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Abstract. This paper discusses preliminary work on modeling and validation 
dynamic adaptation. The proposed approach is on the use of aspect-oriented modeling 
(AOM) and models at runtime. Our approach covers design and runtime phases. At 
design-time, a base model and different variant architecture models are designed and the 
adaptation model is built. Crucially, the adaptation model includes invariant properties 
and constraints that allow the validation of the adaptation rules before execution. During 
runtime, the adaptation model is processed to produce a correct system configuration 
that can be executed.  

1   Introduction 
In [6], we presented our work on how we combine model-driven and aspect-

oriented techniques to better cope with the complexities during the construction and 
execution of adaptive systems, and in particular on how we handle the problem of 
exponential growth of the number of possible configurations of the system. The use of 
these techniques allows us to use high-level domain abstractions and simplify the 
representation of variants. The fundamental aim is to tame the combinatorial 
explosion of the number of possible configurations of the system and the artifacts 
needed to handle these configurations. We use models at runtime [2] to generate the 
adaptation logic by comparing the current configuration of the system and a newly 
composed model that represent the configuration we want to reach. One of the main 
advantages is that the adaptation does do not have to be manually written. 

The adaptation model covers the adaptation rules that drive the execution of the 
system. These rules can be dynamically introduced to change the behavior of the 
system during execution. We also discussed in [6] the need of techniques to validate 
the adaptation rules at design-time. In this paper we discuss our preliminary work on 
how to perform simulation and allow for model-checking in order to validate 
adaptation rules at design-time. The model validated at design-time is used at runtime.  

The remainder of this paper is organized as follows. Section 2 presents an 
overview of our methodology for managing dynamic adaptation. Section 3 gives 
details on our meta-model for adaptive systems, and shows through a service 
discovery example how it can be used to model variability, context, adaptation rules 
and constraints. Section 4 shows how we simulate the adaptation model to validate 
the adaptation rules. Section 5 explains our solution for runtime model-based 
adaptation. Finally, Section 6 discusses the main challenges our work is facing and 
concludes. 

                                                           
1 This work is done in the context of the European collaborative project DiVA (Dynamic 

Variability in complex, Adaptive systems). 
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2   Overview of the approach 
Figure 1 presents the conceptual model of the proposed approach. From a 

methodological perspective the approach is divided in two phases: design-time and 
runtime.  

At design-time, the application base and variant architecture models are designed 
and the adaptation model is built. At runtime, the adaptation model is processed to 
produce the system configuration to be used during execution. The following 
paragraphs details the steps of Figure 1.  

Since the potential number of configurations for an adaptive system grows 
exponentially with the number of variation points, a main objective of the approach is 
to model adaptive systems without having to enumerate all their possible 
configurations statically. In order to achieve this objective, an application is modeled 
using a base model which contains the common functionalities and a set of variant 
models which can be composed with the base model. The variant models capture the 
variability of the adaptive application. The actual configurations of the application are 
built at runtime by selecting and composing the appropriate variants. The adaptation 
model does not deal with the basic functionality which is represented by the base 
model. Instead, the adaptation model just deals with the adaptive parts of the system 
represented by the variant models. The adaptation model specifies which variants 
should be selected according to the adaptation rules and the current context of the 
executing system.  
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Fig. 1. Overview of the proposed approach 

The adaptation model is central to the approach as it captures all the information 
about the dynamic variability and adaptation of the adaptive system. It is built from 
the requirements of the system, refined during design and used at runtime to manage 
adaptation. The adaptation model has four main elements: 
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• Variants: They make references to the available variability for the application. 
Depending on the complexity of the system, it can be a simple list of variants, a 
data structure like a hierarchy, or a complex feature model.   

• Constraints: They specify constraints on variants to be used over a configuration. 
For example, the use of a particular functionality (variant model) might require or 
exclude others. These constraints reduce the total number of configurations by 
rejecting invalid configurations. 

• Context: The context model is a minimal representation of the environment of the 
adaptive application to support the definition of adaptation rules. We only 
consider elements of the environment relevant for expressing adaptation rules. 
These elements are updated by sensors deployed on the running system. 

• Rules: These rules specify how the system should adapt to its environment. In 
practice these rules are relations between the values provided by the sensors and 
the variants that should be used.  

During runtime appropriate configurations of the application are composed from 
the base and variant models. In order to select the appropriate configuration, the 
reasoning framework processes the adaptation model and makes a decision based on 
the current context. The output of the reasoning framework is a configuration that 
matches the adaptation rules and satisfies the dependency constraints. The model of 
this configuration can be built at runtime using model composition. 

3   Adaptation Model 
This section presents the adaptation meta-model and how it is applied to a Service 
Discovery Application (SDA). The SDA is a solution to tackle heterogeneity of 
service discovery protocols are presented in [4]. The solution allows an application to 
adapt to different service discovery protocols and needs during execution. The service 
discovery platform can take different roles that individual protocols could assume: 

-User Agent (UA) to discover services on behalf of clients, 
-Service Agent (SA) to advertise services, and, 
-Directory Agent (DA) to support a service directory. 

Depending on the required functionality, participating nodes might be required to 
support 1, 2, or the 3 roles at any time. A second variability dimension is the specific 
service discovery protocols to use, such as ALLIA, GSD, SSD, SLP [4]. Each service 
discovery protocol follows its own rules. As a result, in order to get two different 
agents understanding each other, they need to use the same protocol [6]. These 
decisions have to be performed during execution. 

The next sub-section presents an overview of the meta-model and the following 
sub-sections detail how it is instantiated for the SDA example. 

3.1   Meta-model for variability and adaptation 
As detailed in the previous section the adaptation model includes four different 

aspects: variants, adaptation rules, dependencies and context. Additionally, links to 
the architecture models and concepts for rules and expressions are supplied. The 
meta-model is shown in Figure 2. As can be seen from the figure, colors are used to 
differentiate between the categories.  

The colors indicate the following: 
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• Grey – base and aspect architecture models; 
• Orange – variability information; 
• Purple – adaptation rules; 

• Red/pink – dependencies, formulated as 
constraints; 

• Yellow – context information; 
• Blue – expressions. 

 

 
Fig. 2. Meta-model for variability and adaptation 

This is to be considered a first version of our meta-model that has been created at 
an early stage in the DiVA project. It was created based on a set of simple examples 
such as the SDA described in this paper. During the project, the meta-model will 
evolve based on feedback and experiences with applying it to larger and more 
complex case studies. Nevertheless, at this point the meta-model is able to support 
modeling, simulation and validation activities. The following shows how the meta-
model is instantiated for the SDA. To make the example readable we use a textual 
concrete syntax. This concrete syntax is processed by our prototype tool in order to 
build the adaptation model. 

3.2   Modeling variability 
Figure 3 shows a model of the variability information in our service discovery 
example, located in the section identified by the #variability keyword.  We start by 
defining two variability dimensions: one for functional variability and another for 
different network protocols that the application can use. A variability dimension can 
best be described as a category of variants, while a variant is an aspect or concern that 
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is described outside of the base model and may vary to produce adaptation. So far, we 
have specialized variants further into atomic variants and complex variants. The latter 
is used to express a collection of several variants, thus forming a partial or full 
configuration. This concept was added because we encountered in our example that 
some combinations of variants were already foreseen during the requirements phase. 
As an example, the Discovery Agent functionality corresponds to having both the 
User Agent and the Service Agent functionalities. DA is thus defined as a complex 
variant referring to UA and SA.  

#variability 
 
dimension Functionality : UA, SA 
variant DA : UA, SA 
 
dimension DiscoveryProtocol : ALLIA, SLP 

/* Variability of the application */ 

 
 

Fig. 3. Variability in the Service Discovery Application 

3.3   Modeling the context 
Information about the context and sensors are delimited by the #context keyword. 
Currently, the meta-model supports two types of context variables: Booleans and 
enumerations.  

The context model, as shown in Figure 4, starts with defining a variable for 
whether or not the device is running low on battery and, similarly, if the application 
has been elected as a Discovery Agent. Next, we have defined an enumeration that 
holds different roles. The application has to act as one of these roles at all time. 
Finally, there are two variables that tell which protocols are required, which can be 
one or many.  

#context /* Context of the system */
 
boolean LowBatt // Battery is low 
// Node has been elected Discovery Agent 
boolean ElectedDA 
 
// Node is required to act either as  
// User Agent or as Service Agent 
enum SrvReq : UA, SA 
 
// Node is require to use one or  
// more of the following prototcols 
boolean ALLIAReq 
boolean SLPReq  

 
Fig. 4. Context of the Service Discovery Application 

3.4   Modeling adaptation 
Once the variability and context have been modeled, the adaptation rules can be 
specified. The adaptation rules link the context variables and the variants in order to 
specify the configuration to use with respect to a particular context.  Currently, 
adaptation is based on simple condition-action rules. The condition part is a Boolean 
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expression based on the context information, while the action is a change in the 
configuration of variants.  

/* Adaptation rules for functionalities */ 
 
rule BecomeDA : // Becomes a DA 
  condition ElectedDA and not LowBatt and not DA 
  effect DA 
 
rule StopDA : // Stop being a DA 
  condition (LowBatt or not ElectedDA) and DA 
  effect not DA 
   
rule BecomeUA : // Become a User Agent 
  condition  SrvReq=UA and not UA 
  effect UA and not SA 
   
rule BecomeSA : // Become a Service Agent 
  condition SrvReq=SA and not SA 
  effect not UA and SA  

Fig. 5. Adaptation rules for the functionalities of the SDA 

Figure 5 depicts the adaptation rules for the variants in the functionality category. 
The first rule is called “BecomeDA”, which is triggered when an application is elected 
as a discovery agent. If the device also has sufficient batteries and it is not a discovery 
agent already, the adaptation will proceed and the application will assume the role of 
a discovery agent. 

3.5   Modeling constraints 
Finally, Figure 6 shows the dependencies. These are currently modeled as constraints, 
more specifically invariants. For example, the first invariant states that the application 
must use at least one functionality variant. If it does not, an error message will be 
produced by the tool. 

invariant AtLeastOneFunctionality : UA or SA 
invariant NotDAWithLowBatt : not (LowBatt and DA) 
invariant AtLeastOneProtocol : ALLIA or SLP 
invariant NoSLPWithLowBatt : not (SLP and LowBatt)  

Fig. 6. Invariants of the SDA 

4   Simulation and Validation 
The main benefit of using a model to describe adaptation is that it enables to process 
this model at design-time in order to validate it [9]. Based on the meta-model defined 
in the previous section we have defined a simulator and automated the verification of 
invariants. This section describes the way the simulator is built and how it allows 
checking for termination of adaptation rules and verification of invariant properties. 

4.1   Simulation Model and Implementation 
The goal of the simulation is to build a model of the potential configurations and 
adaptations of the application. To do that, the simulation starts from an initial 
configuration and applies the adaptation rules to move to a new configuration. Figure 
7 presents the simulation model. According to this model, a simulation is composed 
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of a set of configurations and a set of adaptations between these configurations. Each 
configuration refers to a set of variants and a set of variable terms. The variants 
correspond to the aspect to be woven in order to build this configuration [7]. The 
Variable terms define the state of the context variables for this configuration. An 
adaptation links a source configuration with a target configuration. An adaptation is 
triggered by a context event and refers to one or more adaptation rules. The context 
event is a change in the values of one or more context variables. 

 

Fig. 7. Simulation model 
 
Based on this simulation model, a prototype simulator has been implemented using 

the Kermeta platform [8]. The simulator starts from an initial configuration and for 
each variation of the context variables it evaluates the guards of the adaptation rules. 
If the guard of an adaptation rule is true in the new context then this rule must be 
applied and the guards of all the rules are evaluated again. Adaptation rules are 
applied until none of their guards evaluates to true. 

4.2   Simulation output 
The output of a simulation can be rendered as a graph in which each node is a 
configuration and each edge is an adaptation. Figure 8 shows an excerpt of the 
simulation graph for the service discovery application. The complete simulation graph 
for this example contains 24 configurations obtained by aspect weaving and 70 
adaptations. In the label of each node, the first line corresponds to the values of the 
context variables and the second line to the set of aspects that should be used to create 
the corresponding configuration. Each edge in the graph corresponds to an adaptation 
to a change of one context variable. The label of the edges starts with the context 
variable change and details the set of adaptation rules that were applied. In the graph 
presented in Figure 8 the configurations have been colored in order to visualize easily 
the battery level. Configurations for which the battery is high are displayed in green 
and configurations with low battery are displayed in orange.  

4.3   Constraint checking and rule termination 
The main benefit of the simulation model is to allow for validating the adaptation 
rules at design-time. As shown in the previous section the adaptation graph can be 
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visualized and colors can be used in order to highlight specific properties. This allows 
for a manual validation of the specified rules. In addition, the simulation process can 
identify live-locks and dead-locks in the adaptation graph and allows to automatically 
verify invariants on the system.  

 

 

Fig. 8. Excerpt of the simulation graph for the SDA 

Dead-locks in the simulation graph correspond to cases where some adaptation 
rules lead to a configuration from which the system cannot adapt. In a design, this 
could be done voluntarily but in most cases this is due to some incorrect or missing 
adaptation rules. Live-locks correspond to cases where the system bounces between 
several configurations while the context is not changing. This situation always reveals 
an error in the adaptation rules. The simulator can identify live-locks while it 
computes the simulation graph. For a single change of the context, no adaptation rule 
should be able to apply twice. Indeed, if after applying a rule (and possibly some 
others), if the same rule can apply again then the rule could be applied an indefinite 
number of times. When this situation is detected by the simulator, it reports an error 
in the rules and provides the configuration in which the problem occurs and the 
sequence of rules which is looping.  

The meta-model presented in Section 3 allows defining invariants on the system. 
These invariants are checked by the simulator on all the configurations that are 
created during the simulation. Any violation of these invariants reveals an error in the 
adaptation model.  

5   Adapting the System at Runtime 
In this section, we present how we actually adapt a running system using the rules we 
presented in Section 3. In order to trigger the rules, we need to monitor the state of the 
system itself and the execution context (e.g., memory, CPU usage, available network 
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bandwidth, battery level). For this purpose we intend to reuse the Intel Mobile 
Platform Software Development Kit [1] that already offers a large set of probes. This 
SDK is freely available and provides a Java API implementing these probes. Using 
these probes, we have to implement the variables related to the execution context, 
e.g., lowBatt. For example, we can specify that:  

lowBatt = batteryInstance.percentRemaining < 15 

However, defining the variable lowBatt in this way may be too strict. For example, 
if the battery level goes under 15%, the system will adapt. But, if the user plugs the 
system to power supply, the battery level will rapidly increase and the system may 
adapt again because the battery is not low anymore. In this case, the system adapts 
twice whereas it would have been preferable to do nothing as the adaptation process 
may be time consuming. 

In order to tackle the instability of rules, we will use WildCAT 2.0, currently still 
under development. WildCAT [3] is an extensible Java framework that eases the 
creation of context-aware applications. It provides a simple but yet powerful dynamic 
model to represent the execution context of a system. The context information can be 
accessed by two complimentary interfaces: synchronous requests (pull mode: 
application makes a query on the context) and asynchronous notifications (push 
mode: context raises information to the application). Internally, it is a framework 
designed to facilitate the acquisition and the aggregation of contextual data and to 
create reusable ontologies to represent aspects of the execution context relevant to 
many applications. A given application can mix different implementations for 
different aspects of its context while only depending on WildCAT’s simple and 
unified API. The version 2.0 of WildCAT allows defining SQL-like requests on the 
environment model and integrate the notion of time. For example, it is possible to 
trigger a rule when the battery has been lower than 15% for more than 3 minutes.  

When a rule is triggered, the associated variants become active. In other words, we 
weave the aspects associated to each variant in the base model. Aspect weaving is 
currently performed with SmartAdapters [5]. Then, we compare the woven model 
with the reference model, obtained by introspection over the running system. This 
comparison generates a diff and match model specifying what has changed in the 
woven model. By analyzing this model, we automatically generate a safe 
reconfiguration script that is then applied to the running system. Aspect weaving and 
automatic adaptation are described in more details in [5, 7].  

6   Discussion and Conclusion 
This paper presents our ongoing work on modeling adaptation. So far, based on the 
meta-model we have modeled, simulated and checked a few toy adaptive applications. 
However we have also identified the need for more expressiveness in order to 
describe the variants, the context and the adaptation rules. Our objective is to build on 
top of the current meta-model in order to identify a restricted set of concepts relevant 
to the modeling of variability and adaptation. At this stage, we have identified two 
specific issues. 

Firstly, in their current form, the number of adaptation rules can quickly grow as 
the number of context elements and variants increase. Our main goal is to tackle the 
problem of an explosive growth in the number of configurations and the artifact to be 
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used in their construction. However, we do not want to move the complexity 
associated into the rules as a consequence. Consequently, as a step towards improving 
our adaptation rules, we aim to express the rules using semantics. In that sense, the 
rule should be of the form “choose a set of variants with properties that match the 
current context”. The above embraces a more declarative approach. Although, 
sometimes we still might want to allow rules on variant configurations since pre-
defined full or partial configurations might be extracted or derived from the 
requirements straightforwardly, as was the case in our variability model. 

Secondly, our current simulation prototype enumerates all the configurations and 
adaptations between them. While this is very useful and works well while the number 
of configurations is manageable, this approach has the typical model-checking 
scalability issues when the number of configuration and adaptation grows. Several 
techniques can be combined in order to keep the simulation space manageable, for 
example, adding constraints on the context, considering sub-sets of variability 
dimensions or using heuristics to limit the depth of simulations. In the context of the 
DiVA project, we plan to experiment with industrial adaptive applications in order to 
choose the most appropriate solutions to this scalability issue. 

For the runtime, as future work we plan to automate as much as possible the 
implementation of the triggers. For example, it is easy to quantify the domain in 
which a battery evolves: 0 to 100. But, defining what a low level for a battery may be 
more difficult. We previously said that a battery is low if the remaining percentage is 
lower than 15 for 3 minutes. However, this kind of information is generally not 
specified in requirement documents and developers have to infer the information from 
their knowledge and/or based on experimentation. We plan to use Fuzzy logic to help 
in defining and implementing triggers. Providing a global domain (0 to 100) and some 
qualifiers (“high”, “medium”, “low”), the fuzzy logic can determine, for a given 
observed value (e.g., 17%) if the battery is “low”, “medium”, etc. Fuzzy logic can 
help us in filling the gap between requirement (qualitative descriptions) and 
implementation (quantitative observations) and allows keeping high-level adaptation 
rules at runtime. 
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