
Embedding State Ma
hine Models inObje
t-Oriented Sour
e CodeMoritz Balz, Mi
hael Striewe, and Mi
hael Goedi
keUniversity of Duisburg-Essen{moritz.balz,mi
hael.striewe,mi
hael.goedi
ke}�s3.uni-due.deAbstra
t. This
ontribution presents an approa
h to maintain statema
hine model semanti
s in obje
t-oriented stru
tures. A framework is
reated that reads and exe
utes these stru
tures at run time and is
om-pletely aware of the model semanti
s. The goal is to embed su
h stru
-tures in arbitrary large systems and delegate program
ontrol to theframework. Hen
e we
an debug and validate the system at run timeand apply monitoring with respe
t to state ma
hine model
hara
teris-ti
s.1 Introdu
tionState ma
hines
an be
omprehensively spe
i�ed, simulated and veri�ed at de-sign time. We present an approa
h to retain model semanti
s in exe
utable sys-tems to allow debugging, validation and monitoring at run time. Our approa
hwill be introdu
ed by a real-world example and formalized later on. The exampledepi
ts a load generator appli
ation in whi
h we implemented a state ma
hinemodel that
ontrols program exe
ution and invokes existing business logi
.Traditional ways to translate models into sour
e
ode by either manual imple-mentation or automated
ode generation [1℄ are not suitable for this appli
ation:The inherent loss of semanti
 information entails that models are related todeveloped systems only by the developer's knowledge [2℄, thus preventing auto-mati
 ba
k tra
king of
hanges [3℄. Model Round-Trip Engineering
on
epts [4℄make
ode syn
hronisation possible but require manual e�ort and are thus error-prone [5℄. Additionally, generation tools often la
k the
apabilities to integratetheir output into existing systems like our load generation appli
ation. Even ifonly one modeling language is used, the need to regenerate parts of the sour
e
ode after lo
al
hanges
ontradi
ts a gradual integration [6℄.Model exe
ution engines (e.g. Exe
utable UML [7℄)
an avoid the mentionedproblems by interpreting model des
riptions. This is not appropriate either, whenthe system
an not be entirely de�ned in an exe
utable model. This leads to aloss of type information at integration layers between model and residual sour
e
ode. In addition, bad performan
e might be experien
ed due to heavyweightintegration layers or ne
essary data
onversion.Common to these approa
hes is the permanent existen
e of di�erent typesof model representations at several development stages or parts of the run time

system. Our approa
h aims at avoiding these di�eren
es by storing state ma-
hine model semanti
s expli
itly in obje
t-oriented stru
tures. The goal is toembed su
h stru
tures in arbitrary large systems and delegate program
ontrolto the framework. The framework analyzes the
ode stru
tures and extra
ts aninternal run time representation of the state ma
hine. It walks through the statema
hine by evaluating guards and updates and invokes methods that representtransitions a

ordingly. These methods
ontain arbitrary
ode and
onne
t thestate ma
hine to the appli
ation logi
. Our approa
h naturally ensures that theexe
uted system is equivalent to the designed model. Moreover, we
an debugand validate the system at run time and apply monitoring with respe
t to statema
hine model
hara
teristi
s. This bene�ts
ome at the
ost of having to obeyrules while writing the related sour
e
ode stru
tures, but without the (oftennot realized) e�ort to maintain the sour
e
ode and a separate model at thesame time. Se
tion 2 of this
ontribution demonstrates the basi
 ideas by ex-ample, while se
tions 3 and 4 explain the formal approa
h and its mapping toa Java implementation in detail. Se
tions 5 and 6 show related work and drawthe
on
lusions.2 ExampleWe illustrate our approa
h on the basis of the mentioned load generator appli-
ation that has been developed using Java. The
ontrol me
hanism is modelledas a state ma
hine. The program �ow starts with some preparations for themeasurement. Then an a
tual measurement run is performed wherein load isgenerated by worker threads. The result is evaluated and the number of workersis in
reased and de
reased in order to explore the load behaviour of a system un-der test. The last two steps are repeated until a measurement result is a
hieved.The states before and after the measurement have transitions that �re depend-ing on the last measurement results. During transitions the appli
ation will e.g.in
rease or de
rease workers.In order to maintain these state ma
hine semanti
s in the sour
e
ode inaddition to appli
ation logi
, we
reate
lasses that represent states. Methodsin these state types represent transitions that invoke business logi
 and are de
-orated with meta data referen
ing the transition target state. This leads to anetwork of state
lasses being
onne
ted by transition methods that representthe state ma
hine in obje
t-oriented stru
tures, whi
h is partly shown in �gure1. The state ma
hine starts at the initial state and performs some preparationswith the �rst transitions. Then it performs an a
tual measurement and rea
hesa state named �AfterMeasurement� depi
ted at the top of �gure 1. The imple-mentation of this state is shown in listing 1.1 with minor omissions. It shows theway
lasses and methods are interpreted as states and transitions and how thea
tual appli
ation
omponents are invoked.State
lasses are simply marked with the IState interfa
e. Transition methodsare marked by an annotation that refers to the target state
lass and a
ontra
t

Fig. 1. State
lasses and transition methods. The node des
riptions are
lass names,the edge labels represent method names.publi

lass AfterMeasurementState implements IState {�Transition(target = AfterMeasurementState.
lass,
ontra
t = RestartContra
t.
lass)publi
 void restartMeasurement(MeasurementModule a
tor) {a
tor.in
reaseNumberOfRestarts();a
tor.doMeasure("Restarted measurement");}�Transition(target = UpUpState.
lass,
ontra
t = BeginUpUpContra
t.
lass)publi
 void beginUpUp(MeasurementModule a
tor) {a
tor.resetRestarts();a
tor.beginUpUp();a
tor.doMeasure("Exploration by distan
e upwards");}// . . .�Transition(target = TerminationState.
lass,
ontra
t = AbortContra
t.
lass)publi
 void abortMeasurement(MeasurementModule a
tor) {a
tor.terminateMeasurement();}} Listing 1.1. Class AfterMeasurementState with some outgoing transitionspubli

lass BeginUpUpContra
t implements IContra
t<IMeasurementVariables> {publi
 boolean
he
kCondition(IMeasurementVariables vars) {return (!vars.getAbort() && !vars.getRestart() && vars.getTooLow());}publi
 boolean validate(IMeasurementVariables before, IMeasurementVariables after) {return (after.getNumberOfWorkers() == (before.getNumberOfWorkers() + before.getWorkerDistan
e()));}} Listing 1.2. Guards and updates in BeginUpUpContra
t

AfterMeasurementState

TerminationState

DownUpState

DownDownState

EndState

UpDownState

ReadyForMeasurementState

VerifyState

ExplorationStartState

UpUpState

true

true

((Abort==false)&&((Restart==false)&&TooLow))

((Abort==false)&&((Restart==false)&&TooLow))

((Abort==false)&&(Restart&&
(NumberOfRestarts<MaximumRestarts)))

true

((Abort==false)&&(Restart&&(NumberOfRestarts<MaximumRestarts)))

((Abort==false)&&(Restart&&
(NumberOfRestarts<MaximumRestarts)))

((Abort==false)&&((Restart==false)&&
(NumberOfWorkers>1)))

((Abort==false)&&(((Restart==false)&&
(NumberOfWorkers==1))&&TooHigh))

((Abort==false)&&
((Restart==false)&&TooLow)) ((Abort==false)&&((Restart==false)&&TooHigh))

((Abort==false)&&((Restart==false)&&TooLow))
NumberOfWorkers=(NumberOfWorkers+WorkerDistance)

((Abort==false)&&
(Restart&&(NumberOfRestarts<MaximumRestarts)))

((Abort==false)&&((Restart==false)&&TooLow))

(Abort||((NumberOfRestarts>=MaximumRestarts)&&Restart))(Abort||((NumberOfRestarts>=MaximumRestarts)&&Restart))

(Abort||((NumberOfRestarts>=MaximumRestarts)&&Restart))

(Abort||((NumberOfRestarts>=MaximumRestarts)&&Restart))

(Abort||(((Restart==false)&&(NumberOfWorkers==1))||
(Restart&&(NumberOfRestarts>=MaximumRestarts))))

(Abort||((NumberOfRestarts>=
MaximumRestarts)&&Restart))

((Abort==false)&&((Restart==false)&&TooHigh))

((Abort==false)&&(Restart&&
(NumberOfRestarts<MaximumRestarts)))

((Abort==false)&&((Restart==false)&&TooHigh))

((Abort==false)&&((Restart==false)&&TooHigh))

((Abort==false)&&(Restart&&
(NumberOfRestarts<MaximumRestarts)))

((Abort==false)&&(((Restart==false)&&TooHigh)&&
(NumberOfWorkers>1)))

Fig. 2. The state ma
hine model of the load generator
lass
ontaining guards and updates for this transition. The method
ontentsuse a fa
ade obje
t a
tor that en
apsulates the appli
ation logi
 and separates itfrom the model stru
tures.Listing 1.2 shows the
lass
ontaining guards and updates for the BeginUpUptransition. Variable values de�ning the state spa
e are provided by another en-
apsulating type, denoted vars, and used to evaluate guards in the
he
kConditionmethod. State
hanges during transitions
an be veri�ed with the validatemethod,that does not perform the a
tual update, but
he
ks whether it has taken pla
ein the implementation as desired. Simple
omparisons and logi
al operations inboth methods are mapped one-to-one. Updates are represented as tests for equal-ity as shown in listing 1.2, where the worker in
rement is validated by
he
kingthat numberOfWorkers′ = (numberOfWorkers + distance).Embedding model semanti
s in
ode stru
tures allows us to read the
ompletemodel at design time and validate it in state ma
hine modeling tools. So far a
omplete extra
tion is possible for Uppaal [8℄: The state ma
hine shown in�gure 2 is
ompletely extra
ted from the existing sour
e
ode and just laid outmanually. How to do this is dis
ussed in se
tion 3.4.As
an be seen, these stru
tures are able to
over states, transitions, guardsand updates and hen
e in
lude nearly all state ma
hine semanti
s. The onlymissing item is the initial state, whi
h is
overed by the exe
ution
omponentne
essary to walk through the ma
hine. This will be dis
ussed in se
tion 3.3,after the formalization of our approa
h.3 Formalization of the Approa
hThe
ode stru
tures
ontaining the state ma
hine model semanti
s will be ex-e
uted at run time and used as an input to state ma
hine modelling tools

at development time. Thus we need a universal de�nition as a formal basefor well-de�ned interpretations. For our approa
h we de�ne state ma
hines as
M = {S, T, V, P, U} with� S a set of states.� T ⊂ S × S a set of transitions between states.� V = {v1 . . . vn} a set of named variables.� P = {pt|t ∈ T } a set of guards for ea
h transition.� U = {ut|t ∈ T } a set of updates for ea
h transition.The appli
ation state is modi�ed only when transitions are �red. Exe
ution
ontrol will be passed to appli
ation
omponents at this point of time and returnto the state ma
hine when the next state is rea
hed. The variables are used atmodeling time for state spa
e analysis and are provided at run time by a sour
e
ode
omponent representing the appli
ation state.Ea
h guard is an expression related to one or more variables that evaluatesto a boolean value. Guards will be used at design and run time to de
ide whi
htransition in the
urrent state should �re. Comparisons and basi
 arithmeti
operations
an be performed on variables and literals inside expressions.Ea
h variable update
onsists of atomi
 assignments that de�ne either asingle value or a range of values as update for one variable. New values maybe
onstants or variable values whi
h
an be
onne
ted using basi
 arithmeti
operations as above. Additionally, ea
h variable value of the previous state isa

essible to allow relative
hanges. At design time updates are used to de�neand
hange the model state spa
e. At run time they
an be interpreted as post-
onditions in order to monitor if the appli
ation is in an expe
ted state.3.1 Embedded Model Spe
i�
ationTo represent the model in sour
e
ode, distin
t obje
t-oriented stru
tures willbe de�ned that map to the model semanti
s. Be
ause they are part of arbitrarysour
e
ode, arbitrary state spa
es will exist beside the well-de�ned model in-formation. Hen
e the model must also de�ne interfa
es between state ma
hinestru
tures and other sour
e
ode to pass program exe
ution
ontrol and variablevalues and thus hide the appli
ation logi
.So the �Embedded Model� is de�ned as ∆ = {Actor,Σ,Θ,Λ, Φ, Ψ} with� Actor a fa
ade type representing appli
ation logi
 whi
h is invoked duringtransitions.� Σ = {σs|s ∈ S} a set of unique identi�ed types that represent states.� Θ = {θt,σ|t ∈ T, σ ∈ Σ} a set of methods in state type σ, ea
h representinga transition t.� Λ an interfa
e de�ning methods {λv|v ∈ V } that return the
urrent valuefor a variable v.� Φ = {φt|t ∈ T } a set of methods that implement guard
he
ks for transitions.� Ψ = {ψt|t ∈ T } a set of methods that implement update
he
ks for transi-tions.

State types implement an interfa
e whi
h de�nes no methods but allows totype-safely distinguish between state types and other types. Transition methodsare designated with meta data that refers to the target state, guard and updateimplementations. They have no return type and take as parameter an Actorinstan
e. The Actor type itself has arbitrary, appli
ation-spe
i�

ontent and istreated as a bla
k box. Transition methods only make
alls to methods providedby the Actor instan
e and therefore respe
t the
on
eptual separation betweenmodel and
ode.The methods in Λmay query the appli
ation logi
 for any appli
ation variableat any point of time, but must never manipulate the appli
ation state. This way
Θ and Λ are the only well-de�ned interfa
es between model and appli
ationsour
e
ode that allow manipulation and query of the appli
ation state.Ea
h φt returns true i� the pre-
onditions of the guard hold. Due to their sim-ple stru
ture des
ribed above, guards
an be mapped to logi
al and arithmeti
alexpressions in the sour
e
ode. Ea
h variable vn used in guards is representedas the a

ording
all of the method λn. Obviously the simplest possible guard isthat there is none, in whi
h
ase the sour
e
ode method instantly returns true.Ea
h ψt returns true i� the variable updates interpreted as post-
onditionshold. Parameters taken by this method are two instan
es of Λ to allow
ompar-isons, one granting a

ess to the
urrent values and one
ontaining
a
hed vari-able values from the point in time before the transition �red. Sin
e the methoddoes not perform an a
tual update but validates the state, variable updates arerepresented similar to guards as logi
al and arithmeti
al expressions. Ea
h singlevalue update is repla
ed by a test for equality and ea
h range update by a pair of
omparisons with lower and upper bound. If an update should be left un
he
ked,the method
an return true instantly.3.2 Representation in JavaFor an implementation of the
on
ept sket
hed above, Java as a widespreadobje
t-oriented programming language and run time environment was
hosen.The Java-spe
i�

onstru
ts and
onventions are shortly outlined here. Theapproa
h is not limited to Java sin
e we
an assume that similar
on
epts exist inother modern obje
t-oriented languages too. A subset of the available de
larativestru
tures [9℄ is used, namely
lasses, interfa
es, methods and annotations [10℄.In
ombination with generi
 types the latter ensure type safety both for sour
e
ode and meta information and thus fa
ilitate an a

urate sour
e
ode
reationby the developer.State types are
lasses that implement the interfa
e IState. All methods inthe state
lasses are treated as transitions when de
orated with the �Transitionannotation. It
ontains an attribute target to denote the transition's target state
lass and an attribute
ontra
t that refers to a
lass
ontaining guard and updatemethods. Λ is realized as an interfa
e providing get-methods for ea
h variable
λv. The interfa
e itself and its implementation are provided by the appli
ationdeveloper. The
ontents of these methods are bla
k boxes, too. It is up to theprogrammer to ensure that no manipulations of variable values happen when one

of these methods is
alled. Guards and updates for a transition are lo
ated in
lasses implementing the interfa
e IContra
t with the generi
 type of Λ. It de�nesthe a

ording methods
he
kCondition and validate whi
h return a boolean valueand take parameters of the Λ type.3.3 Model Exe
utionTo exe
ute the state ma
hine model an exe
ution
omponent is required thatwalks through the state ma
hine by interpreting state
lass de
larations andtransitions annotations. In ea
h state the guard methods for ea
h transitionmethod are invoked to determine whi
h transition will �re. A

ordingly a tran-sition method itself will be invoked. To start model exe
ution the appli
ationpasses three parameters to the exe
ution
omponent: The initial state
lass, the
Actor instan
e and the Λ implementation. All other parts of the state ma
hinestru
ture are inferred from these and instantiated on demand.To save resour
es, update
he
ks are only enabled in a �debug� mode. In this
ase the
urrent variable values are
a
hed before a transition �res and after-wards provided to the update method together with the most re
ent variablevalues. For this purpose a fourth parameter is passed to the exe
ution
ompo-nent, the Λ interfa
e
lass, whi
h is needed for dynami
 instantiation of this typein Java for update methods. In summary, the exe
ution
omponent
an a

essall information related to the state ma
hine model at run time: States, transi-tions, variable values and their use in guards and updates. This way it is possibleto monitor the state ma
hine operation in real-time or to log the informationand make a
tivities tra
eable afterwards with only a few modi�
ations.3.4 Model Extra
tion for Design Time AnalysisFor design time the Embedded Model is mapped to representations used inmodelling tools. Be
ause of the di�erent emphases of existing modeling and ver-i�
ation tools, this
annot be done as universal as for obje
t-oriented stru
tures.Nevertheless the des
ription of states, transitions and variables follows the gen-eral
on
epts of state ma
hines and should hen
e be dire
tly
ompatible withany modeling tool. On the other hand it has to be taken into a

ount thatthe general theoreti
al
on
ept of state ma
hines is realized in di�erent ways in
ommon modeling te
hniques [11℄. The example presented in se
tion 2 showedthe extra
ted model in the syntax of Uppaal, whi
h is one sample output fora tool-spe
i�
 mapping. When sele
ting an a
tual modeling tool and formulat-ing the ne
essary mapping, it must be
arefully examined whether the
hosentool provides a syntax powerful enough to express the semanti
s of guards andupdates des
ribed above. Che
king guards by evaluating variables, logi
al opera-tors, arithmeti
 operators and
omparators to boolean values
an be assumed tobe possible in most
ases. Updating variables with single values, obtained fromvariables and arithmeti
 operations, is a standard te
hnique, too. A range up-date is interpreted as a random
hoi
e of a value from the given interval followedby an update of the variable with this non-deterministi
 value. More pre
isely,

the question whether a tool supports range updates is the question whether itsupports non-deterministi

hoi
es and allows to merge states de�ning the rangeof values for a variable into one single state. In our example, Uppaal supportsrange updates for variables based on non-deterministi

hoi
es. Some minor
hal-lenges regarding naming were solved in this example, too. The data type booleanis named bool in Uppaal and the get-pre�x of all variable methods is strippedfor better readability.For this
ontribution, the model extra
tion was performed by graph trans-formations, based on the abstra
t syntax trees of Java and the DOM tree ofthe Uppaal data format. Triple Graph Grammars [12℄
an be applied here forparallel transformations of sour
e
ode and tool data format with the generalstate ma
hine model as mapping s
hema. The detailed des
ription of this graphgrammar is beyond the s
ope of this paper.4 Dis
ussionIt is important to noti
e that our approa
h inverts the traditional dire
tion ofmodel-to-
ode generators. There is no model that is manipulated at design timeand transformed into sour
e
ode from time to time. Instead there is a perma-nent model representation in the sour
e
ode, whi
h is extra
ted for analysiswithin modelling tools from time to time. On the one hand this eliminates anye�ort to maintain and merge di�erent abstra
tion layers. On the other hand,the
hosen approa
h is not independent from programming languages and exe-
ution environments, in our
ase Java, as it is possible when using some othermodel-driven development te
hnologies [1℄. Hen
e our future work at the toollevel aims to enable permanent partial transformations in real-time and hen
eparallel development of sour
e
ode and external model representation. At the
on
eptual level we plan to realize more transformations from model to tools,e.g. into UML state
hart diagrams [13℄ or the Caden
e SMV model
he
ker[14℄.The exe
ution
omponent bene�ts from the permanent representation of themodel in
ode stru
tures. Be
ause of this the a
tual work done by the exe
ution
omponent is limited to
lass instantiations and method invo
ations. Sin
e alldynami
 fun
tionality is
ontained in the invoked methods, the exe
ution is verye�
ient as regular Java
ode is exe
uted. At the same time the state ma
hinemodel integrates in arbitrary business logi
 without enfor
ing restraints on thenon-model
ode. On the other hand, the developer has to take
are to organizethe sour
e
ode a

ordingly: The approa
h will only work if the
lear separationis maintained and only valid expressions are used in methods whose
ontent isinterpreted, i.e. guard and update methods. To dete
t errors here is possible onlyif the model is interpreted at design time.At a more general
on
eptual level, we aim to analyze the appli
ation of ourgeneral
on
ept to domains and modeling methods other than state ma
hines.Espe
ially in these
ases additional bene�ts
an be expe
ted for larger proje
ts,be
ause one
hange in sour
e
ode may in�uen
e more than one embedded model.

5 Related WorkThe attribute-oriented programming approa
h [15℄ with similar use of meta datain
ode stru
tures has been explored to map UML models to
ode stru
tures [16℄.However, this does not leverage the prin
iple of having only one representationfor model and sour
e
ode and does not avoid round trip engineering. The sameapplies to Framework Spe
i�
 Modeling Languages [17℄, whi
h
ould be of useif a state ma
hine framework would
ontrol the appli
ation state. The
on
eptof �exe
utable UML� [7℄ tries to over
ome in
onsisten
ies between di�erent rep-resentations by the use of automated transformations or by de�ning a primaryrepresentation that may generate and override all other representations. Ourapproa
h uses automated transformations to
reate the model from the sour
e
ode and vi
e versa, but inside the sour
e
ode the model is
ombined with non-model parts of the appli
ation, thus enabling a seamless integration into largerappli
ations.Di�erent to the Java Modeling Language (JML) [18℄, whi
h o�ers a hugesyntax for spe
i�
ation annotations, we do not aim to present a notation for thespe
i�
ation of all possible system models. This applies also to the approa
hto use Smalltalk with it's introspe
tion
apabilities as a meta language [19℄.Contrary to Java PathFinder [20℄ our approa
h does not
onsider a wholeappli
ation as the model, but only sele
ted parts of it. Hen
e our approa
h
an bemore
omplete and formally founded and thus be used for expli
it representationand validation in this limited domain of state ma
hine spe
i�
ations.6 Con
lusionIn this
ontribution we proposed to embed state ma
hine model semanti
s insour
e
ode stru
tures and extra
t
on
rete model representations on demand.The model exe
ution and extra
tion
omponents have been outlined. As shownby example, we
an extra
t a
omplete state ma
hine representation from givenJava sour
e
ode. All of the sour
e
ode stru
tures in the Embedded Modelare used without
hange to exe
ute, monitor and debug the model at run time.Hen
e the obje
tive to let appli
ation development in a larger
ontext happensimultaneously to model spe
i�
ation, validation and simulation for parts of theappli
ation without double e�ort to maintain two abstra
tion levels is ful�lled.So we
an state that our approa
h
an e�e
tively be used to avoid maintainingand merging di�erent abstra
tion layers.Referen
es1. Brown, A.W., Iyengar, S., Johnston, S.: A Rational approa
h to model-drivendevelopment. IBM Systems Journal 45(3) (2006) 463�4802. Ti
hy, M., Giese, H.: Seamless UML Support for Servi
e-based Software Ar
hite
-tures. In Gue�, N., Artesiano, E., Reggio, G., eds.: Pro
eedings of the InternationalWorkshop on s
ientiFi
 engIneering of Distributed Java applI
ations (FIDJI) 2003,

Luxembourg. Volume 2952 of Le
ture Notes in Computer S
ien
e., Springer-Verlag(November 2003) 128�1383. Baker, P., Loh, S., Weil, F.: Model-Driven Engineering in a Large Industrial Con-text � Motorola Case Study. In Briand, L., Williams, C., eds.: Model DrivenEngineering Languages and Systems. Volume 3713 of LNCS. (2005) 476�4914. Sendall, S., Küster, J.: Taming Model Round-Trip Engineering. In: Pro
eedingsof Workshop on Best Pra
ti
es for Model-Driven Software Development. (2004)5. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and theugly. IBM Systems Journal 45(3) (2006) 451�4616. Voká£, M., Glattetre, J.M.: Using a Domain-Spe
i�
 Language and Custom Toolsto Model a Multi-tier Servi
e-Oriented Appli
ation � Experien
es and Challenges.In Briand, L., Williams, C., eds.: Model Driven Engineering Languages and Sys-tems. Volume 3713 of LNCS. (2005) 492�5067. Mellor, S.J., Bal
er, M.J.: Exe
utable UML. Addison-Wesley (2002)8. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Int. Journal onSoftware Tools for Te
hnology Transfer 1(1�2) (O
t 1997) 134�1529. Gosling, J., Joy, B., Steele, G., Bra
ha, G.: Java(TM) Language Spe
i�
ation, The3rd Edition. Addison-Wesley Professional (2005)10. SunMi
rosystems, In
.: JSR 175: AMetadata Fa
ility for the JavaTMProgrammingLanguage http://j
p.org/en/jsr/detail?id=175.11. Crane, M.L., Dingel, J.: UML Vs. Classi
al Vs. Rhapsody State
harts: Not AllModels Are Created Equal. In Briand, L., Williams, C., eds.: Model Driven Engi-neering Languages and Systems. Volume 3713 of LNCS. (2005) 97�11212. S
hürr, A.: Spe
i�
ation of graph translators with triple graph grammars. In Mayr,E.W., S
hmidt, G., Tinhofer, G., eds.: Graph-Theoreti
 Con
epts in ComputerS
ien
e. Volume 903 of LNCS. (1994)13. OMG: UML 2.0 superstru
ture spe
i�
ation. Te
hni
al report, Obje
t Manage-ment Group (2004)14. M
Millan, K.: The Caden
e SMV Model Che
kerhttp://www.kenm
mil.
om/smv.html.15. S
hwarz, D.: Peeking Inside the Box: Attribute-Oriented Programming with Java1.5. ONJava.
om (June 2004)16. Wada, H., Suzuki, J.: Modeling Turnpike Frontend System: A Model-Driven Devel-opment Framework Leveraging UML Metamodeling and Attribute-Oriented Pro-gramming. In Briand, L.C., Williams, C., eds.: MoDELS. Volume 3713 of Le
tureNotes in Computer S
ien
e., Springer (2005) 584�60017. Antkiewi
z, M., Czarne
ki, K.: Framework-Spe
i�
 Modeling Languages withRound-Trip Engineering. [21℄ 692�70618. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A Notation for Detailed Design. InKilov, H., Rumpe, B., Simmonds, I., eds.: Behavioral Spe
i�
ations of Businessesand Systems, Kluwer (1999) 175�18819. Du
asse, S., Gîrba, T.: Using Smalltalk as a Re�e
tive Exe
utable Meta-language.[21℄ 604�61820. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Che
king Programs.Automated Software Engineering Journal 10(2) (2003)21. Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Model Driven EngineeringLanguages and Systems, 9th International Conferen
e, MoDELS 2006, Genova,Italy, O
tober 1-6, 2006, Pro
eedings. In Nierstrasz, O., Whittle, J., Harel, D.,Reggio, G., eds.: MoDELS. Volume 4199 of Le
ture Notes in Computer S
ien
e.,Springer (2006)

