A Runtime Model for Monitoring
Software Adaptation Safety and its
Concretisation as a Service

Audrey Occello!, Anne-Marie Dery-Pinna', Michel Riveill!

13S Laboratory, France
{occello, pinna, riveill}@polytech.unice.fr

Abstract. Dynamic software adaptations may lead application execu-
tion to unsafe states. Then, the detection of adaptation-related errors is
needed. We propose a model-based detection in order to define a solution
that can be used in multiple platforms. This paper is intended to show
how a runtime model for monitoring adaptation safety may look like and
how it may be concretized in order to interact with real applications.

Keywords. Runtime models, adaptation safety, monitoring, service.

1 Introduction

Software systems are becoming more complex as they are composed
of distributed components using a variety of devices and platforms to
deliver services to mobile end-users. Such complexity also increases
the need of adapting these systems to feet the changing environ-
ment. As these adaptations involve changing the structure or the
behavior of applications, they may lead application execution to
unsafe states. For example, a functionality may be removed acci-
dentally when removing a component or undesired cycles may be
introduced in new interactions between components. The detection
of adaptation-related errors is needed to control adaptation safety.

As well as Medicine can be preventive or curative, we can choose
to repair or anticipate adaptation-related errors. Repairing an exe-
cuting system is difficult because it assumes that we can resume to
an earlier state of the application and often force to freeze a part or
even the whole application execution. We believe that freezing the
application while it is adapted in order to detect errors is not a good
remedy for highly available applications. We prefer to monitor the
applications and prevent unsafe adaptations to occur.

Models are usually used at design time to capture architectural
decisions and to ensure a common understanding. Such informa-
tion is generally not available at runtime because it is lost when
the model elements are transformed into runtime artifacts. However,
runtime models have been used for decades in the meta-programming
research community [1] in the form of meta-object protocols [2]
enabling systems to control themselves during their execution. As
Muller and Barais said, “automatic or even self-adaptability of the
running system may be achieved by taking decisions based on mon-
itoring information captured by runtime models” [3]. This can be
applied to our problem: a system can take the decision of accept-
ing or discarding an adaptation request by monitoring the history of
adaptations that have been already performed on it.

We adopt a Model Driven Engineering [4] approach in order to
define a monitoring solution that can be used in multiple platforms
and whose abstraction makes it possible to reason about the solution
correctness as a one-time cost. In previous work, we detailed what
kind of adaptation-related verifications are carried out [5], [6], how
we modeled adaptation safety [7] and how we established the cor-
rectness of our modeling [8]. In this paper, we show how a runtime
model for monitoring adaptation safety may look like and how it
may be concretized in order to interact with real applications.

2 How does a runtime model for monitoring
adaptation safety look like?

The main elements of our runtime model, called Satin are depicted
in Figure 1. To illustrate these elements, we will take, as a running
example in the next section, an application made of diaries.

2.1 Software entities to be monitored

Components

In Satin, a component represents any software instance (unit of ex-
ecution) composing the application and that is capable of exhibiting
its interface(s): object, component, service, etc. Only the informa-
tion about the identity and implemented interfaces of such software
instance is reified (we do not deal with the software instances’ state).

1.n 1

Component ConcreteRole 4D Role | +target 1.n |EmittedPort _D Port
+roles

1.n | +participants ? +emittedPorts ?

1.n 1.n 1.n
Adaptationinstance AdaptationPattern GenericRole . [ProvidedPort

+instances +parameters +providedPorts

Fig. 1. Satin runtime model overview

Consider lizDiary and johnDiary, two diary instances of our running
example, implementing a same interface with the add, remove, get
and query meeting functionalities. At the Satin model level, lizDiary
and johnDiary are two instances of the Component class.

Component roles
A Satin component is associated with roles (see the ConcreteRole
class in Figure 1) which reify information about the software in-
stance’s implemented interfaces. Roles are composed of ports which
are abstractions of operations provided by the component (see the
ProvidedPort class in Figure 1) or required by one of the com-
ponent adaptations (see the EmittedPort class in Figure 1). The
interface implemented by the diary components is represented by
the BasicDiary role. BasicDiary provided ports are: addMeeting,
removeMeeting, getMeeting, isFree corresponding to functionalities
that are present in the component interface at the platform level.
At any time, the roles of a component reflect its interactions
with the environment. At the beginning, components’ roles have only
provided ports. When a component is adapted, its roles evolve and
emitted ports are added to these roles. Roles are not shared between
components. lizDiary and johnDiary have their own BasicDiary role
and they evolve independently.

Adaptation patterns

In platforms, runtime adaptations can be structural and behavioral
and consists of a set of elementary actions, which can express: 1) ad-
dition, withdrawal or replacement of components within an assem-
bly, 2) addition and withdrawal of component ports, or 3) behavior
modification of component ports.

In Satin, an adaptation pattern represents the unit of appli-
cation and reuse of platform adaptations. This concept is used to
reproduce at the model level the modifications performed for an
adaptation at the platform level. For example, the code below de-
picts an adaptation pattern that contains an elementary action mod-
ifying the behavior associated with an addMeeting port in a diary
application.

adaptationPattern Synchronization(SynchronizingDiary di,
SynchronizedDiary d2) {
modifyPort di.addMeeting(Meeting m)
-> if (d2.isFree(m)) then
dl._call(m); d2.addMeeting(m)
else
dl. call(m); d2.printError(‘Not synchronized’)
endif

The Synchronization adaptation pattern expresses that any ad-
dition of a meeting to a synchronizing diary also involves an addition
of the meeting to the diary to be synchronized. If this is not pos-
sible because the time slot is not free, a synchronization conflict is
reported. Note that the _call expression refers to a built-in delega-
tion (like proceed in AspectJ [9]) that invokes the prior, non-adapted
version of addMeeting.

Adaptation pattern roles

An adaptation pattern is defined on a set of roles. An adapta-
tion pattern role (see the GenericRole class in Figure 1) specifies
the ports that a component must provide (see the ProvidedPort
class in Figure 1) or requires (see the EmittedPort class in Figure
1) to play this role in an adaptation. For instance, in the previ-
ous example, the Synchronization adaptation pattern expects two
parameters with two different roles: The first parameter must con-
form to the SynchronizingDiary role by providing at least a port that
conforms to addMeeting. The second parameter must conform to the
SynchronizedDiary role by providing at least ports that conform to
addMeeting, isFree and printError.

2.2 The monitoring criteria: Safety properties

Now that the software entities to monitor are well defined, we need
to specify what to monitor. In our case, the monitoring depends on
the criteria of safe adaptations. For that, we have identified a set of
safety properties, which cover a large range of errors: from “assem-
bly inconsistencies” [10], “message not understood” [11] local errors
up to more global errors such as “adaptation composition conflicts”
[12], “synchronization” and “divergence” [13]. Each safety property
is guaranteed by a set of OCL (Object Constraint Language) [14]
constraints (operation preconditions) attached to the Satin runtime
model.

We suppose that the application initial state is safe (each com-
ponent and the initial assemblies of these components are safe). If
the OCL constraints are checked regarding the adaptation to per-
form then the adaptation can proceed and we guarantee that the
application state remains safe after the adaptation.

Next section explains how to use the Satin runtime model in
platforms offering adaptation facilities.

3 Making the model available at runtime

Two approaches can be considered to concretize the model. A first
approach consists in adding safety code corresponding to the safety
properties in a platform by extension of its model. This is done in two
steps: 1) we must map the elements of the Satin model to elements of
the target platform, 2) once the target element is identified, we must
generate the safety properties’s constraints on them [5]. This solution
has several drawbacks. First, there is not always a one-to-one corre-
spondence between Satin model element and platform elements. In
this case, the generation of the safety properties’s constraints is more
complicated. Secondly, the minimization of software defects being an
important issue in critical application areas, we have used validation
and verification techniques to ensure the model correctness with a
formal foundation [8]. However, such verifications and validations are
lost with this approach since the constraints are regenerated at the
platform level: mapping to N platforms implies N revalidations.

Another approach consists in populating the Satin model with
platform-dependent application information first and then checking
for adaptation safety at the Satin model level. For this, the model is
made available at runtime as a service. A service protocol formalizes
the way the service can be used and how the service communicates
with the platforms. The safety service tells whether an adaptation
of an application A is safe or not according to the operations offered
by the components and according to the previous adaptations of A,
stored as one goes along. This helps to prevent adaptations that
would lead the application to an unsafe state. The difficulty with
this approach is that we have to manage platform diversity as there
is no mapping step. But the gain is that one implementation of the
service makes it possible to use the model with several platforms.
Moreover, the results of the verification and validation step can be
preserved or need to be performed again only once at most.

Section 3.1 describes the service built on top of the Satin model.
Section 3.2 explains how we take into account platform diversity.

3.1 Service description

The safety service can be used according to the following process.
At each step, a subset of OCL constraints is checked in order to
detect if a platform adaptation operation violates one of the safety
properties. Figure 2 presents the overall service architecture.

1. Components are registered to the service in order to have a partial
representation of the application to monitor. However, the step
can be delayed to the first time a component is being adapted
(step 3): only the components implied in an adaptation need to
be represented in the service state (at the Satin runtime model
level).

2. The description of the adaptation to perform at the platform level
is registered to the service as an adaptation pattern.

3. An adaptation pattern is applied to a list of components in order
to perform at the model level the adaptation triggered at the
platform level. The components are registered if not already done.

4. The adaptation pattern of step 3 is unapplied in order for the
modifications applied to components to be undone if requested
at the platform level. This step is optional.

Partial meta representation of A (in Satin runtime model) Saf ty R
afrety service

Rolel ‘ (componentZH Role2 ‘
Service entry point

Application A Adaptation trigger
g [componentl) [componentz)

Platform

Fig. 2. Safety service architecture : component adaptation and service query

Combining step 3 and step 4 makes it possible to replace compo-
nents in assemblies. Steps 3 and 4 modify the state of the service to
memorize the adaptation of components. These steps are necessary
to synchronize the platform and the service so that the history of
adaptations is equivalent in the service and in the platform.

The service entry point is described by an IDL Corba inter-
face that allows a platform to use the service without thoroughly
knowing its internal mechanisms. Each interface operation is associ-
ated with a step of the process: (un)registration of components, cre-
ation/destruction of adaptation patterns, (un)application of adapta-
tion patterns, the replacement of components in assemblies.

3.2 Parametrization of service

To evaluate the OCL constraints preserving the safety properties,
the service needs information about the monitored application. The
way of retrieving and interpreting such information varies from one
platform to another one. To take into account platform specificities,
the service needs to be parametrized.

Data extraction parametrization point. To populate the
model with information about the application, some data need to be
extracted. The first time a component is involved in an adaptation
at the platform level, a corresponding component is created at the
model level (step 1). The initial component roles are deduced from
application types using introspection mechanisms which depends on
the platform and language.

Type checking parametrization point. Before accepting the
application of an adaptation pattern to a set of components (step 3),

each component must conform to the role it has to play in the adap-
tation. Conformance can be based on different syntactic, behavioral
or quality of service criteria [15]. The supported conformance model
depends on the platform and language.

Adaptation introspection parametrization point. Apply-
ing an adaptation pattern to components (step 3) can be done only
if the elementary actions to apply are compatible with the adapta-
tions already applied to those components. The types of elementary
actions supported differ from a platform to another. The ways in
which the elementary actions are expressed and implemented also
vary according to the platforms.

These three parametrization points correspond to the entry points
for message exchanges with the platforms and are used by the ser-
vice to retrieve platform specific information. As for the service en-
try point, these entry points are formalized by IDL Corba interfaces.
Each platform has to provide implementation for these interfaces.
Configuring the service for a specific platform consists in specifying
which implementation objects the service must use.

A prototype has been implemented in Java. The OCL constraints
are not translated into Java code but are interpreted using the
Dresden-OCL toolkit [16]. Then a new validation and verification
step is not needed provided that the toolkit interpreter preserves
the semantics of OCL. Note that even if the prototype is currently
used with Java platforms, it can be easily exposed as a web service
to interact with non-Java platforms.

4 Discution and future work

The Satin model for adaptation safety monitoring is made available
to adaptive platforms as a generic service. Then, the detection of
adaptation-related errors is externalized and consists in querying
the service to check whether an adaptation request will break the
application execution or not. However, the detection of adaptation-
related errors can also be done at two other levels. This can be
put in place by application developers for each adaptation of their
application. This is not a fair solution as the developer is not an
expert of the domain. It is also error-prone as each adaptation has
to be managed on a case by case basis. It can also be put in place by

the platform that provides the adaptation facilities such as Fractal
[17], Sofa [18], JAC [19], Compose* [20] or Noah [21]. This task can
then be delegated to an expert of the domain. Though, most of such
platforms still lack of formal foundations or force to freeze a part of
the application making the hosted applications unavailable to their
users. Lastly, these solutions cannot be reused in other platforms.

Self-adaptive systems such as COMPAA [22], PLASMA [23],
RAINBOW [24] and SAFRAN [25] monitor and adapt themselves
to system errors, changes in the environment or in user preferences.
In such systems, adaptations are performed at a model level like in
Satin. However, Satin is about introspection not intercession: Satin
does not modify the behavior of the monitored application. Model-
level adaptation is only done for synchronization purpose between
the base level (platform hosting the application) and the model level
(Satin safety service). Without the consistency between these two
views, the service is not able to compute the adaptation safety any-
more. Then Satin should not be seen as a self-adaptive system but as
a mean for self-adaptive systems to prevent erroneous adaptations.

Self-adaptive systems detect “changes” and react to changes by
“repairing” themselves. In such systems, repairing means adapting
the application to the “new context”. In our case, repairing only
consists in warning the monitored application when an adaptation
request is not safe but Satin does not correct the adaptation. In
future work, we plan to contribute to decision-making and propose
error-free adaptation alternatives when an adaptation request is re-
jected by the safety service.

References

1. Affer, J.M.: Meta-level programming with coda. In: 9th European Conference on
Object-Oriented Programming, Springer-Verlag (1995) 190-214

2. Kickzales, G., deRiviéres, J., Bobrow, D.G.: The Art of Meta Object Protocol.
MIT Press (1991)

3. Muller, P.A., Barais, O.: Control-theory and models at runtime. In: Proceedings
of the Models Workshop on Models@Runtime, Nashville, USA (oct 2007)

4. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2) (2006) 25-32

5. Occello, A., Dery-Pinna, A.M.: An adaptation-safe model for component plat-
forms. In: Proceedings of the 3rd International Conference on Intelligent and
Adaptive Systems and Software Engineering (IASSE’04), France (2004) 169-174

6. Occello, A., Dery-Pinna, A.M., Riveill, M.: Safety as a service. Journal of Object
Technology (2009) to appear in March/April issue.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Occello, A., Dery-Pinna, A.M.: Safe runtime adaptations of components: a UML
metamodel with OCL constraints. In: First International Workshop on Founda-
tions of Unanticipated Software Evolution, Barcelona, Spagna (2004)

Occello, A., Dery-Pinna, A.M., Riveill, M.: Validation and Verification of an
UML/OCL Model with USE and B: Case Study and Lessons Learnt. In: Fifth
International Workshop on Model Driven Engineering, Verification, and Valida-
tion, Lillehammer, Norway, IEEE Digital Library (2008)

Kiczales, G., Lamping, J.: Aspectj home page. http://eclipse.org/aspectj (2001)

. Adémek, J., Plasil, F.: Partial bindings of components - any harm? In: 11th Asia-

Pacific Software Engineering Conference, IEEE Computer Society (2004) 632-639
Cardelli, L.: Type systems. ACM Computing Surveys (1996) 263-264
Hanneman, J., Chitchyan, R., Rashid, A.: Analysis of aspect-oriented software
workshop report. Technical report, University of California, Germany (2003)
Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs sat-
isfy their linear specification. In: 12th ACM Symp. Principles of Programming
Languages, New Orleans, LA, USA (1985) 97-107

Warmer, J., Kleppe, A.: OCL: The constraint language of the UML. Journal of
Object-Oriented Programming (1999)

Beugnard, A., J.-M., Plouzeau, N., Watkins, D.: Making components contract
aware. In: IEEE Software. (1999) 38-45

Wiebicke, R.: Utility support for checking ocl business rules in java programs.
Master’s thesis, TU-Dresden (December 2000)

Bruneton, E., Coupaye, T., Stefani, J.B.: Recursive and dynamic software compo-
sition with sharing. In: Proceedings of WCOP. (2002)

Plasil, F., Balek, D., Janecek, R.: SOFA/DCUP: Architecture for component
trading and dynamic updating. In: Proceedings of ICCDS’98, USA (1998)
Pawlak, R., Seinturier, L., Duchien, L., Florin, G.: JAC: A flexible and efficient
solution for aspect-oriented programming in java. In Yonezawa, A., Matsuoka, S.,
eds.: Reflection. Volume 2192 of LNCS., Springer-Verlag (2001) 1-24

Garcia, C.F.N.: Compose*: A runtime for the .Net platform. Master’s thesis, Dept.
of Computer Science, University of Twente, Enschede, the Netherlands (2003)
Blay-Fornarino, M., Charfi, A., Emsellem, D., Pinna-Dery, A.M., Riveill, M.: Soft-
ware interaction. Journal of Object Technology 10(10) (2004)

Aniorté, P., Lacouture, J.: Compaa : A self-adaptable component model for open
systems. In: 15th Annual IEEE International Conference and Workshop on En-
gineering of Computer Based Systems (ECBS 2008), Belfast, Northern Ireland,
IEEE Computer Society (2008) 19-25

Layaida, O., Hagimont, D.: Plasma : A component-based framework for building
self-adaptive applications. In: SPIE/IS&T Symposium On Electronic Imaging,
Conference on Embedded Multimedia Processing and Communications, San Jose,
CA, USA (January 2005)

Cheng, S.W.: Rainbow: Cost-Effective Software Architecture-Based Self-
Adaptation. PhD thesis, Carnegie Mellon University (May 2008)

David, P.C., Ledoux, T.: An aspect-oriented approach for developing self-adaptive
fractal components. In Lowe, W., Siidholt, M., eds.: International Workshop on
Software Composition (SC). Volume 4089 of LNCS., Vienna, Austria, Springer
Verlag (March 2006) 82-97

