantics will be ex-
ecuted at run time and used as an input to state machine modelling tools



at development time. Thus we need a universal definition as a formal base
for well-defined interpretations. For our approach we define state machines as
M ={S,T,V,P,U} with

— S a set of states.

— T C S xS aset of transitions between states.

— V ={vy...v,} a set of named variables.

— P ={p:|t € T} a set of guards for each transition.
— U = {w|t € T} a set of updates for each transition.

The application state is modified only when transitions are fired. Execution
control will be passed to application components at this point of time and return
to the state machine when the next state is reached. The variables are used at
modeling time for state space analysis and are provided at run time by a source
code component representing the application state.

Each guard is an expression related to one or more variables that evaluates
to a boolean value. Guards will be used at design and run time to decide which
transition in the current state should fire. Comparisons and basic arithmetic
operations can be performed on variables and literals inside expressions.

Each variable update consists of atomic assignments that define either a
single value or a range of values as update for one variable. New values may
be constants or variable values which can be connected using basic arithmetic
operations as above. Additionally, each variable value of the previous state is
accessible to allow relative changes. At design time updates are used to define
and change the model state space. At run time they can be interpreted as post-
conditions in order to monitor if the application is in an expected state.

3.1 Embedded Model Specification

To represent the model in source code, distinct object-oriented structures will
be defined that map to the model semantics. Because they are part of arbitrary
source code, arbitrary state spaces will exist beside the well-defined model in-
formation. Hence the model must also define interfaces between state machine
structures and other source code to pass program execution control and variable
values and thus hide the application logic.

So the “Embedded Model” is defined as A = {Actor, X', 0, A, &, ¥} with

— Actor a facade type representing application logic which is invoked during
transitions.

— Y ={os|s € S} a set of unique identified types that represent states.

— O ={0;,]t € T,0 € X} aset of methods in state type o, each representing
a transition .

— A an interface defining methods {\,|v € V} that return the current value
for a variable v.

— @ = {¢¢|t € T} aset of methods that implement guard checks for transitions.

— U = {yy|t € T} a set of methods that implement update checks for transi-
tions.



State types implement an interface which defines no methods but allows to
type-safely distinguish between state types and other types. Transition methods
are designated with meta data that refers to the target state, guard and update
implementations. They have no return type and take as parameter an Actor
instance. The Actor type itself has arbitrary, application-specific content and is
treated as a black box. Transition methods only make calls to methods provided
by the Actor instance and therefore respect the conceptual separation between
model and code.

The methods in A may query the application logic for any application variable
at any point of time, but must never manipulate the application state. This way
© and A are the only well-defined interfaces between model and application
source code that allow manipulation and query of the application state.

Each ¢; returns true iff the pre-conditions of the guard hold. Due to their sim-
ple structure described above, guards can be mapped to logical and arithmetical
expressions in the source code. Each variable v,, used in guards is represented
as the according call of the method \,,. Obviously the simplest possible guard is
that there is none, in which case the source code method instantly returns true.

Each ; returns true iff the variable updates interpreted as post-conditions
hold. Parameters taken by this method are two instances of A to allow compar-
isons, one granting access to the current values and one containing cached vari-
able values from the point in time before the transition fired. Since the method
does not perform an actual update but validates the state, variable updates are
represented similar to guards as logical and arithmetical expressions. Each single
value update is replaced by a test for equality and each range update by a pair of
comparisons with lower and upper bound. If an update should be left unchecked,
the method can return true instantly.

3.2 Representation in JAva

For an implementation of the concept sketched above, JAvA as a widespread
object-oriented programming language and run time environment was chosen.
The JAvA-specific constructs and conventions are shortly outlined here. The
approach is not limited to JAVA since we can assume that similar concepts exist in
other modern object-oriented languages too. A subset of the available declarative
structures [9] is used, namely classes, interfaces, methods and annotations [10].
In combination with generic types the latter ensure type safety both for source
code and meta information and thus facilitate an accurate source code creation
by the developer.

State types are classes that implement the interface IState. All methods in
the state classes are treated as transitions when decorated with the erransition
annotation. It contains an attribute target to denote the transition’s target state
class and an attribute contract that refers to a class containing guard and update
methods. A is realized as an interface providing get-methods for each variable
Ay. The interface itself and its implementation are provided by the application
developer. The contents of these methods are black boxes, too. It is up to the
programmer to ensure that no manipulations of variable values happen when one



of these methods is called. Guards and updates for a transition are located in
classes implementing the interface 1contract with the generic type of A. It defines
the according methods checkCondition and validate which return a boolean value
and take parameters of the A type.

3.3 Model Execution

To execute the state machine model an execution component is required that
walks through the state machine by interpreting state class declarations and
transitions annotations. In each state the guard methods for each transition
method are invoked to determine which transition will fire. Accordingly a tran-
sition method itself will be invoked. To start model execution the application
passes three parameters to the execution component: The initial state class, the
Actor instance and the A implementation. All other parts of the state machine
structure are inferred from these and instantiated on demand.

To save resources, update checks are only enabled in a “debug” mode. In this
case the current variable values are cached before a transition fires and after-
wards provided to the update method together with the most recent variable
values. For this purpose a fourth parameter is passed to the execution compo-
nent, the A interface class, which is needed for dynamic instantiation of this type
in JAVA for update methods. In summary, the execution component can access
all information related to the state machine model at run time: States, transi-
tions, variable values and their use in guards and updates. This way it is possible
to monitor the state machine operation in real-time or to log the information
and make activities traceable afterwards with only a few modifications.

3.4 Model Extraction for Design Time Analysis

For design time the Embedded Model is mapped to representations used in
modelling tools. Because of the different emphases of existing modeling and ver-
ification tools, this cannot be done as universal as for object-oriented structures.
Nevertheless the description of states, transitions and variables follows the gen-
eral concepts of state machines and should hence be directly compatible with
any modeling tool. On the other hand it has to be taken into account that
the general theoretical concept of state machines is realized in different ways in
common modeling techniques [11]. The example presented in section 2 showed
the extracted model in the syntax of UPPAAL, which is one sample output for
a tool-specific mapping. When selecting an actual modeling tool and formulat-
ing the necessary mapping, it must be carefully examined whether the chosen
tool provides a syntax powerful enough to express the semantics of guards and
updates described above. Checking guards by evaluating variables, logical opera-
tors, arithmetic operators and comparators to boolean values can be assumed to
be possible in most cases. Updating variables with single values, obtained from
variables and arithmetic operations, is a standard technique, too. A range up-
date is interpreted as a random choice of a value from the given interval followed
by an update of the variable with this non-deterministic value. More precisely,



the question whether a tool supports range updates is the question whether it
supports non-deterministic choices and allows to merge states defining the range
of values for a variable into one single state. In our example, UPPAAL supports
range updates for variables based on non-deterministic choices. Some minor chal-
lenges regarding naming were solved in this example, too. The data type boolean
is named boo1 in UPPAAL and the get-prefix of all variable methods is stripped
for better readability.

For this contribution, the model extraction was performed by graph trans-
formations, based on the abstract syntax trees of JAVA and the DOM tree of
the UppaAL data format. Triple Graph Grammars [12] can be applied here for
parallel transformations of source code and tool data format with the general
state machine model as mapping schema. The detailed description of this graph
grammar is beyond the scope of this paper.

4 Discussion

It is important to notice that our approach inverts the traditional direction of
model-to-code generators. There is no model that is manipulated at design time
and transformed into source code from time to time. Instead there is a perma-
nent model representation in the source code, which is extracted for analysis
within modelling tools from time to time. On the one hand this eliminates any
effort to maintain and merge different abstraction layers. On the other hand,
the chosen approach is not independent from programming languages and exe-
cution environments, in our case JAVA, as it is possible when using some other
model-driven development technologies [1]. Hence our future work at the tool
level aims to enable permanent partial transformations in real-time and hence
parallel development of source code and external model representation. At the
conceptual level we plan to realize more transformations from model to tools,
e.g. into UML state chart diagrams [13] or the CADENCE SMV model checker
[14].

The execution component benefits from the permanent representation of the
model in code structures. Because of this the actual work done by the execution
component is limited to class instantiations and method invocations. Since all
dynamic functionality is contained in the invoked methods, the execution is very
efficient as regular JAVA code is executed. At the same time the state machine
model integrates in arbitrary business logic without enforcing restraints on the
non-model code. On the other hand, the developer has to take care to organize
the source code accordingly: The approach will only work if the clear separation
is maintained and only valid expressions are used in methods whose content is
interpreted, i.e. guard and update methods. To detect errors here is possible only
if the model is interpreted at design time.

At a more general conceptual level, we aim to analyze the application of our
general concept to domains and modeling methods other than state machines.
Especially in these cases additional benefits can be expected for larger projects,
because one change in source code may influence more than one embedded model.



5 Related Work

The attribute-oriented programming approach [15] with similar use of meta data
in code structures has been explored to map UML models to code structures [16].
However, this does not leverage the principle of having only one representation
for model and source code and does not avoid round trip engineering. The same
applies to Framework Specific Modeling Languages [17], which could be of use
if a state machine framework would control the application state. The concept
of “executable UML” [7] tries to overcome inconsistencies between different rep-
resentations by the use of automated transformations or by defining a primary
representation that may generate and override all other representations. Our
approach uses automated transformations to create the model from the source
code and vice versa, but inside the source code the model is combined with non-
model parts of the application, thus enabling a seamless integration into larger
applications.

Different to the JAVA MODELING LANGUAGE (JML) [18], which offers a huge
syntax for specification annotations, we do not aim to present a notation for the
specification of all possible system models. This applies also to the approach
to use Smalltalk with it’s introspection capabilities as a meta language [19].
Contrary to Java PATHFINDER [20] our approach does not consider a whole
application as the model, but only selected parts of it. Hence our approach can be
more complete and formally founded and thus be used for explicit representation
and validation in this limited domain of state machine specifications.

6 Conclusion

In this contribution we proposed to embed state machine model semantics in
source code structures and extract concrete model representations on demand.
The model execution and extraction components have been outlined. As shown
by example, we can extract a complete state machine representation from given
JAvA source code. All of the source code structures in the Embedded Model
are used without change to execute, monitor and debug the model at run time.
Hence the objective to let application development in a larger context happen
simultaneously to model specification, validation and simulation for parts of the
application without double effort to maintain two abstraction levels is fulfilled.
So we can state that our approach can effectively be used to avoid maintaining
and merging different abstraction layers.
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