
Modeling and Validating Dynamic Adaptation1

Franck Fleurey1, Vegard Dehlen1, Nelly Bencomo2,
Brice Morin3, and Jean-Marc Jézéquel3

1 SINTEF, Oslo, Norway
2 Computing Department, Lancaster University, Lancaster, UK

3 IRISA/INRIA Rennes, Equipe Triskell, Rennes, France

Abstract. This paper discusses preliminary work on modeling and validation
dynamic adaptation. The proposed approach is on the use of aspect-oriented modeling
(AOM) and models at runtime. Our approach covers design and runtime phases. At
design-time, a base model and different variant architecture models are designed and the
adaptation model is built. Crucially, the adaptation model includes invariant properties
and constraints that allow the validation of the adaptation rules before execution. During
runtime, the adaptation model is processed to produce a correct system configuration
that can be executed.

1 Introduction
In [6], we presented our work on how we combine model-driven and aspect-

oriented techniques to better cope with the complexities during the construction and
execution of adaptive systems, and in particular on how we handle the problem of
exponential growth of the number of possible configurations of the system. The use of
these techniques allows us to use high-level domain abstractions and simplify the
representation of variants. The fundamental aim is to tame the combinatorial
explosion of the number of possible configurations of the system and the artifacts
needed to handle these configurations. We use models at runtime [2] to generate the
adaptation logic by comparing the current configuration of the system and a newly
composed model that represent the configuration we want to reach. One of the main
advantages is that the adaptation does do not have to be manually written.

The adaptation model covers the adaptation rules that drive the execution of the
system. These rules can be dynamically introduced to change the behavior of the
system during execution. We also discussed in [6] the need of techniques to validate
the adaptation rules at design-time. In this paper we discuss our preliminary work on
how to perform simulation and allow for model-checking in order to validate
adaptation rules at design-time. The model validated at design-time is used at runtime.

The remainder of this paper is organized as follows. Section 2 presents an
overview of our methodology for managing dynamic adaptation. Section 3 gives
details on our meta-model for adaptive systems, and shows through a service
discovery example how it can be used to model variability, context, adaptation rules
and constraints. Section 4 shows how we simulate the adaptation model to validate
the adaptation rules. Section 5 explains our solution for runtime model-based
adaptation. Finally, Section 6 discusses the main challenges our work is facing and
concludes.

1 This work is done in the context of the European collaborative project DiVA (Dynamic

Variability in complex, Adaptive systems).

2 Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, Jean-Marc Jézéquel

2 Overview of the approach
Figure 1 presents the conceptual model of the proposed approach. From a

methodological perspective the approach is divided in two phases: design-time and
runtime.

At design-time, the application base and variant architecture models are designed
and the adaptation model is built. At runtime, the adaptation model is processed to
produce the system configuration to be used during execution. The following
paragraphs details the steps of Figure 1.

Since the potential number of configurations for an adaptive system grows
exponentially with the number of variation points, a main objective of the approach is
to model adaptive systems without having to enumerate all their possible
configurations statically. In order to achieve this objective, an application is modeled
using a base model which contains the common functionalities and a set of variant
models which can be composed with the base model. The variant models capture the
variability of the adaptive application. The actual configurations of the application are
built at runtime by selecting and composing the appropriate variants. The adaptation
model does not deal with the basic functionality which is represented by the base
model. Instead, the adaptation model just deals with the adaptive parts of the system
represented by the variant models. The adaptation model specifies which variants
should be selected according to the adaptation rules and the current context of the
executing system.

Requirements

Variants

Dependencies

Adaptation Rules

Context sensors

Adaptation model

Variants

Dependencies

Adaptation Rules

Context sensors

Adaptation model

Base Model

Variant modelsVariant modelsVariant modelsVariant modelsVariant models

Variant modelsVariant modelsVariant modelsVariant modelsVariant models

Design time

Runtime Middleware

Reasoning
Framework

Model
Composer

Running SystemRunning Sensors

Configuration
Model

Validation
Framework

Causal connection

Architecture models

Fig. 1. Overview of the proposed approach

The adaptation model is central to the approach as it captures all the information
about the dynamic variability and adaptation of the adaptive system. It is built from
the requirements of the system, refined during design and used at runtime to manage
adaptation. The adaptation model has four main elements:

Modeling and Validating Dynamic Adaptation

• Variants: They make references to the available variability for the application.
Depending on the complexity of the system, it can be a simple list of variants, a
data structure like a hierarchy, or a complex feature model.

• Constraints: They specify constraints on variants to be used over a configuration.
For example, the use of a particular functionality (variant model) might require or
exclude others. These constraints reduce the total number of configurations by
rejecting invalid configurations.

• Context: The context model is a minimal representation of the environment of the
adaptive application to support the definition of adaptation rules. We only
consider elements of the environment relevant for expressing adaptation rules.
These elements are updated by sensors deployed on the running system.

• Rules: These rules specify how the system should adapt to its environment. In
practice these rules are relations between the values provided by the sensors and
the variants that should be used.

During runtime appropriate configurations of the application are composed from
the base and variant models. In order to select the appropriate configuration, the
reasoning framework processes the adaptation model and makes a decision based on
the current context. The output of the reasoning framework is a configuration that
matches the adaptation rules and satisfies the dependency constraints. The model of
this configuration can be built at runtime using model composition.

3 Adaptation Model
This section presents the adaptation meta-model and how it is applied to a Service
Discovery Application (SDA). The SDA is a solution to tackle heterogeneity of
service discovery protocols are presented in [4]. The solution allows an application to
adapt to different service discovery protocols and needs during execution. The service
discovery platform can take different roles that individual protocols could assume:

-User Agent (UA) to discover services on behalf of clients,
-Service Agent (SA) to advertise services, and,
-Directory Agent (DA) to support a service directory.

Depending on the required functionality, participating nodes might be required to
support 1, 2, or the 3 roles at any time. A second variability dimension is the specific
service discovery protocols to use, such as ALLIA, GSD, SSD, SLP [4]. Each service
discovery protocol follows its own rules. As a result, in order to get two different
agents understanding each other, they need to use the same protocol [6]. These
decisions have to be performed during execution.

The next sub-section presents an overview of the meta-model and the following
sub-sections detail how it is instantiated for the SDA example.

3.1 Meta-model for variability and adaptation
As detailed in the previous section the adaptation model includes four different

aspects: variants, adaptation rules, dependencies and context. Additionally, links to
the architecture models and concepts for rules and expressions are supplied. The
meta-model is shown in Figure 2. As can be seen from the figure, colors are used to
differentiate between the categories.

The colors indicate the following:

4 Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, Jean-Marc Jézéquel

• Grey – base and aspect architecture models;
• Orange – variability information;
• Purple – adaptation rules;

• Red/pink – dependencies, formulated as
constraints;

• Yellow – context information;
• Blue – expressions.

Fig. 2. Meta-model for variability and adaptation

This is to be considered a first version of our meta-model that has been created at
an early stage in the DiVA project. It was created based on a set of simple examples
such as the SDA described in this paper. During the project, the meta-model will
evolve based on feedback and experiences with applying it to larger and more
complex case studies. Nevertheless, at this point the meta-model is able to support
modeling, simulation and validation activities. The following shows how the meta-
model is instantiated for the SDA. To make the example readable we use a textual
concrete syntax. This concrete syntax is processed by our prototype tool in order to
build the adaptation model.

3.2 Modeling variability
Figure 3 shows a model of the variability information in our service discovery
example, located in the section identified by the #variability keyword. We start by
defining two variability dimensions: one for functional variability and another for
different network protocols that the application can use. A variability dimension can
best be described as a category of variants, while a variant is an aspect or concern that

Modeling and Validating Dynamic Adaptation

is described outside of the base model and may vary to produce adaptation. So far, we
have specialized variants further into atomic variants and complex variants. The latter
is used to express a collection of several variants, thus forming a partial or full
configuration. This concept was added because we encountered in our example that
some combinations of variants were already foreseen during the requirements phase.
As an example, the Discovery Agent functionality corresponds to having both the
User Agent and the Service Agent functionalities. DA is thus defined as a complex
variant referring to UA and SA.

#variability

dimension Functionality : UA, SA
variant DA : UA, SA

dimension DiscoveryProtocol : ALLIA, SLP

/* Variability of the application */

Fig. 3. Variability in the Service Discovery Application

3.3 Modeling the context
Information about the context and sensors are delimited by the #context keyword.
Currently, the meta-model supports two types of context variables: Booleans and
enumerations.

The context model, as shown in Figure 4, starts with defining a variable for
whether or not the device is running low on battery and, similarly, if the application
has been elected as a Discovery Agent. Next, we have defined an enumeration that
holds different roles. The application has to act as one of these roles at all time.
Finally, there are two variables that tell which protocols are required, which can be
one or many.

#context /* Context of the system */

boolean LowBatt // Battery is low
// Node has been elected Discovery Agent
boolean ElectedDA

// Node is required to act either as
// User Agent or as Service Agent
enum SrvReq : UA, SA

// Node is require to use one or
// more of the following prototcols
boolean ALLIAReq
boolean SLPReq

Fig. 4. Context of the Service Discovery Application

3.4 Modeling adaptation
Once the variability and context have been modeled, the adaptation rules can be
specified. The adaptation rules link the context variables and the variants in order to
specify the configuration to use with respect to a particular context. Currently,
adaptation is based on simple condition-action rules. The condition part is a Boolean

6 Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, Jean-Marc Jézéquel

expression based on the context information, while the action is a change in the
configuration of variants.

/* Adaptation rules for functionalities */

rule BecomeDA : // Becomes a DA
 condition ElectedDA and not LowBatt and not DA
 effect DA

rule StopDA : // Stop being a DA
 condition (LowBatt or not ElectedDA) and DA
 effect not DA

rule BecomeUA : // Become a User Agent
 condition SrvReq=UA and not UA
 effect UA and not SA

rule BecomeSA : // Become a Service Agent
 condition SrvReq=SA and not SA
 effect not UA and SA

Fig. 5. Adaptation rules for the functionalities of the SDA

Figure 5 depicts the adaptation rules for the variants in the functionality category.
The first rule is called “BecomeDA”, which is triggered when an application is elected
as a discovery agent. If the device also has sufficient batteries and it is not a discovery
agent already, the adaptation will proceed and the application will assume the role of
a discovery agent.

3.5 Modeling constraints
Finally, Figure 6 shows the dependencies. These are currently modeled as constraints,
more specifically invariants. For example, the first invariant states that the application
must use at least one functionality variant. If it does not, an error message will be
produced by the tool.

invariant AtLeastOneFunctionality : UA or SA
invariant NotDAWithLowBatt : not (LowBatt and DA)
invariant AtLeastOneProtocol : ALLIA or SLP
invariant NoSLPWithLowBatt : not (SLP and LowBatt)

Fig. 6. Invariants of the SDA

4 Simulation and Validation
The main benefit of using a model to describe adaptation is that it enables to process
this model at design-time in order to validate it [9]. Based on the meta-model defined
in the previous section we have defined a simulator and automated the verification of
invariants. This section describes the way the simulator is built and how it allows
checking for termination of adaptation rules and verification of invariant properties.

4.1 Simulation Model and Implementation
The goal of the simulation is to build a model of the potential configurations and
adaptations of the application. To do that, the simulation starts from an initial
configuration and applies the adaptation rules to move to a new configuration. Figure
7 presents the simulation model. According to this model, a simulation is composed

Modeling and Validating Dynamic Adaptation

of a set of configurations and a set of adaptations between these configurations. Each
configuration refers to a set of variants and a set of variable terms. The variants
correspond to the aspect to be woven in order to build this configuration [7]. The
Variable terms define the state of the context variables for this configuration. An
adaptation links a source configuration with a target configuration. An adaptation is
triggered by a context event and refers to one or more adaptation rules. The context
event is a change in the values of one or more context variables.

Fig. 7. Simulation model

Based on this simulation model, a prototype simulator has been implemented using

the Kermeta platform [8]. The simulator starts from an initial configuration and for
each variation of the context variables it evaluates the guards of the adaptation rules.
If the guard of an adaptation rule is true in the new context then this rule must be
applied and the guards of all the rules are evaluated again. Adaptation rules are
applied until none of their guards evaluates to true.

4.2 Simulation output
The output of a simulation can be rendered as a graph in which each node is a
configuration and each edge is an adaptation. Figure 8 shows an excerpt of the
simulation graph for the service discovery application. The complete simulation graph
for this example contains 24 configurations obtained by aspect weaving and 70
adaptations. In the label of each node, the first line corresponds to the values of the
context variables and the second line to the set of aspects that should be used to create
the corresponding configuration. Each edge in the graph corresponds to an adaptation
to a change of one context variable. The label of the edges starts with the context
variable change and details the set of adaptation rules that were applied. In the graph
presented in Figure 8 the configurations have been colored in order to visualize easily
the battery level. Configurations for which the battery is high are displayed in green
and configurations with low battery are displayed in orange.

4.3 Constraint checking and rule termination
The main benefit of the simulation model is to allow for validating the adaptation
rules at design-time. As shown in the previous section the adaptation graph can be

8 Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, Jean-Marc Jézéquel

visualized and colors can be used in order to highlight specific properties. This allows
for a manual validation of the specified rules. In addition, the simulation process can
identify live-locks and dead-locks in the adaptation graph and allows to automatically
verify invariants on the system.

Fig. 8. Excerpt of the simulation graph for the SDA

Dead-locks in the simulation graph correspond to cases where some adaptation
rules lead to a configuration from which the system cannot adapt. In a design, this
could be done voluntarily but in most cases this is due to some incorrect or missing
adaptation rules. Live-locks correspond to cases where the system bounces between
several configurations while the context is not changing. This situation always reveals
an error in the adaptation rules. The simulator can identify live-locks while it
computes the simulation graph. For a single change of the context, no adaptation rule
should be able to apply twice. Indeed, if after applying a rule (and possibly some
others), if the same rule can apply again then the rule could be applied an indefinite
number of times. When this situation is detected by the simulator, it reports an error
in the rules and provides the configuration in which the problem occurs and the
sequence of rules which is looping.

The meta-model presented in Section 3 allows defining invariants on the system.
These invariants are checked by the simulator on all the configurations that are
created during the simulation. Any violation of these invariants reveals an error in the
adaptation model.

5 Adapting the System at Runtime
In this section, we present how we actually adapt a running system using the rules we
presented in Section 3. In order to trigger the rules, we need to monitor the state of the
system itself and the execution context (e.g., memory, CPU usage, available network

Modeling and Validating Dynamic Adaptation

bandwidth, battery level). For this purpose we intend to reuse the Intel Mobile
Platform Software Development Kit [1] that already offers a large set of probes. This
SDK is freely available and provides a Java API implementing these probes. Using
these probes, we have to implement the variables related to the execution context,
e.g., lowBatt. For example, we can specify that:

lowBatt = batteryInstance.percentRemaining < 15

However, defining the variable lowBatt in this way may be too strict. For example,
if the battery level goes under 15%, the system will adapt. But, if the user plugs the
system to power supply, the battery level will rapidly increase and the system may
adapt again because the battery is not low anymore. In this case, the system adapts
twice whereas it would have been preferable to do nothing as the adaptation process
may be time consuming.

In order to tackle the instability of rules, we will use WildCAT 2.0, currently still
under development. WildCAT [3] is an extensible Java framework that eases the
creation of context-aware applications. It provides a simple but yet powerful dynamic
model to represent the execution context of a system. The context information can be
accessed by two complimentary interfaces: synchronous requests (pull mode:
application makes a query on the context) and asynchronous notifications (push
mode: context raises information to the application). Internally, it is a framework
designed to facilitate the acquisition and the aggregation of contextual data and to
create reusable ontologies to represent aspects of the execution context relevant to
many applications. A given application can mix different implementations for
different aspects of its context while only depending on WildCAT’s simple and
unified API. The version 2.0 of WildCAT allows defining SQL-like requests on the
environment model and integrate the notion of time. For example, it is possible to
trigger a rule when the battery has been lower than 15% for more than 3 minutes.

When a rule is triggered, the associated variants become active. In other words, we
weave the aspects associated to each variant in the base model. Aspect weaving is
currently performed with SmartAdapters [5]. Then, we compare the woven model
with the reference model, obtained by introspection over the running system. This
comparison generates a diff and match model specifying what has changed in the
woven model. By analyzing this model, we automatically generate a safe
reconfiguration script that is then applied to the running system. Aspect weaving and
automatic adaptation are described in more details in [5, 7].

6 Discussion and Conclusion
This paper presents our ongoing work on modeling adaptation. So far, based on the
meta-model we have modeled, simulated and checked a few toy adaptive applications.
However we have also identified the need for more expressiveness in order to
describe the variants, the context and the adaptation rules. Our objective is to build on
top of the current meta-model in order to identify a restricted set of concepts relevant
to the modeling of variability and adaptation. At this stage, we have identified two
specific issues.

Firstly, in their current form, the number of adaptation rules can quickly grow as
the number of context elements and variants increase. Our main goal is to tackle the
problem of an explosive growth in the number of configurations and the artifact to be

10 Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, Jean-Marc Jézéquel

used in their construction. However, we do not want to move the complexity
associated into the rules as a consequence. Consequently, as a step towards improving
our adaptation rules, we aim to express the rules using semantics. In that sense, the
rule should be of the form “choose a set of variants with properties that match the
current context”. The above embraces a more declarative approach. Although,
sometimes we still might want to allow rules on variant configurations since pre-
defined full or partial configurations might be extracted or derived from the
requirements straightforwardly, as was the case in our variability model.

Secondly, our current simulation prototype enumerates all the configurations and
adaptations between them. While this is very useful and works well while the number
of configurations is manageable, this approach has the typical model-checking
scalability issues when the number of configuration and adaptation grows. Several
techniques can be combined in order to keep the simulation space manageable, for
example, adding constraints on the context, considering sub-sets of variability
dimensions or using heuristics to limit the depth of simulations. In the context of the
DiVA project, we plan to experiment with industrial adaptive applications in order to
choose the most appropriate solutions to this scalability issue.

For the runtime, as future work we plan to automate as much as possible the
implementation of the triggers. For example, it is easy to quantify the domain in
which a battery evolves: 0 to 100. But, defining what a low level for a battery may be
more difficult. We previously said that a battery is low if the remaining percentage is
lower than 15 for 3 minutes. However, this kind of information is generally not
specified in requirement documents and developers have to infer the information from
their knowledge and/or based on experimentation. We plan to use Fuzzy logic to help
in defining and implementing triggers. Providing a global domain (0 to 100) and some
qualifiers (“high”, “medium”, “low”), the fuzzy logic can determine, for a given
observed value (e.g., 17%) if the battery is “low”, “medium”, etc. Fuzzy logic can
help us in filling the gap between requirement (qualitative descriptions) and
implementation (quantitative observations) and allows keeping high-level adaptation
rules at runtime.

References
[1] http://ossmpsdk.intel.com/.
[2] N. Bencomo, R. France, and G. Blair. 2nd international workshop on

models@run.time. In Holger Giese, editor, Workshops and Symposia at MODELS 2007,
Lecture Notes in Computer Science. Springer-Verlag, 2007.

[3] P.C. David and T. Ledoux. WildCAT: A Generic Framework for Context-aware
Applications. In MPAC'05: 3rd Int. Workshop on Middleware for Pervasive and Ad-hoc
Computing, pages 1–7, New York, NY, USA, 2005. ACM.

[4] C.A. Flores-Cortés, G. Blair, and P. Grace. An Adaptive Middleware to Overcome
Service Discovery Heterogeneity in Mobile Ad-hoc Environments. IEEE Distributed Systems
Online, 8, 2007.

[5] P. Lahire, B. Morin, G. Vanwormhoudt, A. Gaignard, and J-M. Jézéquel. Introducing
variability into aspect-oriented modeling approaches. MoDELS’07: 10th International
Conference on Model Driven Engineering Languages and Systems, USA, October 2007.

[6] B. Morin, F. Fleurey, N. Bencomo, J-M. Jézéquel, A. Solberg, V. Dehlen, and G.
Blair. An aspect-oriented and model-driven approach for managing dynamic variability.
MODELS'08: 11th International Conference on Model Driven Engineering Languages and
Systems, France, 2008.

Modeling and Validating Dynamic Adaptation

[7] B. Morin, G. Vanwormhoudt, P. Lahire, A. Gaignard, O. Barais, and J-M. Jézéquel.
Managing variability complexity in aspect-oriented modeling. MODELS'08: 11th International
Conference on Model Driven Engineering Languages and Systems, France, 2008.

[8] P.A. Muller, F. Fleurey, and J. M. Jézéquel. Weaving Executability into Object-
Oriented Meta-languages. MoDELS'05: 8th International Conference on Model Driven
Engineering Languages and Systems, Jamaica, 2005. See http://www.kermeta.org/.

[9] J. Zhang and B. Cheng. Model-based development of dynamically adaptive software.
ICSE’06: 28th International Conference on Software Engineering, China, 2006.

