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Abstract. This paper considers some specific issues reldatingodel-driven

system management applied to complex systems. Bi@gnidynamically

coupled systems-of-systems on the one hand andiyhdggtributed devices for
service access on the other, we define a commom-metlel of (semi-)

automated management applicable in both domairkéngdanonitoring by way

of illustration, we then show how this meta-modeput into practice along two
complementary aspects: management modelling artimsirevent processing
support.
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1 Introduction

Previous work has looked at exploiting design-tamehitectural models at runtime
in order to evaluate and validate potential chartgethe current managed system
[12], [8] and [9]. Although well motivated, becausé power limitations [9] in the
managed devices, or to check that potential chamngesdd be of optimal use in the
current environment [7] and so forth, there aredssabout what can and cannot be
captured at design-time. Kodastal [10] suggest non-functional requirements are
difficult to capture in design-time models, fortiasce; and Ulbriclet al[13] propose
that quality-of-service management can only effetyi be handled by message path
manipulation during operation. In addition, mostrkvrom the seminal Oreizgt al
paper on self-adaptation 11] to Rainbow [8] andM#&DAM proposals for (mobile)
telecommunication services [7] focus only on rumtimodification of the managed
system itself. There are, therefore, a numbemyfortant gaps here. Can we, for
instance, introduce non-functional as well as fiomzl aspects into our design time
models? And can we now address omissions suchsamibal data, domain-specific
rules and policy management (see Buture Worksection in [7] for instance)? Most
significantly, perhaps, can we make dynamic, canagebaptive changes to the system
management components using a design-time model ggiswe would for the
managed system? This work attempts to address ebthe issues raised in current
model-driven approaches to system management.idmwibrk, we seek to address



some of these questions. To begin with, we intredaar autonomic approach to
system and device management (Section 2) and présetop-level meta-model we
are defining for system management. Next, we censgpecific issues related to
management and system runtime modelling (Sectiorard] finally (Section 4) we
consider how to allow for runtime adaptation of thenagement system itself and the
introduction of dynamically changing functional asell as non-functional
requirements.

2 Mode-Based Management Common Framewor k

Within the context of the MODELPLEX project, we kawbegun to define and
evaluate common models for system management [fthoédgh sharing some
features with other approaches, notably OASIS, SMid®8 a number of OMG
initiativesop.cit, we have focused our work on common issues whielctadifferent
aspects of system management. One specific argdeoést involves the automatic
and semi-automatic management of complex systems.

For system management purposes, we recognize aemuafitkey concepts as
summarized in Fig 1. AManageableElemeris the central and fundamental object
which may be defined as any and all elements withisystem that need to be
managed. Each element is associated with one oe ManageabilityCapabilities
that describe what and how that element needsda@am be managed. The elements,
though, are not confined to those concepts andctsbjehich are subject to being
monitored and controlled. We must also include elets of the management system
themselves, as well as the definitions of the datand rules by which the system is
managed. So we need to be aware tWanageableElementsmay well include
ManageableSystemElementdManagementRulegspectively.

O Manageatietlemert - manageabiitycapabiity | (& ManageabilityCapability
1 1.*

{2 ManageahleSystemElement (3 Managementfule
a active : Boolean

Fig 1: Top level common model for managing systems

From these central concepts, and in line with tleekwdone by the Autonomic
Computing Initiative (ACI) [2], we are in the praaseof evaluating the applicability
of the MAPE-K autonomic management control loopisTgrovides formonitoring,
dataanalysis changeplanningand therexecutionof that plan on the basis of static
and dynamic systekmnowledge hence the acronym MAPE-K. We have extended the
top-level model above with those concepts thateedpecific to this approach.
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Fig 2: Design-time model of the MAPE-K control loop

Fig 2 illustrates a design-time model of the MAPEg¢stem management
processes. Within the context of the MODELPLEX pobj it derives from the
common meta-models for system management descrdigmie. The MAPE
management phases are themselves sedfanageableElementas defined within
the common meta-model [3], in much the same wayhasnowledgeStoratself
containing both static data, or managemeoticies and dynamic data from the
ManagedEntities held asHistory. These objects Policies and History — are of
particular interest at runtime in providing some ywaf potentially modifying
management behaviour®ur challenge in evaluating such a model for system
management lies in how it needs to be implememtedieast to establish whether the
data objects can be changed effectively at runtirhes may provide a mechanism for
changing the design-time management model. We teednsider further whether
other factors need to be examined as well forlg &daptive management operation.

3 Modédling Management and System Runtime

As far as management modelling is concerned, thd®EHK loop and the common
management meta-models (section 2) provide a commlefpasis. The current
challenge is to develop a concrete expression g framework. This requires
defining precisely how models will be used in maaragnt, what shape they should
take and how they relate to the design process. Sdttion discusses these issues and
sketches an experimental system management demimnsfor the monitor and
analysis phases that we are implementing. We \eiffib in this section to consider
the initial management phases (monitor and analyzehey relate to specific aspects
of System of Systems (SoS) management.

Enabling model-based system management obviouglyres at least two features
from the management models. First, since they sed by management operators to



observe and analyze system execution, they nepdotade a runtime image of the
managed system. Beyond that, it should contain gemant processing information,
i.e. define how runtime information is handled (Menitoring and Analyze phases of
the MAPE loop) and — which is beyond the scopéenis dliscussion — how corrective
actions are deduced from this information (the Rlad Execute phases of the MAPE
loop). On top of these base capabilities, managemmadels should enable more
complex management actions, such as determiningotitecause of a runtime event
(root cause analysis). Ideally, it should also bssjible to act not only on the system
but also on the management layer itself, i.e. dmm®n a management rule in the
model would result in an actual action on the systeanagement software. Finally, a
model-based management tool suite should also ahlewconsequences of changes
on the system or on the management system to lerndeed before they are
performed.
Provided the tool support is adequate, the manageocmcepts we have defined
(Fig 3) meet these desired features in theory:
« To begin with, ManageableElementsepresent the monitored system
elements. They own collected data (raw runtime )datad indicators
(complex monitoring data built from processed czitel data). Indicators
can be processed to produce Symptoms, which areessipns of a
departure from normal SoS function (note that syrmst are not related
to any specificManageableElemept Monitoring system execution thus
comes down to observindManageableElementsCollectedData and
Indicators.
e« Then, ManagementRules contain the management information:
MonitoringRules express howCollectedDatais processed to produce
Indicators (logical and / or algebraic expressitites operands for which
include CollectedData and AnalysisRulesexpress howlndicators are
processed to produ@&ymptoms

owns 1% processes
H collected Data

1

= Manageable Element = Monitoring Data E Monitoring Rule
*
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owns QAnalysis Rule
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Fig 3: Some of the Management M eta-M odel Concepts



However, as usual, concepts need to be put infardotice. In this respect, two
concerns prevail: first, the modelling language.(the concrete syntax associated
with the meta-models); and subsequently, the toppert. As far as concrete syntax
is concerned, it is possible to build runtime med®t customizing design models (for
instance in UML by creating and using a profile idated to management modelling).
But this has one major drawback: the resulting nodeuld provide too much detail
compared to what is needed for management purp@ses,that would reduce
readability. We thus chose a different approacimc&iwe work in the scope of
architecture frameworks, we propose to define aciipemanagement viewpoint
which will contain the management models. Doingtkese will not be confused with
system models for other viewpoints. However, relahips will be defined between
them in order to show hoianageableElementglate to actual system elements. For
the definition of a management modelling language,considered two equivalent
options: either build a UML profile or define a DSWe had favoured a DSL-based
solution in order to enable fast and iterative piyging.

In order to validate our choices, we have desigmednitial experiment: a basic
system management prototype which focuses on &iifanonitoring and analysis.
The considered system is a set of cameras whospetatares and states are
monitored. The simulation scenario introduces raatevents (state and temperature
changes) from which the monitoring / analysis chaould infer a faulty situation.
One of the main outcomes of this prototype was deénition of a DSL for
management modelling which gives a concrete shapthé concepts previously
described (e.g. symptoms). This DSL was definethénMicrosoft DSL tool, which
provides facilities to define the DSL meta-modetl dhe associated concrete syntax
and generates the corresponding domain-specificeiiiogl environment. By way of
illustration, Fig 4 shows an excerpt of a modettad system described above, built
thanks to this DSL. This excerpt representdanageableElemerdssociated with a
camera Camera 1 ME owning collected dataSfateCD1and TempCDJ] and
indicators 81, T1), and a monitoring rule GQDFilteringRule) which processes
TempCD1to issuerl.

h o) camera1 vE
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Fig 4: Excerpt of a management DSL model
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In order to test our conceptual assets furtheralse associated a C# script to each
of the monitoring and analysis rules implementidgirt behaviour. Each time



incoming data values change (e.g. in the caseCbBFilteringRulel TempCD1
changes), the script is executed and output datasised (e.g.T1 indicator for
CDFilteringl). Messages are also displayed when events oEsttarise (e.g. when a
symptom is raised). In this way, the progress ofitaning and analysis can be
observed directly on the model. To complete oureexpent, a service-oriented Java
application was implemented, which simulates theneras and processes the
scenario. This simulation performs dynamic updatethe model in the Microsoft
DSL repository, which in turn trigger the model4évnonitoring / analysis chain
described above. These initial results are quitberaging, since they demonstrate
the global feasibility of our approach on a basiaraple. We now plan to extend the
DSL, in order to enable more complex configuratjomg. for layered management.
We also envisage making some connections with muoaitoring infrastructures,
like the one described in the next section.

4 Complex Events Processing Architecture

The MAPE-K control loop introduced above providegseaful and extensible design-
time model for the semi and fully automatic manageimof systems or devices.
Pickering et al [5] have begun to assess its agiplity to highly-distributed devices

within a service provider network. In this sectiome will focus on the runtime

modelling of the monitoring phase specifically.

D

e

Fig 5: Monitoring Activitiesat Runtime

Our initial approach to autonomic computing via MAPE-K framework would
suggest a unidirectional process flow for manageénidonitoring data are retrieved
from the services or devices managed during th@lirphase. These are processed
and evaluated using policy data from the knowlesigee by the analysis and plan
phases. The results from these are then sent extfmition phase to effect either are
reconfiguration of the managed system or the depéoy of a new or modified
service. This basic unidirectional flow from momitgy data collection based on



policies ManagementRulesr service level agreements) to configuration geaar
service deployment (via thexecution phase is shown in Fig 5.

Phase Evers

Actions

Sefs rufes,
Domain dcdiness
Expest | /| polidies etc

Fig 6: MAPE-K and Event Processing

ThePoliciescan be regarded as the set of domain-specific tipesaapplied to the
data obtained by the monitoring process. We useleenginefor complex event
processing to aggregate and analyze the data andrbke inferences to decide what
to do next. The IBM WebSphere® Business Eventdgiatis the best candidate for
this rule engine in our architecture since it pdeg both simple and complex event
processing (CEP). We might begin by seeing theentgne in this case assuming the
role of analysis and plan phases in the MAPE-K aagh. This preserves the cyclical
nature associated with control loops: monitor goservg, decide and take action;
then return to the monitor step. In addition to ¢éxecution of simple rules related to
relatively simple events, such as threshold checHKor instance, the rule engine
needs to be able to detect complex event patterrgder to provide a complete
monitoring process in terms of data aggregatiormgex events may be defined in
IBM WebSphere Business Events as rules about ttezcarrence or order of events,
but may also be extended to use additional eveatfdathe definition of correlation
patterns. With this complex filtering, we do weallreconsider whether the rule engine
does fulfill the function of thénalysisandPlan phases in MAPE-K.



Fig 6 summarises how we use the rule engine witbur MAPE-K
implementation. Irrespective of MAPE phase, the ag@ment process retrieves
operational rules (policies, SLA parameters, maneg rules) from the Knowledge
Store at runtime. But also, as data are handWemhitoringData in the case of the
monitoring phase, then the rule engine is presewitld the data (via afEven) to
correlate in accordance with the event filters, cihas stated may be simple or
complex. The result of this processing may resuli change to the operational rules
(signaled via arction event to the Knowledge Store); this introducesadyic data
and rule control for our system management model.

In practice, we don’t see the sort of uniform bebavwhereby data from a service
are monitored, undergo initial processing and drentpassed on to the next
management phase. Suppose for instance that cirances change. For instance,
rerouting delivery across the network may affeetsbrvice provider’s ability to meet
agreed throughput levels. Such changes will résarih the managed system. Equally,
some changes may be commercially motivated: custete¢us or service features
may change with a knock-on effect for policy hangli The changes are externally
motivated, and independent of the managed systsgif.iWWe must therefore allow
feedback about the policies and rules from the mement system back into the
knowledge store from a number of sources. Thisbeahandled as outlined above and
summarised in Fig 6: the operational rules are fremlby IBM WebSphere Business
Events via anAction to the Knowledge Store. This in turn may modifywhthe
monitoring is done. As such, the process flow nioslude a non-device-affecting
path back to the knowledge store as well as t0MAPE phases themselves. In Fig 6,
Actionsmay therefore return to the MAPE phase as wetbate Knowledge Store.
Such Actions may be directives (phase I/0O parameters or cordtgan settings),
which may include, of course, the next MAPE phasbkd called, if any. Our control
loop flow is therefore bi-directional. We are agbtherefore, to modify how we
process the management data from the managed sydtemalso how the
management system itself operates at runtime. Slynhmic changes are reflected
back as temporary or permanent modifications to aasign-time system
management model.

5 Reated Works

In section 3, we focused on issues related to mentsystem and monitoring
operations modeling. This work is based on the commeta-models introduced in
section 2 and as such builds on the results ofd2Jautonomic management. Our
contribution also sits well amidst earlier works @mchitecture-based system
management, like [8], or works about models simoatlike [17]. As far as
management modelling support is concerned, welaoederiving some benefit from
works within domain-specific modelling, such as ]J[16ince runtime information
layout is one of our concerns, we also have a adimrewith work such as [15] about
dynamic models layouts, though our scope is farenmrmprehensive. Turning to
Section 4, we considered issues pertaining to ¢ipee models for system
management. Continuing work on autonomic managemersented by Gonzalet



al [6], we took the ACI MAPE-K framework [2] as outasting point, and more
specifically the monitoring phase. Using complexervprocessing (CEP) [14], we
have been able to introduce elements of dynamistheananagement system itself;
we are now free to generate modified managed systafigurations at runtime in
contrast to the preloading proposed by lllaeal [9] for the service provider domain.
In addition, instead of relying on the fixed destgne model of our management
control loop, we are also able to introduce charnigabe management system itself,
and not just adaptation to apply to the managetesyslong (see [7], 11] and so
forth). Further, by viewing management policiesASLand monitoring parameters as
dynamic data which can be modified at runtime ispmnse to some CEP-type
filtering. Integrating multiple, dynamic data soescof these types introduces the
concepts Floclet al[7] call for with MADAM.

6 Conclusion

This paper has presented an approach to model-lsaaadgement for complex
systems with a focus on two adjacent aspects. ke i$ modelling support for
management, which entails both model-level visadilin of the running system as
well as the model-based definition of managememictions; and the second is
runtime support for complex event processing. @nfiltst aspect, we have proposed
a viewpoint dedicated to management concerns. vidigpoint enables — thanks to a
dedicated domain-specific language — both monigpramd analysis rules which
specify the management logic as well as a runtiree wf the system as a set of so-
called "manageable elements" to be modelled. Tikis is then continuously updated
as system execution progresses. The second poirtealewith relates to runtime
management support. We provide an infrastructusedan IBM WebSphere which
performs complex and basic runtime event procesgiagprocesses the monitoring
and analyze management chain). In accordance hétltanceptual model presented
in section 2, runtime events can concern the sy#teeif and — something which is
not that usual - the management rules themsehres.iffrastructure thus permits the
terms of management to be modified at runtime.

The added value of our work mainly lies in its caefensiveness, since we aim at
providing support for the whole management chaimpmf its model-based
specification to its realization. Moreover, ourictttMDD stance — we clearly place
models at the foreground of the development proceéssgh for management
specification and system representation at runtinie not very widespread for such
management facilities. Finally, the way we proptsact on the management itself
(i.e. to manage the management) at runtime can ladsoegarded as an original
contribution to the field.

On top of implementation and experimentation isstlesnext steps will deal with,
the improvement of our modelling support. In paiée, we plan to enhance the
management domain-specific language to enable rblécal monitoring data
processing. This requires in particular the ddfinitof aggregation mechanisms for
high-level management indicators (indicators, symp), which we have not
considered yet. In managing the management systeenare also planning to



examine further the implications of distributed mgement. how to maintain
currency or some level of versioning between thgimal design-time, centralized
models and those adapted at runtime; and how adeér wwhat circumstances we can
distribute complex event processing across theatdhical network topologies of
typical service-providers.
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