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Abstract. Tomorrow’s eternal software system will co-evolve with their context:
their metamodels must adapt at runtime to ever-changing external requirements.
In this paper we present FAME, a polyglot library that keeps metamodels accessi-
ble and adaptable at runtime. Special care is taken to establish causal connection
between fame-classes and host-classes. As some host-languages offer limited re-
flection features only, not all implementations feature the same degree of causal
connection. We present and discuss three scenarios: 1) full causal connection,
2) no causal connection, and 3) emulated causal connection. Of which, both Sce-
nario 1 and 3 are suitable to deploy fully metamodel-driven applications.
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1 Why Metamodeling at Runtime?

Metamodeling is at the core of many web- and business applications. It is the means
through which meta-information about the domain of a system is represented. Meta-
modeling is traditionally limited to the static (i.e. design time) representation of meta-
information. Most often, only business data is extendible and editable at runtime, whereas
any change to the business model requires a re-design of the system, often involving ma-
jor engineering effort. For example, an application may allow users to edit the content
of forms, but not their structure and workflow.

In the vision of eternal software [1], running systems are imagined to adapt to vari-
ous, often unanticipated, context changes with little or no engineering effort. An eternal
system must co-evolve with its context: as the business changes over time, the system
is required to extend and adapt its metamodel. Therefore, we advocate to extend com-
mon systems with the ability to not only edit and extend the contained data but also
the metamodel at runtime. To meet this requirement, the structures of meta-information
represented in a metamodel are to be kept accessible and adaptable at runtime. As
such, they can be used to change and extend the metamodel at runtime—that is after
the system has been put in use.

This approach has been realized in a library called FAME, which provides a lightweight
kernel to represent both models (i.e. data) and metamodels using the same structures
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at runtime. FAME has initially been developed as the kernel of Moose [2], a highly-
adaptable Smalltalk application used for research in software- and information visual-
ization. Within the last year, the library has been ported (at varying stages of specifica-
tion conformance) to: Squeak, Java, Python, and partially, C# and Ruby.

This paper presents a complete description of Fame’s API and design, including
its lightweight meta-metamodel (FM3) and text-based exchange format (MSE). Design
decisions and implementation issues are discussed. In particular, as some languages of-
fer limited reflective features only, not all implementations of Fame feature the same
degree of causal connection. We present and discuss three scenarios: 1) full causal con-
nection, 2) no causal connection, and 3) emulated causal connection, of which both
Scenarios 1 and 3 are suitable to deploy fully metamodel-driven applications.

In general, the approach taken by Fame is related to previous work on runtime
metamodeling by Costa et al [3], Jouault et al [4], and Clark et al [5]—please refer to
our previous work [6] for comprehensive list of references and related work. Parts of
Fame’s implementation originate from Renggli’s Magritte library [7].

The remainder of the paper is structured as follows. Section 2 starts with an overview
of FAME and discuss afterwards the core abstractions: in Section 3 the meta-architecture,
in Section 4 the FM3 meta-metamodel, in Section 5 the Fame API, and in Section 6
model serialization. In Section 7 we present and discuss three scenarios for causal con-
nection between fame-classes and host-classes. Finally, Section 8 concludes.

2 Fame in a Nutshell

The purpose of FAME is to attach meta-information to the objects of a running system.
Fame provides a uniform interface on both objects and their meta-information, that is,
both are manipulated with the same API calls.

Since Fame is a polyglot library we have taken special care to ensure that all im-
plementations offer the same core API. Fame has currently been ported to: Smalltalk,
Java, Python, and partially, C# and Ruby. The Java library acts as the reference imple-
mentation, whereas the Smalltalk library offers the most additional features.

At the very heart of Fame is a tower of models with three layers [8]. Each layer
contains elements which conform to the meta-information specified by the layer above.
The bottom layer M1 contains objects of your running application, the middle layer
M2 contains meta-information about your objects, and the top-most layer M3 contains
meta-information about the meta-information of you objects. Thus, we refer to these
layers as model, metamodel and meta-metamodel layer. Even though, at runtime, any
layer is editable, it is common to populate the top-most layer with a static set of ele-
ments. This static set of elements is referred to as FM3, the FAME meta-metamodel.

Additionally, elements of any layer are serializable to text stream and back using the
MSE exchange format. MSE is a generic file format to exchange any kind of objects,
regardless of the metamodel. Thus, FAME-compliant applications can exchange both
data (i.e. models) and metamodels by the same means.

The complete specification of both FM3 and MSE, as well as the sources of FAME
are available at http://smallwiki.unibe.ch/fame under GPL license.

http://smallwiki.unibe.ch/fame
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Fig. 1. Class diagram of FAME: including the FM3 meta-metamodel (left), Fame meta-
architecture and API (center), and MSE serialization/streaming (right, top center).

Design and Core Abstractions of Fame

All FAME implementations are realized using the same design. Figure 1 presents a class
diagram with the main host-classes1, from left to right: Element, Class, Property and
Package implement the FM3 meta-metamodel. Tower, Repository, and MetaRepository
implement the meta-architecture and most of Fame’s API. Parser, ParseClient and its
subclasses are used for serialization and de-serialization of models.

3 Meta-Architecture —– Towers – Models – Elements

The major components of Fame’s meta-architecture are towers, models, and elements.
Towers contain models, models contain elements. There are two kinds of models: meta-
repositories and repositories. The former contain FM3-compliant elements only, whereas
the latter my contain any kind of host-language objects, typically domain objects. Often
the terms model and repository are used interchangeably.

Each tower consists of three layers referred to as, from bottom to top: M1, M2, and
M3. The elements on every layer must conform to the meta-information specified by
the layer above. A typical setup is as follows: at the bottom layer a repository holding
domain objects of the running application, at the middle layer a meta-repository hold-
ing the current domain model, and eventually, at the top-most layer, a meta-repository
holding the self-described FM3 metamodel.

The tower is not implemented as a singleton because more than one application may
run in the same object memory, each with its own tower. These towers may share the
top layers. For example, if each open document of an application is represented by a
concurrent tower, then the towers have different M1 layers but share the other layers.

1 The term class is used by both object-oriented programming and the metamodeling paradigm,
but with different meanings. Hence, we refer to the classes of the host-language as host-classes
and to the classes of FM3-compliant metamodels as fame-classes.
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Fig. 2. Complete class diagram of FM3 meta-metamodel, including all properties and
associations. Derived properties are marked with a leading slash character.

4 Meta-Metamodel —– Classes – Properties – Packages

All elements contained in a meta-repository must conform to FM3. These are all ele-
ments on the M2 and the M3 layer of a tower. Since the M3 layer is usually populated
with elements that represent FM3, it conforms to itself.

C.A.R Hoare once said that “inside every large program there is a small program
trying to get out,” and in fact—FM3 is MOF 2.0 [8] reduced to the minimum. Meta, a
precursor of Fame, has been used for many years as the kernel of Moose. Meta used
MOF and later EMOF as its meta-metamodel. However, code reviews had shown that
we only ever used a very small subset of EMOF, while many of the rarely used features
had repeatedly been the cause of additional engineering effort.

Figure 2 presents the complete class diagram of FM3. There are three kinds of
elements: packages, fame-classes, and properties. Packages contain classes and prop-
erties, classes contain properties. Packages can also directly contain properties which
were not declared in the fame-class itself. In this case we say that those packages extend
the fame-class and refer to the properties as extensions.

Extensions are one of the two additional FM3 features not present in EMOF. The
other is unique keys. Both facilitate better metamodeling at runtime.

Extension properties are related to packaging and modularization of metamodels.
Given package A and package B, package B can use extension properties to add prop-
erties to classes contained in A without tampering with the definition of A itself. This
is useful for evolving applications. For example, for plugins or libraries that choose to
extend the metamodel of an existing application.

Unique keys are related to the composition of associated elements. A fame-class
must not have more than one keyed property. If an element with a keyed property k
is contained in a container, the value of k must be unique with regard to the set of
all values of k of all elements contained in the same container. This is useful for the
improvement of the performance of runtime elements (discussed below in Section 7).
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Fig. 3. Class diagram of the Fame API: (left) interfaces for runtime manipulation and
elements and models, (right and bottom) interfaces for serialization and streaming.

The container can keep the composites in a host-dictionary rather than a host-collection,
and thus provide access to composites by key in O(1) rather than O(n) time.

5 Fame API —– Create – Delete – Get – Set – Undefined

Since Fame is a polyglot library we have taken care to ensure that all implementations
provide the same API. Fame offers functionality to

– manage one or more tower of models,
– manipulate elements and their meta-information,
– serialize and de-serialize (meta)models.

All elements (both objects and meta-information) are manipulated with the same API
calls. This is possible since within a tower of models, objects and meta-information are
“meta-described” in the same way. This allows for both models and metamodels to be
serialized to the same exchange format.

Figure 3 presents the Fame API, from left to right/bottom: Repository and MetaRepos-
itory offer functionality to manipulate elements. Whereas Parser, ParseClient and its
subclasses offer functionality to serialize and de-serialize complete (meta)models.

All elements have attributes. Each attribute has a name and optionally refers to
another element. For each property of an element’s fame-class, there must be a corre-
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sponding attribute with the same name as the property. The value of an attribute is either
set (that is, referring to another element) or empty and thus undefined2.

Depending on host-language and scenario, attributes are either realized as instance
variables or using separate host-classes. In particular, bi-directional relations are often
realized as separate host-classes so that manipulation of one end automatically updates
the opposite end.

The Fame API offers these five operations on elements:

– create(name) creates a new element that conforms to the specified fame-class. All
attributes are initially undefined (unless specified otherwise by their type).

– delete(slot, element) resets the value of an attribute to undefined.
– get(slot, element) either returns the value of the attribute or fails if the value is

undefined.
– set(slot,element,value) sets the value of a slot to the specified value.
– undefined?(slot,element) returns true if the slot is undefined or false otherwise.

This set of operations is similar to the five methods of RESTful web-programming [9].
This is not a coincidence, as many of the actions on business objects can be expressed
in terms of common operations on the object graph of a running application. The same
applies to the manipulation of meta-information. Fame does not offer dedicated opera-
tions for the meta-information. Rather, meta-information is manipulated with the same
operations, the only difference being that we are operating another layer of the model-
tower. The operation description(element) is used to navigate from an element to its
meta-information.

Depending on the host-language and scenario, these operations of the Fame API are
offered on the Repository host-class only (as indicated by Figure 3) or on native objects
as well. The latter is not supported by host-languages where host-classes are closed for
extension, which is the case for Java, but not C# and the others.

6 Serialization and Streaming —– Parse – Infer – Print

Elements of any layer are serializable to text stream and back using the MSE exchange
format. MSE is a generic file format to exchange any kind of objects, regardless of the
metamodel. Thus, FAME-compliant applications can exchange both data (i.e. models)
and metamodels by the same means.

Serialization of (meta)models is based on streaming. Figure 3 presents the main col-
laborators of streaming to the right and the bottom. There are two kinds of collaborators:
producers and consumers. Producers are host-classes that offers an accept(ParseClient)
method. Consumers are host-classes that implement the ParseClient interface.

Fame offers two default producers:

Parser parses an MSE-compliant text stream; and
Repository iterates over all contained elements.

2 Please note, that undefined and nil are not the same: according to the FM3 specification, nil
is a predefined instance of Object, whereas undefined describes the value of an attribute. The
value of an attribute that holds a reference to nil is thus not undefined.
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Fig. 4. Three scenarios of causal connection in Fame: (left), (center), (right).

It also offers default consumers:

RepositoryBuilder reads models given the stream of a model;
MetamodelInferencer infers the metamodel given the stream of a model; and
MSEPrinter serializes (meta)models to text streams.

The combination of inferencer and builder is able to import models for which the meta-
model is not known or not available for some reason.

Models are exchanged between producers and consumers by means of a strict proto-
col. This communication is unidirectional. The producers fire a series of events to which
the consumers listen. In case the protocol is not followed, the entire sequence is con-
sidered to be illegal. Each event corresponds to a method in the ParseClient interface.
These methods must be called in following order (given as grammar rules):

Sequence = Document ?
Document = beginDocument Element ∗ endDocument
Element = beginElement serial ? Attribute ∗ endElement
Attribute = beginAttribute Value ∗ endAttribute
Value = Element | reference | primitive

In fact, the above protocol corresponds to the grammar of the MSE exchange for-
mat3 as specified in Appendix A. To avoid dependencies between streaming and meta-
architecture, primitive parameters are only used in event signatures. Thus, serialized
elements can be processed without setting up the entire meta-architecture first.

7 Causal Connection Between Fame-Classes and Host-Classes

Depending on host language and scenario, a causal connection between fame- and host-
classes is maintained or not. Causal connection is required to update elements when

3 The original meaning of MSE has been lost in the dust of history, however MSE is sometimes
refered to as “Moose without objects” in reference to Fame’s origin as kernel of Moose.
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their meta-information changes. There are three possible scenarios, as illustrated on
Figure 4 from left to right:

– Each fame-class is associated with a corresponding host-class between which full
causal connection is established. Changes to fame-classes are propagated to host-
classes, and vice versa. The scenario is the default use case for languages that sup-
port hot swapping. Currently these are Smalltalk and Ruby, although it is also per-
fectly possible for Python.

– Each fame-class is associated with a corresponding host-class, but no causal con-
nection is established. In fact, both classes are considered immutable and attempts
to change fame-classes results in failure. Even though this scenario partly defies the
purpose of Fame, it is default for Java, C# and Python.

– All model elements are instances of RuntimeElement, a dedicated host-class
which emulates instances of fame-classes by using host-dictionaries. In this case
fame-classes are not associated with host-classes, but rather directly referred to by
the runtime elements. Causal connection between fame-classes and runtime ele-
ments is maintained. Changes to fame-classes are propagated and applied to all
associated runtime elements. Currently this scenario is available for Smalltalk and
Java.

Fame is a polyglot library and has been implemented (at varying stages of standard
conformance) for many languages, each with its strengths and weaknesses. Even though
all implementations offer the same core features, they differ in the degree to which
causal connection between fame-classes and host-classes is maintained.

Due to missing hot swapping support by the host-language, the Java implementation
offers the least degree of causal connection. The Smalltalk one offers the highest degree
of causal connection.

In Smalltalk, FAME has been leveraged to the same level of abstraction and tool
support as the host-language. For example, each manipulation that is applied to a meta-
model is translated into a corresponding refactoring that is applied at runtime to the
host-classes. Furthermore, both IDE and debugging tools have been extended to allow
developers to inspect and manipulate the meta-information of any object at runtime.

Smalltalk development happens at runtime. You can think of its IDE as an advanced
graphical REPL interface, and of editing source code as applying a sequence of runtime
refactorings. It was only natural to extend these runtime development tools with support
for metamodeling.

The degree of causal connection implies the degree to which a Fame implementation
can bridge the gap between host-language and metamodeling at runtime. The above
scenarios differ as follows

– Under Scenario 1 there is almost no gap between the host-language and metamod-
eling. Manipulating elements with host-language constructs or using the Fame API
is equivalent, both have the same semantics.

– Under Scenario 3, RuntimeElement introduces a gap between host-language and
metamodeling. All operations on runtime elements must use the Fame API.

For example, given element e in model m, there are two ways to set the value of a slot
zork: either using host-language constructs e.zork(value), or using the Fame API
m.set("zork",e,value). Scenario 3 supports the latter only.
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Given a fully metamodel-driven application however, the difference between Sce-
nario 1 on the one hand and Scenario 3 on the other hand is moot. Such an application
will typically not require any code that bypasses the Fame API and can thus be realized
under any of those two given scenarios of causal connection. Only Scenario 2 differs
from the others as it is immutable. Any usage of the part of the Fame API which alters
metamodels will result in failure.

A good example of a FAME-based application which is (almost) fully metamodel-
driven is provided by Ducasse et al [6]. They present Moose, a research tool for software-
and information visualization, that

– generates all UIs at runtime based on meta-information,
– exclusively uses the Fame API to interact with domain objects,
– exclusively uses the Fame API to interact with meta-information,
– exclusively uses Fame streaming to (de)serialize its data.

Moose is written in Smalltalk which employs Scenario 1. As long as Fame’s API is
never bypassed using host-language constructs, the same (or at least a similar) applica-
tion could be written using Scenario 3 without loss of features or functionality. How-
ever, it remains open at which cost of runtime performance and development overhead.

8 Conclusion

FAME is a polyglot library for metamodeling at runtime. Fame attaches meta-information
to the objects of a running application. The attached meta-infomration itself is described
by another layer of meta-information, which is eventually described by itself. The API
of Fame offers a common set of instructions to manipulate elements at any layer.

Special care is taken to integrate the meta-information as seamless as possible into
the structures of the host-language. In particular, to establish causal connection between
fame-classes and host-classes. As some hosts only offer limited reflection features, not
all implementations of Fame offer the same degree of causal connection.

Due to missing hot swapping support by the host-language, of all FAME implemen-
tations, the Java one offers the least degree of causal connection. On the other hand, the
Smalltalk one offers the highest degree of causal connection.

Fame supports three different scenarios of causal connection: 1) full causal connec-
tion, 2) no causal connection, and 3) emulated causal connection. All three are presented
and discussed in the paper. We show that fully metamodel-driven applications can be
written for both Scenario 1 and Scenario 3, as long as no host-language constructs are
used to bypass Fame’s metamodeling API.
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A Grammar of MSE Exchange Format
Root := Document ?
Document := OPEN ElementNode * CLOSE
ElementNode := OPEN NAME Serial ? AttributeNode * CLOSE
Serial := OPEN ID INTEGER CLOSE
AttributeNode := OPEN Name ValueNode * CLOSE
ValueNode := Primitive | Reference | ElementNode
Primitive := STRING | NUMBER | TRUE | FALSE | NIL
Reference := IntegerReference | NameReference
IntegerReference := OPEN REF INTEGER CLOSE
NameReference := OPEN REF NAME CLOSE

CLOSE := ")"
FALSE := "false"
ID := "id:"
INTEGER := digit +
NAME := letter ( letter | digit ) * ( "." letter ( letter | digit ) ) *
NUMBER := "-" ? digit + ( "." digit + ) ? ( "e" "-" ? digit + ) ?
OPEN := "("
REF := "ref:"
STRING := ( "’" [ˆ’] * "’" ) +
TRUE := "true"
comment := "\"" [ˆ"] * "\""
digit := [0-9]
letter := [a-zA-Z_]
whitespace := "\f" | "\n" | "\r" | "\s" | "\t"

All MSE text streams must use UTF-8 encoding.
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