
Model-driven Management of Complex Systems

Brian Pickering1, Sylvain Robert2, Stéphane Ménoret3, Erhan Mengusoglu1

1 Pervasive & Advanced Messaging Technologies
IBM UK Laboratories, Hursley Park, Winchester, UK

2 CEA LIST, Boîte courrier 65, Gif-sur-Yvette cedex, F-91191, Fr
3 Thales Research and Technology, RD128, 91767 Palaiseau cedex, Fr

{brian_pickering, mengusog}@uk.ibm.com, sylvain.robert@cea.fr,
stephane.menoret@fr.thalesgroup.com

Abstract. This paper considers some specific issues relating to model-driven
system management applied to complex systems. Examining dynamically
coupled systems-of-systems on the one hand and highly distributed devices for
service access on the other, we define a common meta-model of (semi-)
automated management applicable in both domains. Taking monitoring by way
of illustration, we then show how this meta-model is put into practice along two
complementary aspects: management modelling and runtime event processing
support.

Keywords: system management, runtime modelling, complex event processing.

1 Introduction

Previous work has looked at exploiting design-time architectural models at runtime
in order to evaluate and validate potential changes to the current managed system
[12], [8] and [9]. Although well motivated, because of power limitations [9] in the
managed devices, or to check that potential changes would be of optimal use in the
current environment [7] and so forth, there are issues about what can and cannot be
captured at design-time. Kodase et al [10] suggest non-functional requirements are
difficult to capture in design-time models, for instance; and Ulbrich et al [13] propose
that quality-of-service management can only effectively be handled by message path
manipulation during operation. In addition, most work from the seminal Oreizy et al
paper on self-adaptation 11] to Rainbow [8] and the MADAM proposals for (mobile)
telecommunication services [7] focus only on runtime modification of the managed
system itself. There are, therefore, a number of important gaps here. Can we, for
instance, introduce non-functional as well as functional aspects into our design time
models? And can we now address omissions such as historical data, domain-specific
rules and policy management (see the Future Work section in [7] for instance)? Most
significantly, perhaps, can we make dynamic, context adaptive changes to the system
management components using a design-time model just as we would for the
managed system? This work attempts to address some of the issues raised in current
model-driven approaches to system management. In this work, we seek to address

some of these questions. To begin with, we introduce our autonomic approach to
system and device management (Section 2) and present the top-level meta-model we
are defining for system management. Next, we consider specific issues related to
management and system runtime modelling (Section 3), and finally (Section 4) we
consider how to allow for runtime adaptation of the management system itself and the
introduction of dynamically changing functional as well as non-functional
requirements.

2 Model-Based Management Common Framework

Within the context of the MODELPLEX project, we have begun to define and
evaluate common models for system management [1]. Although sharing some
features with other approaches, notably OASIS, SMDS and a number of OMG
initiatives op.cit., we have focused our work on common issues which affect different
aspects of system management. One specific area of interest involves the automatic
and semi-automatic management of complex systems.

For system management purposes, we recognize a number of key concepts as

summarized in Fig 1. A ManageableElement is the central and fundamental object
which may be defined as any and all elements within a system that need to be
managed. Each element is associated with one or more ManageabilityCapabilities
that describe what and how that element needs to and can be managed. The elements,
though, are not confined to those concepts and objects which are subject to being
monitored and controlled. We must also include elements of the management system
themselves, as well as the definitions of the criteria and rules by which the system is
managed. So we need to be aware that ManageableElements may well include
ManageableSystemElements or ManagementRules respectively.

Fig 1: Top level common model for managing systems

From these central concepts, and in line with the work done by the Autonomic

Computing Initiative (ACI) [2], we are in the process of evaluating the applicability
of the MAPE-K autonomic management control loop. This provides for monitoring,
data analysis, change planning and then execution of that plan on the basis of static
and dynamic system knowledge, hence the acronym MAPE-K. We have extended the
top-level model above with those concepts that relate specific to this approach.

Fig 2: Design-time model of the MAPE-K control loop

Fig 2 illustrates a design-time model of the MAPE-K system management
processes. Within the context of the MODELPLEX project, it derives from the
common meta-models for system management described above. The MAPE
management phases are themselves seen as ManageableElements as defined within
the common meta-model [3], in much the same way as the KnowledgeStore itself
containing both static data, or management Policies, and dynamic data from the
ManagedEntities, held as History. These objects – Policies and History – are of
particular interest at runtime in providing some way of potentially modifying
management behaviours. Our challenge in evaluating such a model for system
management lies in how it needs to be implemented, not least to establish whether the
data objects can be changed effectively at runtime. This may provide a mechanism for
changing the design-time management model. We need to consider further whether
other factors need to be examined as well for a truly adaptive management operation.

3 Modelling Management and System Runtime

As far as management modelling is concerned, the MAPE-K loop and the common
management meta-models (section 2) provide a conceptual basis. The current
challenge is to develop a concrete expression for this framework. This requires
defining precisely how models will be used in management, what shape they should
take and how they relate to the design process. This section discusses these issues and
sketches an experimental system management demonstrator for the monitor and
analysis phases that we are implementing. We will begin in this section to consider
the initial management phases (monitor and analyze) as they relate to specific aspects
of System of Systems (SoS) management.

Enabling model-based system management obviously requires at least two features
from the management models. First, since they are used by management operators to

observe and analyze system execution, they need to provide a runtime image of the
managed system. Beyond that, it should contain management processing information,
i.e. define how runtime information is handled (the Monitoring and Analyze phases of
the MAPE loop) and – which is beyond the scope of this discussion – how corrective
actions are deduced from this information (the Plan and Execute phases of the MAPE
loop). On top of these base capabilities, management models should enable more
complex management actions, such as determining the root cause of a runtime event
(root cause analysis). Ideally, it should also be possible to act not only on the system
but also on the management layer itself, i.e. an action on a management rule in the
model would result in an actual action on the system management software. Finally, a
model-based management tool suite should also allow the consequences of changes
on the system or on the management system to be determined before they are
performed.

Provided the tool support is adequate, the management concepts we have defined
(Fig 3) meet these desired features in theory:

• To begin with, ManageableElements represent the monitored system
elements. They own collected data (raw runtime data) and indicators
(complex monitoring data built from processed collected data). Indicators
can be processed to produce Symptoms, which are expressions of a
departure from normal SoS function (note that symptoms are not related
to any specific ManageableElement). Monitoring system execution thus
comes down to observing ManageableElements, CollectedData and
Indicators.

• Then, ManagementRules contain the management information:
MonitoringRules express how CollectedData is processed to produce
Indicators (logical and / or algebraic expressions the operands for which
include CollectedData) and AnalysisRules express how Indicators are
processed to produce Symptoms.

Fig 3: Some of the Management Meta-Model Concepts

However, as usual, concepts need to be put into to practice. In this respect, two
concerns prevail: first, the modelling language (i.e. the concrete syntax associated
with the meta-models); and subsequently, the tool support. As far as concrete syntax
is concerned, it is possible to build runtime models by customizing design models (for
instance in UML by creating and using a profile dedicated to management modelling).
But this has one major drawback: the resulting models would provide too much detail
compared to what is needed for management purposes, and that would reduce
readability. We thus chose a different approach. Since we work in the scope of
architecture frameworks, we propose to define a specific management viewpoint
which will contain the management models. Doing so, these will not be confused with
system models for other viewpoints. However, relationships will be defined between
them in order to show how ManageableElements relate to actual system elements. For
the definition of a management modelling language, we considered two equivalent
options: either build a UML profile or define a DSL. We had favoured a DSL-based
solution in order to enable fast and iterative prototyping.

In order to validate our choices, we have designed an initial experiment: a basic
system management prototype which focuses on availability monitoring and analysis.
The considered system is a set of cameras whose temperatures and states are
monitored. The simulation scenario introduces runtime events (state and temperature
changes) from which the monitoring / analysis chain would infer a faulty situation.
One of the main outcomes of this prototype was the definition of a DSL for
management modelling which gives a concrete shape to the concepts previously
described (e.g. symptoms). This DSL was defined in the Microsoft DSL tool, which
provides facilities to define the DSL meta-model and the associated concrete syntax
and generates the corresponding domain-specific modelling environment. By way of
illustration, Fig 4 shows an excerpt of a model of the system described above, built
thanks to this DSL. This excerpt represents a ManageableElement associated with a
camera (Camera 1 ME) owning collected data (StateCD1 and TempCD1) and
indicators (S1, T1), and a monitoring rule (CDFilteringRule1) which processes
TempCD1 to issue T1.

Fig 4: Excerpt of a management DSL model

In order to test our conceptual assets further, we also associated a C# script to each
of the monitoring and analysis rules implementing their behaviour. Each time

incoming data values change (e.g. in the case of CDFilteringRule1, TempCD1
changes), the script is executed and output data is issued (e.g. T1 indicator for
CDFiltering1). Messages are also displayed when events of interest arise (e.g. when a
symptom is raised). In this way, the progress of monitoring and analysis can be
observed directly on the model. To complete our experiment, a service-oriented Java
application was implemented, which simulates the cameras and processes the
scenario. This simulation performs dynamic updates of the model in the Microsoft
DSL repository, which in turn trigger the model-level monitoring / analysis chain
described above. These initial results are quite encouraging, since they demonstrate
the global feasibility of our approach on a basic example. We now plan to extend the
DSL, in order to enable more complex configurations, e.g. for layered management.
We also envisage making some connections with more monitoring infrastructures,
like the one described in the next section.

4 Complex Events Processing Architecture

The MAPE-K control loop introduced above provides a useful and extensible design-
time model for the semi and fully automatic management of systems or devices.
Pickering et al [5] have begun to assess its applicability to highly-distributed devices
within a service provider network. In this section, we will focus on the runtime
modelling of the monitoring phase specifically.

Fig 5: Monitoring Activities at Runtime

Our initial approach to autonomic computing via the MAPE-K framework would
suggest a unidirectional process flow for management. Monitoring data are retrieved
from the services or devices managed during the initial phase. These are processed
and evaluated using policy data from the knowledge store by the analysis and plan
phases. The results from these are then sent to the execution phase to effect either are
reconfiguration of the managed system or the deployment of a new or modified
service. This basic unidirectional flow from monitoring data collection based on

policies (ManagementRules or service level agreements) to configuration change or
service deployment (via the Execution) phase is shown in Fig 5.

Fig 6: MAPE-K and Event Processing

The Policies can be regarded as the set of domain-specific operations applied to the
data obtained by the monitoring process. We use a rule engine for complex event
processing to aggregate and analyze the data and then make inferences to decide what
to do next. The IBM WebSphere® Business Events platform is the best candidate for
this rule engine in our architecture since it provides both simple and complex event
processing (CEP). We might begin by seeing the rule engine in this case assuming the
role of analysis and plan phases in the MAPE-K approach. This preserves the cyclical
nature associated with control loops: monitor (or observe), decide and take action;
then return to the monitor step. In addition to the execution of simple rules related to
relatively simple events, such as threshold checking for instance, the rule engine
needs to be able to detect complex event patterns in order to provide a complete
monitoring process in terms of data aggregation. Complex events may be defined in
IBM WebSphere Business Events as rules about the co-occurrence or order of events,
but may also be extended to use additional event data for the definition of correlation
patterns. With this complex filtering, we do well to reconsider whether the rule engine
does fulfill the function of the Analysis and Plan phases in MAPE-K.

Fig 6 summarises how we use the rule engine within our MAPE-K
implementation. Irrespective of MAPE phase, the management process retrieves
operational rules (policies, SLA parameters, management rules) from the Knowledge
Store at runtime. But also, as data are handled, MonitoringData in the case of the
monitoring phase, then the rule engine is presented with the data (via an Event) to
correlate in accordance with the event filters, which as stated may be simple or
complex. The result of this processing may result in a change to the operational rules
(signaled via an Action event to the Knowledge Store); this introduces dynamic data
and rule control for our system management model.

In practice, we don’t see the sort of uniform behaviour whereby data from a service
are monitored, undergo initial processing and are then passed on to the next
management phase. Suppose for instance that circumstances change. For instance,
rerouting delivery across the network may affect the service provider’s ability to meet
agreed throughput levels. Such changes will result from the managed system. Equally,
some changes may be commercially motivated: customer status or service features
may change with a knock-on effect for policy handling. The changes are externally
motivated, and independent of the managed system itself. We must therefore allow
feedback about the policies and rules from the management system back into the
knowledge store from a number of sources. This can be handled as outlined above and
summarised in Fig 6: the operational rules are modified by IBM WebSphere Business
Events via an Action to the Knowledge Store. This in turn may modify how the
monitoring is done. As such, the process flow must include a non-device-affecting
path back to the knowledge store as well as to the MAPE phases themselves. In Fig 6,
Actions may therefore return to the MAPE phase as well as to the Knowledge Store.
Such Actions may be directives (phase I/O parameters or configuration settings),
which may include, of course, the next MAPE phase to be called, if any. Our control
loop flow is therefore bi-directional. We are able, therefore, to modify how we
process the management data from the managed system, but also how the
management system itself operates at runtime. Such dynamic changes are reflected
back as temporary or permanent modifications to our design-time system
management model.

5 Related Works

In section 3, we focused on issues related to runtime system and monitoring
operations modeling. This work is based on the common meta-models introduced in
section 2 and as such builds on the results of [2] for autonomic management. Our
contribution also sits well amidst earlier works on architecture-based system
management, like [8], or works about models simulation like [17]. As far as
management modelling support is concerned, we are also deriving some benefit from
works within domain-specific modelling, such as [16]. Since runtime information
layout is one of our concerns, we also have a connection with work such as [15] about
dynamic models layouts, though our scope is far more comprehensive. Turning to
Section 4, we considered issues pertaining to operational models for system
management. Continuing work on autonomic management presented by González et

al [6], we took the ACI MAPE-K framework [2] as our starting point, and more
specifically the monitoring phase. Using complex event processing (CEP) [14], we
have been able to introduce elements of dynamism to the management system itself;
we are now free to generate modified managed system configurations at runtime in
contrast to the preloading proposed by Illner et al [9] for the service provider domain.
In addition, instead of relying on the fixed design-time model of our management
control loop, we are also able to introduce changes to the management system itself,
and not just adaptation to apply to the managed system along (see [7], 11] and so
forth). Further, by viewing management policies, SLAs, and monitoring parameters as
dynamic data which can be modified at runtime in response to some CEP-type
filtering. Integrating multiple, dynamic data sources of these types introduces the
concepts Floch et al [7] call for with MADAM.

6 Conclusion

This paper has presented an approach to model-based management for complex
systems with a focus on two adjacent aspects. The first is modelling support for
management, which entails both model-level visualization of the running system as
well as the model-based definition of management functions; and the second is
runtime support for complex event processing. On the first aspect, we have proposed
a viewpoint dedicated to management concerns. This viewpoint enables – thanks to a
dedicated domain-specific language – both monitoring and analysis rules which
specify the management logic as well as a runtime view of the system as a set of so-
called "manageable elements" to be modelled. This view is then continuously updated
as system execution progresses. The second point we deal with relates to runtime
management support. We provide an infrastructure based on IBM WebSphere which
performs complex and basic runtime event processing (i.e. processes the monitoring
and analyze management chain). In accordance with the conceptual model presented
in section 2, runtime events can concern the system itself and – something which is
not that usual - the management rules themselves. This infrastructure thus permits the
terms of management to be modified at runtime.

The added value of our work mainly lies in its comprehensiveness, since we aim at
providing support for the whole management chain, from its model-based
specification to its realization. Moreover, our strict MDD stance – we clearly place
models at the foreground of the development process, both for management
specification and system representation at runtime – is not very widespread for such
management facilities. Finally, the way we propose to act on the management itself
(i.e. to manage the management) at runtime can also be regarded as an original
contribution to the field.

On top of implementation and experimentation issues, the next steps will deal with,
the improvement of our modelling support. In particular, we plan to enhance the
management domain-specific language to enable hierarchical monitoring data
processing. This requires in particular the definition of aggregation mechanisms for
high-level management indicators (indicators, symptoms), which we have not
considered yet. In managing the management system, we are also planning to

examine further the implications of distributed management: how to maintain
currency or some level of versioning between the original design-time, centralized
models and those adapted at runtime; and how and under what circumstances we can
distribute complex event processing across the hierarchical network topologies of
typical service-providers.

Acknowledgments. The work presented in this paper is being carried out in the
context of the MODELPLEX project (IST-FP6-2006 Contract No. 34081), co-funded
by the European Commission as part of the 6th Framework Programme.

References

1. Model-based systems management state of the art, MODELPLEX deliverable D5.1.a,
MODELPLEX project, 2007.

2. Autonomic Computing, http://www.ibm.com/autonomic/
3. Common meta-models for system management, MODELPLEX deliverable D5.1b,

MODELPLEX project, 2007
4. Griffen, C, Huang, R B, Sen, Z, and Fiammante, M “Tranforming UML <<Activity>>

Diagrams to WebSphere Business Modeler processes” 2007
http://www.ibm.com/developerworks/websphere/techjournal/0707_fiammante/0707_
fiammante.html

5. Pickering, B, Fernández, M A, Castillo, A, Mengusoglu, E “A Domain-Specific
Modelling Approach for Autonomic Network Management” 2008 MACE

6. González, J M, Lozano, J A, López de Vergara, J E and Villagrá, V A “Self-adapted
Service Offering for Residential Environments” 2007

7. Floch, J, Hallsteinsen, S, Stab,m E, Eliassen, F, Lund, K and Gjørven, E. “Using
Architecture Models for Runtime Adaptability” 2006 IEEE Software

8. Garlan, D, Cheng, S-W, Huang, A-C, Schmerl, B and Steenkiste, P “Rainbow:
Architecture Based Self-Adaptation with Reusable Infrastructure” 2004 Computer

9. Illner, S, Pohl, A, Krumm, H, Lück, I, Manka, D and Sparenberg, T “Automated
Runtime Management of Embedded Service Systems Based on Design-Time
Modeling and Model Transformation” 2005 INDIN

10. Kodase, S, Wang, S and Shin, K G “Transforming Structural Model to Runtime
Model of Embedded Software with Real-time Constraints” 2003 DATE’03

11. Oreizy, P, Gorlick, M M, Taylor, R N, Heimbigner, D, Johnson, G, Medvidovic, N,
Quilici, A, Rosenblum, D.S and Wolf A L “An Architecture-Based Approach to Self-
Adaptive Software” 1999 IEEE Intelligent Systems

12. Poirot, P-E, Nogiec, J and Ren, S “A framework for constructing adaptive and
reconfigurable systems” 2007 IEEE

13. Ulbrich, A, Weis, T and Geihs, K “QoS Mechanism Composition at Design-Time
and Runtime” 2003 ICDCSW’03

14. IBM WebSphere Business Events
http://publib.boulder.ibm.com/infocenter/wbevents/v6r1m0/index.jsp

15. S. Prochnow, R. von Hanxleden, "Enhanchements of Statecherts Modeling – the Kiel
environment", Artist 2007, Berlin, Germany.

16. Kelly, S., Tolvanen, J.-P., "Domain-Specific Modeling", IEE Computer Society
Publications, 2008.

17. Combemale, B., X. Crégut et al., Introducing Simulation and Model Animation in the
MDE TopCased Toolkit, ERTS 2008, Toulouse, France.

