
Embedding State Mahine Models inObjet-Oriented Soure CodeMoritz Balz, Mihael Striewe, and Mihael GoedikeUniversity of Duisburg-Essen{moritz.balz,mihael.striewe,mihael.goedike}�s3.uni-due.deAbstrat. This ontribution presents an approah to maintain statemahine model semantis in objet-oriented strutures. A framework isreated that reads and exeutes these strutures at run time and is om-pletely aware of the model semantis. The goal is to embed suh stru-tures in arbitrary large systems and delegate program ontrol to theframework. Hene we an debug and validate the system at run timeand apply monitoring with respet to state mahine model harateris-tis.1 IntrodutionState mahines an be omprehensively spei�ed, simulated and veri�ed at de-sign time. We present an approah to retain model semantis in exeutable sys-tems to allow debugging, validation and monitoring at run time. Our approahwill be introdued by a real-world example and formalized later on. The exampledepits a load generator appliation in whih we implemented a state mahinemodel that ontrols program exeution and invokes existing business logi.Traditional ways to translate models into soure ode by either manual imple-mentation or automated ode generation [1℄ are not suitable for this appliation:The inherent loss of semanti information entails that models are related todeveloped systems only by the developer's knowledge [2℄, thus preventing auto-mati bak traking of hanges [3℄. Model Round-Trip Engineering onepts [4℄make ode synhronisation possible but require manual e�ort and are thus error-prone [5℄. Additionally, generation tools often lak the apabilities to integratetheir output into existing systems like our load generation appliation. Even ifonly one modeling language is used, the need to regenerate parts of the soureode after loal hanges ontradits a gradual integration [6℄.Model exeution engines (e.g. Exeutable UML [7℄) an avoid the mentionedproblems by interpreting model desriptions. This is not appropriate either, whenthe system an not be entirely de�ned in an exeutable model. This leads to aloss of type information at integration layers between model and residual soureode. In addition, bad performane might be experiened due to heavyweightintegration layers or neessary data onversion.Common to these approahes is the permanent existene of di�erent typesof model representations at several development stages or parts of the run time



system. Our approah aims at avoiding these di�erenes by storing state ma-hine model semantis expliitly in objet-oriented strutures. The goal is toembed suh strutures in arbitrary large systems and delegate program ontrolto the framework. The framework analyzes the ode strutures and extrats aninternal run time representation of the state mahine. It walks through the statemahine by evaluating guards and updates and invokes methods that representtransitions aordingly. These methods ontain arbitrary ode and onnet thestate mahine to the appliation logi. Our approah naturally ensures that theexeuted system is equivalent to the designed model. Moreover, we an debugand validate the system at run time and apply monitoring with respet to statemahine model harateristis. This bene�ts ome at the ost of having to obeyrules while writing the related soure ode strutures, but without the (oftennot realized) e�ort to maintain the soure ode and a separate model at thesame time. Setion 2 of this ontribution demonstrates the basi ideas by ex-ample, while setions 3 and 4 explain the formal approah and its mapping toa Java implementation in detail. Setions 5 and 6 show related work and drawthe onlusions.2 ExampleWe illustrate our approah on the basis of the mentioned load generator appli-ation that has been developed using Java. The ontrol mehanism is modelledas a state mahine. The program �ow starts with some preparations for themeasurement. Then an atual measurement run is performed wherein load isgenerated by worker threads. The result is evaluated and the number of workersis inreased and dereased in order to explore the load behaviour of a system un-der test. The last two steps are repeated until a measurement result is ahieved.The states before and after the measurement have transitions that �re depend-ing on the last measurement results. During transitions the appliation will e.g.inrease or derease workers.In order to maintain these state mahine semantis in the soure ode inaddition to appliation logi, we reate lasses that represent states. Methodsin these state types represent transitions that invoke business logi and are de-orated with meta data referening the transition target state. This leads to anetwork of state lasses being onneted by transition methods that representthe state mahine in objet-oriented strutures, whih is partly shown in �gure1. The state mahine starts at the initial state and performs some preparationswith the �rst transitions. Then it performs an atual measurement and reahesa state named �AfterMeasurement� depited at the top of �gure 1. The imple-mentation of this state is shown in listing 1.1 with minor omissions. It shows theway lasses and methods are interpreted as states and transitions and how theatual appliation omponents are invoked.State lasses are simply marked with the IState interfae. Transition methodsare marked by an annotation that refers to the target state lass and a ontrat



Fig. 1. State lasses and transition methods. The node desriptions are lass names,the edge labels represent method names.publi lass AfterMeasurementState implements IState {�Transition(target = AfterMeasurementState.lass, ontrat = RestartContrat.lass)publi void restartMeasurement(MeasurementModule ator) {ator.inreaseNumberOfRestarts();ator.doMeasure("Restarted measurement");}�Transition(target = UpUpState.lass, ontrat = BeginUpUpContrat.lass)publi void beginUpUp(MeasurementModule ator) {ator.resetRestarts();ator.beginUpUp();ator.doMeasure("Exploration by distane upwards");}// . . .�Transition(target = TerminationState.lass, ontrat = AbortContrat.lass)publi void abortMeasurement(MeasurementModule ator) {ator.terminateMeasurement();}} Listing 1.1. Class AfterMeasurementState with some outgoing transitionspubli lass BeginUpUpContrat implements IContrat<IMeasurementVariables> {publi boolean hekCondition(IMeasurementVariables vars) {return (!vars.getAbort() && !vars.getRestart() && vars.getTooLow());}publi boolean validate(IMeasurementVariables before, IMeasurementVariables after) {return (after.getNumberOfWorkers() == (before.getNumberOfWorkers() + before.getWorkerDistane()));}} Listing 1.2. Guards and updates in BeginUpUpContrat
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Fig. 2. The state mahine model of the load generatorlass ontaining guards and updates for this transition. The method ontentsuse a faade objet ator that enapsulates the appliation logi and separates itfrom the model strutures.Listing 1.2 shows the lass ontaining guards and updates for the BeginUpUptransition. Variable values de�ning the state spae are provided by another en-apsulating type, denoted vars, and used to evaluate guards in the hekConditionmethod. State hanges during transitions an be veri�ed with the validatemethod,that does not perform the atual update, but heks whether it has taken plaein the implementation as desired. Simple omparisons and logial operations inboth methods are mapped one-to-one. Updates are represented as tests for equal-ity as shown in listing 1.2, where the worker inrement is validated by hekingthat numberOfWorkers′ = (numberOfWorkers + distance).Embedding model semantis in ode strutures allows us to read the ompletemodel at design time and validate it in state mahine modeling tools. So far aomplete extration is possible for Uppaal [8℄: The state mahine shown in�gure 2 is ompletely extrated from the existing soure ode and just laid outmanually. How to do this is disussed in setion 3.4.As an be seen, these strutures are able to over states, transitions, guardsand updates and hene inlude nearly all state mahine semantis. The onlymissing item is the initial state, whih is overed by the exeution omponentneessary to walk through the mahine. This will be disussed in setion 3.3,after the formalization of our approah.3 Formalization of the ApproahThe ode strutures ontaining the state mahine model semantis will be ex-euted at run time and used as an input to state mahine modelling tools



at development time. Thus we need a universal de�nition as a formal basefor well-de�ned interpretations. For our approah we de�ne state mahines as
M = {S, T, V, P, U} with� S a set of states.� T ⊂ S × S a set of transitions between states.� V = {v1 . . . vn} a set of named variables.� P = {pt|t ∈ T } a set of guards for eah transition.� U = {ut|t ∈ T } a set of updates for eah transition.The appliation state is modi�ed only when transitions are �red. Exeutionontrol will be passed to appliation omponents at this point of time and returnto the state mahine when the next state is reahed. The variables are used atmodeling time for state spae analysis and are provided at run time by a soureode omponent representing the appliation state.Eah guard is an expression related to one or more variables that evaluatesto a boolean value. Guards will be used at design and run time to deide whihtransition in the urrent state should �re. Comparisons and basi arithmetioperations an be performed on variables and literals inside expressions.Eah variable update onsists of atomi assignments that de�ne either asingle value or a range of values as update for one variable. New values maybe onstants or variable values whih an be onneted using basi arithmetioperations as above. Additionally, eah variable value of the previous state isaessible to allow relative hanges. At design time updates are used to de�neand hange the model state spae. At run time they an be interpreted as post-onditions in order to monitor if the appliation is in an expeted state.3.1 Embedded Model Spei�ationTo represent the model in soure ode, distint objet-oriented strutures willbe de�ned that map to the model semantis. Beause they are part of arbitrarysoure ode, arbitrary state spaes will exist beside the well-de�ned model in-formation. Hene the model must also de�ne interfaes between state mahinestrutures and other soure ode to pass program exeution ontrol and variablevalues and thus hide the appliation logi.So the �Embedded Model� is de�ned as ∆ = {Actor,Σ,Θ,Λ, Φ, Ψ} with� Actor a faade type representing appliation logi whih is invoked duringtransitions.� Σ = {σs|s ∈ S} a set of unique identi�ed types that represent states.� Θ = {θt,σ|t ∈ T, σ ∈ Σ} a set of methods in state type σ, eah representinga transition t.� Λ an interfae de�ning methods {λv|v ∈ V } that return the urrent valuefor a variable v.� Φ = {φt|t ∈ T } a set of methods that implement guard heks for transitions.� Ψ = {ψt|t ∈ T } a set of methods that implement update heks for transi-tions.



State types implement an interfae whih de�nes no methods but allows totype-safely distinguish between state types and other types. Transition methodsare designated with meta data that refers to the target state, guard and updateimplementations. They have no return type and take as parameter an Actorinstane. The Actor type itself has arbitrary, appliation-spei� ontent and istreated as a blak box. Transition methods only make alls to methods providedby the Actor instane and therefore respet the oneptual separation betweenmodel and ode.The methods in Λmay query the appliation logi for any appliation variableat any point of time, but must never manipulate the appliation state. This way
Θ and Λ are the only well-de�ned interfaes between model and appliationsoure ode that allow manipulation and query of the appliation state.Eah φt returns true i� the pre-onditions of the guard hold. Due to their sim-ple struture desribed above, guards an be mapped to logial and arithmetialexpressions in the soure ode. Eah variable vn used in guards is representedas the aording all of the method λn. Obviously the simplest possible guard isthat there is none, in whih ase the soure ode method instantly returns true.Eah ψt returns true i� the variable updates interpreted as post-onditionshold. Parameters taken by this method are two instanes of Λ to allow ompar-isons, one granting aess to the urrent values and one ontaining ahed vari-able values from the point in time before the transition �red. Sine the methoddoes not perform an atual update but validates the state, variable updates arerepresented similar to guards as logial and arithmetial expressions. Eah singlevalue update is replaed by a test for equality and eah range update by a pair ofomparisons with lower and upper bound. If an update should be left unheked,the method an return true instantly.3.2 Representation in JavaFor an implementation of the onept skethed above, Java as a widespreadobjet-oriented programming language and run time environment was hosen.The Java-spei� onstruts and onventions are shortly outlined here. Theapproah is not limited to Java sine we an assume that similar onepts exist inother modern objet-oriented languages too. A subset of the available delarativestrutures [9℄ is used, namely lasses, interfaes, methods and annotations [10℄.In ombination with generi types the latter ensure type safety both for soureode and meta information and thus failitate an aurate soure ode reationby the developer.State types are lasses that implement the interfae IState. All methods inthe state lasses are treated as transitions when deorated with the �Transitionannotation. It ontains an attribute target to denote the transition's target statelass and an attribute ontrat that refers to a lass ontaining guard and updatemethods. Λ is realized as an interfae providing get-methods for eah variable
λv. The interfae itself and its implementation are provided by the appliationdeveloper. The ontents of these methods are blak boxes, too. It is up to theprogrammer to ensure that no manipulations of variable values happen when one



of these methods is alled. Guards and updates for a transition are loated inlasses implementing the interfae IContrat with the generi type of Λ. It de�nesthe aording methods hekCondition and validate whih return a boolean valueand take parameters of the Λ type.3.3 Model ExeutionTo exeute the state mahine model an exeution omponent is required thatwalks through the state mahine by interpreting state lass delarations andtransitions annotations. In eah state the guard methods for eah transitionmethod are invoked to determine whih transition will �re. Aordingly a tran-sition method itself will be invoked. To start model exeution the appliationpasses three parameters to the exeution omponent: The initial state lass, the
Actor instane and the Λ implementation. All other parts of the state mahinestruture are inferred from these and instantiated on demand.To save resoures, update heks are only enabled in a �debug� mode. In thisase the urrent variable values are ahed before a transition �res and after-wards provided to the update method together with the most reent variablevalues. For this purpose a fourth parameter is passed to the exeution ompo-nent, the Λ interfae lass, whih is needed for dynami instantiation of this typein Java for update methods. In summary, the exeution omponent an aessall information related to the state mahine model at run time: States, transi-tions, variable values and their use in guards and updates. This way it is possibleto monitor the state mahine operation in real-time or to log the informationand make ativities traeable afterwards with only a few modi�ations.3.4 Model Extration for Design Time AnalysisFor design time the Embedded Model is mapped to representations used inmodelling tools. Beause of the di�erent emphases of existing modeling and ver-i�ation tools, this annot be done as universal as for objet-oriented strutures.Nevertheless the desription of states, transitions and variables follows the gen-eral onepts of state mahines and should hene be diretly ompatible withany modeling tool. On the other hand it has to be taken into aount thatthe general theoretial onept of state mahines is realized in di�erent ways inommon modeling tehniques [11℄. The example presented in setion 2 showedthe extrated model in the syntax of Uppaal, whih is one sample output fora tool-spei� mapping. When seleting an atual modeling tool and formulat-ing the neessary mapping, it must be arefully examined whether the hosentool provides a syntax powerful enough to express the semantis of guards andupdates desribed above. Cheking guards by evaluating variables, logial opera-tors, arithmeti operators and omparators to boolean values an be assumed tobe possible in most ases. Updating variables with single values, obtained fromvariables and arithmeti operations, is a standard tehnique, too. A range up-date is interpreted as a random hoie of a value from the given interval followedby an update of the variable with this non-deterministi value. More preisely,



the question whether a tool supports range updates is the question whether itsupports non-deterministi hoies and allows to merge states de�ning the rangeof values for a variable into one single state. In our example, Uppaal supportsrange updates for variables based on non-deterministi hoies. Some minor hal-lenges regarding naming were solved in this example, too. The data type booleanis named bool in Uppaal and the get-pre�x of all variable methods is strippedfor better readability.For this ontribution, the model extration was performed by graph trans-formations, based on the abstrat syntax trees of Java and the DOM tree ofthe Uppaal data format. Triple Graph Grammars [12℄ an be applied here forparallel transformations of soure ode and tool data format with the generalstate mahine model as mapping shema. The detailed desription of this graphgrammar is beyond the sope of this paper.4 DisussionIt is important to notie that our approah inverts the traditional diretion ofmodel-to-ode generators. There is no model that is manipulated at design timeand transformed into soure ode from time to time. Instead there is a perma-nent model representation in the soure ode, whih is extrated for analysiswithin modelling tools from time to time. On the one hand this eliminates anye�ort to maintain and merge di�erent abstration layers. On the other hand,the hosen approah is not independent from programming languages and exe-ution environments, in our ase Java, as it is possible when using some othermodel-driven development tehnologies [1℄. Hene our future work at the toollevel aims to enable permanent partial transformations in real-time and heneparallel development of soure ode and external model representation. At theoneptual level we plan to realize more transformations from model to tools,e.g. into UML state hart diagrams [13℄ or the Cadene SMV model heker[14℄.The exeution omponent bene�ts from the permanent representation of themodel in ode strutures. Beause of this the atual work done by the exeutionomponent is limited to lass instantiations and method invoations. Sine alldynami funtionality is ontained in the invoked methods, the exeution is verye�ient as regular Java ode is exeuted. At the same time the state mahinemodel integrates in arbitrary business logi without enforing restraints on thenon-model ode. On the other hand, the developer has to take are to organizethe soure ode aordingly: The approah will only work if the lear separationis maintained and only valid expressions are used in methods whose ontent isinterpreted, i.e. guard and update methods. To detet errors here is possible onlyif the model is interpreted at design time.At a more general oneptual level, we aim to analyze the appliation of ourgeneral onept to domains and modeling methods other than state mahines.Espeially in these ases additional bene�ts an be expeted for larger projets,beause one hange in soure ode may in�uene more than one embedded model.



5 Related WorkThe attribute-oriented programming approah [15℄ with similar use of meta datain ode strutures has been explored to map UML models to ode strutures [16℄.However, this does not leverage the priniple of having only one representationfor model and soure ode and does not avoid round trip engineering. The sameapplies to Framework Spei� Modeling Languages [17℄, whih ould be of useif a state mahine framework would ontrol the appliation state. The oneptof �exeutable UML� [7℄ tries to overome inonsistenies between di�erent rep-resentations by the use of automated transformations or by de�ning a primaryrepresentation that may generate and override all other representations. Ourapproah uses automated transformations to reate the model from the soureode and vie versa, but inside the soure ode the model is ombined with non-model parts of the appliation, thus enabling a seamless integration into largerappliations.Di�erent to the Java Modeling Language (JML) [18℄, whih o�ers a hugesyntax for spei�ation annotations, we do not aim to present a notation for thespei�ation of all possible system models. This applies also to the approahto use Smalltalk with it's introspetion apabilities as a meta language [19℄.Contrary to Java PathFinder [20℄ our approah does not onsider a wholeappliation as the model, but only seleted parts of it. Hene our approah an bemore omplete and formally founded and thus be used for expliit representationand validation in this limited domain of state mahine spei�ations.6 ConlusionIn this ontribution we proposed to embed state mahine model semantis insoure ode strutures and extrat onrete model representations on demand.The model exeution and extration omponents have been outlined. As shownby example, we an extrat a omplete state mahine representation from givenJava soure ode. All of the soure ode strutures in the Embedded Modelare used without hange to exeute, monitor and debug the model at run time.Hene the objetive to let appliation development in a larger ontext happensimultaneously to model spei�ation, validation and simulation for parts of theappliation without double e�ort to maintain two abstration levels is ful�lled.So we an state that our approah an e�etively be used to avoid maintainingand merging di�erent abstration layers.Referenes1. Brown, A.W., Iyengar, S., Johnston, S.: A Rational approah to model-drivendevelopment. IBM Systems Journal 45(3) (2006) 463�4802. Tihy, M., Giese, H.: Seamless UML Support for Servie-based Software Arhite-tures. In Gue�, N., Artesiano, E., Reggio, G., eds.: Proeedings of the InternationalWorkshop on sientiFi engIneering of Distributed Java applIations (FIDJI) 2003,
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