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Abstract. We introduce model-based traces, which trace behavioral mod-
els of a system’s design during its execution, allowing to combine model-
driven engineering with dynamic analysis. Specifically, we take visual
inter-object scenario-based and intra-object state-based models (sequence
charts and statecharts) used for a system’s design, and follow their acti-
vation and progress as they come to life at runtime, during the system’s
execution. Thus, a system’s runtime is recorded and viewed through ab-
stractions provided by behavioral models used for its design. We present
two example applications related to the automatic generation and visual
exploration of model-based traces and suggest a list of related challenges.

1 Introduction

Transferring model-driven engineering artifacts and methods from the early
stages of requirements and specification, during a system’s design, to the later
stages of the lifecycle, where they would aid in the testing, analysis, mainte-
nance, evolution, comprehension, and manipulation of running programs, is an
important challenge in current model-driven engineering research.

In this paper, as a means towards this end, we introduce model-based traces,
which trace behavioral models from a system’s design during its execution, al-
lowing to combine model-driven engineering with dynamic analysis. Specifically,
we take visual inter-object scenario-based and intra-object state-based models
(sequence diagrams and statecharts) used for a system’s design, and follow their
activation and progress as they come to life at runtime, during the execution of
the system under investigation. Thus, a system’s runtime is recorded and viewed
through abstractions provided by models used for its design.

An important feature of model-based traces is that they provide enough
information to reason about the executions of the system and to reconstruct
and replay an execution (symbolically or concretely), exactly at the abstraction
level defined by its models. This level of model-based reflection seems to be a
necessary requisite for the kind of visibility into a system’s runtime required for
model-based dynamic analysis and adaptation.

Additional features worth noting. First, model-based traces can be generated
and defined based on partial models; the level of abstraction is defined by the
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modeler. Second, the models used for tracing are not necessarily reflected ex-
plicitly in the running program’s code; rather, they define a separate viewpoint,
which in the process of model-based trace generation is put against the concrete
runtime of the program under investigation. Third, the same concrete runtime
trace may result in different model-based traces, based on the models used for
tracing; and vice versa, different concrete runtime traces may result in equal
model-based traces, if the concrete runs are equivalent from the more abstract
point of view of the model used for tracing.

In the next section we briefly introduce, informally define, and discuss the
format and features of model-based traces, using a simple example. We then
present two example applications related to the automatic generation and visual
exploration of model-based traces. Finally, we suggest a list of related challenges.

2 Model-Based Traces

The use of system’s execution traces for different analysis purposes requires
different levels of abstraction, e.g., recording CPU register assignments, recording
virtual machine commands, or recording statements at the code level. We suggest
a higher level of abstraction over execution traces, based on behavioral models
typically used for a system’s design, such as sequence diagrams and statecharts.

In this work we present two types of model-based traces, inter-object scenario-
based traces and intra-object state-based traces. Additional types may be created
by combining variants of the two or using other modeling techniques1.

Given a program P and a behavioral model M , a model-based execution
trace records a run r of P at the level of abstraction induced by M . A unification
mechanism is defined, which statically and dynamically maps concrete elements
of the run to elements in the model. The type of the model used, the artifacts
and their semantics, define the types of entries that appear in the model-based
trace. We demonstrate our ideas using two concrete examples of a scenario-based
trace and a state-based trace, taken from a small example system.

Note that although there are code generation schemes for the execution of
the models we use, we do not, in general and in the example given here, consider
tracing programs whose code was automatically generated from models. On the
contrary, we believe that one of the strengths of our approach is that it can
be applied to systems in general, not only to ones where the implementation
explicitly reflects certain high-level models.

Also note that the model-based traces we present are not mere projections
of the concrete runtime information onto some limited domain. Rather, we use
stateful abstractions, where trace entries depend on the history and context of
the run and the model; the model-based trace not only filters out irrelevant
information but also adds model specific information (e.g., information about
entering and exiting ‘states’ that do not appear explicitly in the program).
A small example Consider an implementation of the classic PacMan game.
PacMan consists of a maze, filled with dots, power-ups, fruit and four ghosts. A
1 In principle, any representation of an execution trace may be considered a model-
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human player controls PacMan, who needs to collect as many points as possible
by eating the objects in the maze. When a ghost collides with PacMan, it loses a
life. When no lives are left, the game is over. However, if PacMan eats a power-
up, it is temporarily able to eat the ghosts, thus reversing roles. When a ghost is
eaten, it must go back to the jail at the center of the maze before leaving again to
chase PacMan. When all dots are eaten, the game advances to the next – more
difficult – level. We consider the PacMan game to be a well-known, intuitive,
relatively small and yet complex enough reactive system, hence a good choice
for the purpose of demonstrating model-based traces in this paper.
2.1 Scenario-based models
For inter-object scenario-based modeling, we use a UML2-compliant variant of
Damm and Harel’s live sequence charts (LSC) [4,9]. Roughly, LSC extends the
partial order semantics of sequence diagrams in general with a universal in-
terpretation and must/may (hot/cold) modalities, and thus allows to specify
scenario-based liveness and safety properties. Must (hot) events and conditions
are colored in red and use solid lines; may (cold) events and conditions are col-
ored in blue and use dashed lines. A specification typically consists of many
charts, possibly interdependent, divided between several use cases (our small
PacMan example has 9 scenarios divided between 3 use cases).

Fig. 1. The LSC for PacManEatsGhost with a cut displayed at (3,4,2,0).

Fig. 1 shows one LSC taken from our example model of PacMan. Vertical lines
represent specific system objects and time goes from top to bottom. Roughly,
this scenario specifies that “whenever a gameControl calls a ghost’s
collidedWithPacman() method and the ghost’s isEaten() method evaluates to
TRUE, the gameControl must tell the player (PacMan) to eat the ghost, the
player must tell the ghost it has been eaten, and the ghost’s state must change
to EATEN. Then, if and when the ghost goes to jail it must tell the gameModel it
has gone there and its state should change to JAIL, etc...” Note the use of hot
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‘must’ elements and cold ‘may’ elements. Also, note the use of symbolic instances
(see [15]): the lifeline representing ghost may bind at runtime to any of the four
ghosts (all four are instances of the class Ghost).

An important concept in LSC semantics is the cut, which is a mapping from
each lifeline to one of its locations (note the tiny location numbers along the
lifelines in Fig. 1, representing the state of an active scenario during execution).
The cut (3,4,2,0), for example, comes immediately after the hot evaluation of
the ghost’s state. A cut induces a set of enabled events — those immediately after
it in the partial order defined by the diagram. A cut is hot if any of its enabled
events is hot (and is cold otherwise). When a chart’s minimal event occurs, a
new instance of it is activated. An occurrence of an enabled method or true
evaluation of an enabled condition causes the cut to progress; an occurrence
of a non-enabled method from the chart or a false evaluation of an enabled
condition when the cut is cold is a completion and causes the chart’s instance
to close gracefully; an occurrence of a non-enabled method from the chart or a
false evaluation of an enabled condition when the cut is hot is a violation and
should never happen if the implementation is faithful to the specification model.
A chart does not restrict events not explicitly mentioned in it to occur or not to
occur during a run (including in between events mentioned in the chart).

2.2 Scenario-based traces
Given a scenario-based specification consisting of a number of LSCs, a scenario-
based trace includes the activation and progress information of the scenarios,
relative to a given program run. A trace may be viewed as a projection of the
full execution data onto the set of methods in the specification, plus, significantly,
the activation, binding, and cut-state progress information of all the instances
of the charts (including concurrently active multiple copies of the same chart).
Thus, our scenario-based traces may include the following types of entries:
– Event occurrence representing the occurrence of an event. Events are

timestamped and are numbered in order of occurrence. Only the events that
explicitly appear in one of the scenarios in the model are recorded in the
trace (one may add identifiers of participating objects, i.e., caller and callee,
and parameter values). The format for an event occurrence entry is:
E: <timestamp> <event no.>: <event signature>

– Binding representing the binding of a lifeline in one of the active scenario
instances to an object. Its format is:
B: <scenario name>[instance no.] lifeline <no.> <- <object identifier>

– Cut change representing a cut change in one of the active scenario in-
stances. Its format is:
C: <scenario name>[instance no.] <cut tuple> [Hot|Cold]

– Finalization representing a successful completion or a violation in an active
scenario instance. Its format is:
F: <scenario name>[instance no.] [Completion|Violation]

Fig. 2 shows an example short snippet from a scenario-based trace of PacMan.
Note the different types of entries that appear in the trace.
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...
E: 1172664920526 64: void pacman.classes.Ghost.slowDown()
B: PowerUpEaten[1] lifeline 6 <- pacman.classes.Ghost@7e987e98
B: GhostStopsFleeing[7] lifeline 1 <- pacman.classes.Ghost@7e987e98
C: GhostStopsFleeing[7] (0,1) Hot
C: GhostFleeing[7] (1,3) Hot
E: 1172664920526 65: void pacman.classes.GameControl.ghostSlowedDown(Ghost) pacman.classes.Ghost@7e987e98
B: GhostStopsFleeing[7] lifeline 0 <- pacman.classes.GameControl[panel0,0,0,600x600,layout=...
C: GhostStopsFleeing[7] (1,2) Cold
C: GhostFleeing[7] (2,4) Cold
E: 1172664920526 66: void pacman.classes.GameModel.resetGhostPoints()
C: PowerUpEaten[1] (1,2,6,1,1,1,1) Cold
F: PowerUpEaten[1] Completion
E: 1172664921387 67: void pacman.classes.Fruit.enterScreen()
B: PacmanEatsFruit[0] lifeline 2 <- pacman.classes.Fruit@3360336
C: PacmanEatsFruit[0] (0,0,1,0) Hot
C: PacmanEatsFruit[0] (0,0,2,0) Cold
E: 1172664923360 68: void pacman.classes.Ghost.collidedWithPacman()
B: PacmanEatsGhost[2] lifeline 1 <- pacman.classes.Ghost@7d947d94
B: PacmanEatsGhost[2] lifeline 0 <- pacman.classes.GameControl[panel0,0,0,600x600,layout=...
C: PacmanEatsGhost[2] (1,1,0,0) Hot
C: PacmanEatsGhost[2] (1,2,0,0) Hot
C: GhostEatsPacman[2] (0,1,1,0) Cold
F: GhostEatsPacman[2] Violation
...

Fig. 2. Part of a textual representation of a scenario-based trace of PacMan.

2.3 State-based models
For intra-object state-based modeling, we use UML state machines (that is, the
object based variant of Harel statecharts [7]). For lack of space, we assume the
reader is partly familiar with the syntax and semantics of statecharts in general,
at least to the level that allows to understand our example.

Fig. 3 shows an example statechart taken from a model of PacMan. It shows
part of a statechart for the class Ghost.

2.4 State-based traces
Given a state-based specification consisting of a number statecharts, a state-based
trace includes the creation and progress information of the statecharts, relative
to a given program run. The trace includes information on events, guards eval-
uation, and the entering and exiting of states in all instances of the statecharts
(including concurrently running instances of the same statechart). Thus, our
state-based traces may include the following types of entries:

– State entered representing a statechart entering a state. The format is:

EN: <class_name>[instance no.] Entered state <state full name>

– State exited representing a statechart existing a state. The format is:

EX: <class_name>[instance no.] Exited state <state full name>

– Event occurrence representing the occurrence of an event. Events are
timestamped and are numbered in order of occurrence. Only the events that
explicitly appear in one of the statecharts in the model are recorded in the
trace. One may optionally add guards evaluation. The format is:

EV: <timestamp> <event no.>: <event signature>
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Fig. 3. Part of the Ghost statechart in the PacMan model.

Fig. 4 shows a snippet from a state-based trace of PacMan involving a number
of statecharts. Note the different types of entries that appear in the trace.

We remark that the above scenario-based and state-based trace formats are
presented as examples. Depending on the application, the trace generation mech-
anism available, and the kind of analysis and reasoning intended for the model-
based traces, one may consider different formats, different entry types, different
levels of succinctness etc. For example, whether to document the values of guards
or the concrete values of parameters depends on the specific application and ex-
pected usage of the model-based trace.

3 Example Applications

We give a short overview of two example applications related to the generation
of model-based traces and to their visualization and exploration.

3.1 Generating model-based traces

S2A [8] (for Scenarios to Aspects) is a compiler that translates live sequence
charts, given in their UML2-compliant variant using the modal profile [9], into
AspectJ code [1], and thus provides full code generation of reactive behavior
from visual declarative scenario-based specifications. S2A implements a compi-
lation scheme presented in [13]. Roughly, each sequence diagram is translated
into a scenario aspect, implemented in AspectJ, which simulates an automa-
ton whose states correspond to the scenario cuts; transitions are triggered by
AspectJ pointcuts, and corresponding advice is responsible for advancing the
automaton to the next cut state.
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...
EV: 45632290 874: Ghost[3].collided
EX: Ghost[3] Exited state Ghost.InGame.InPlay.Play.Running.Free
EN: Ghost[3] Entered state Ghost.InGame.InPlay.Play.Running.Jail
EV: 45644272 875: Ghost[2].collided
EX: Ghost[2] Exited state Ghost.InGame.InPlay.Play.Running.Free
EN: Ghost[2] Entered state Ghost.InGame.InPlay.Play.Running.Jail
EV: 45644290 876: Ghost[3].timer
EX: Ghost[3] Exited state Ghost.InGame.InPlay.Play.Running.Jail
EN: Ghost[3] Entered state Ghost.InGame.InPlay.Play.Running.Free
EV: PacMan[1] 877: Pacman[1].complete
EX: PacMan[1] Exited state PacMan.InPlay.Play
EN: PacMan[1] Entered state PacMan.InPlay.LevelInitalization
EV: 45664403 878: Ghost[1].nextLevel
EX: Ghost[1] Exited state Ghost.InGame.InPlay.Play.Running.Free
EX: Ghost[1] Exited state Ghost.InGame.Levels.Basic
EN: Ghost[1] Entered state Ghost.InGame.InPlay.Play.Initalization
EN: Ghost[1] Entered state Ghost.InGame.Levels.Intermediate
EV: 45664405 879: Ghost[2].nextLevel
EX: Ghost[2] Exited state Ghost.InGame.InPlay.Play.Running.Jail
EX: Ghost[2] Exited state Ghost.InGame.Levels.Basic
EN: Ghost[2] Entered state Ghost.InGame.InPlay.Play.Initalization
EN: Ghost[2] Entered state Ghost.InGame.Levels.Intermediate
EV: 45664408 880: Ghost[3].nextLevel
...

Fig. 4. Part of a textual representation of a state-based trace of PacMan.

Most important in the context of this paper, though, is that in addition to
scenario-based execution (following the play-out algorithm of [10]), S2A provides
a mechanism for scenario-based monitoring and runtime verification. Indeed, the
example scenario-based trace shown in Fig. 2 is taken from an actual execution
log of a real Java program of the PacMan game adapted from [3], (reverse)
modeled using a set of live sequence charts (drawn inside IBM Rational SA [2] as
modal sequence diagrams), and automatically instrumented by the AspectJ code
generated by S2A. More on S2A and its use for model-based trace generation
can be found in http://www.wisdom.weizmann.ac.il/~maozs/s2a/.

3.2 Exploring model-based traces

The Tracer [14] is a prototype tool for the visualization and interactive ex-
ploration of model-based traces. The input for the Tracer is a scenario-based
model of a system given as a set of UML2-compliant live sequence charts, and
a scenario-based trace, generated from an execution of the system under inves-
tigation.

Fig. 5 shows a screenshot of the main view of the Tracer, displaying a
scenario-based model and trace similar to the one shown in Fig. 2. Roughly,
the main view is based on an extended hierarchical Gantt chart, where time
goes from left to right and a two-level hierarchy is defined by the containment
relation of use cases and sequence diagrams in the model. Each leaf in the hierar-
chy represents a sequence diagram, the horizontal rows represent specific active
instances of a diagram, and the blue and red bars show the duration of being in
a specific cold and hot relevant cuts. The horizontal axis of the view allows to
follow the progress of specific scenario instances over time, identify events that
caused progress, and locate completions and violations. The vertical axis allows

http://www.wisdom.weizmann.ac.il/~maozs/s2a/
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Fig. 5. The Tracer’s main view, an opened scenario instance with its cut displayed at
(3,4,2,0), and the Overview pane (at the bottom). The example trace and model are
taken from an implementation of the PacMan game, see [14].

a clear view of the synchronic characteristic of the trace, showing exactly what
goes on, at the models abstraction level, at any given point in time.

When double-clicking a bar, a window opens, displaying the corresponding
scenario instance with its dynamic cut shown in a dashed black line. Identifiers of
bound objects and values of parameters and conditions are displayed in tooltips
over the relevant elements in the diagram. In addition, one can travel back and
forth along the cuts of the specific instance (using the keyboard or the arrows
in the upper-left part of the window). Multiple windows displaying the dynamic
view of different scenario instances can be opened simultaneously to allow for
a more global synchronic (vertical) view of a specific point in the execution,
or for a diachronic (horizontal) comparison between the executions of different
instances of the same scenario at different points in time during the execution.

Note the Overview pane (bottom of Fig. 5), which displays the main execu-
tion trace in a smaller pixel per event scale, and the moving window frame show-
ing the borders of the interval currently visible in the main view. The Overview
allows to identify high level recurring behavioral patterns, at the abstract level of
the scenarios in the model. Additional views are available, supporting multiplic-
ities, event-based and real-time based tracing, and the presentation of various
synchronous metrics (e.g., how many scenarios have been affected by the most
recent event?). Overall, the technique links the static and dynamic aspects of
the system, and supports synchronic and diachronic trace exploration. It uses
overviews, filters, details-on-demand mechanisms, multi-scaling grids, and gra-
dient coloring methods.

The Tracer was first presented in [14]. More on the Tracer, including addi-
tional screenshots and screencasts can be found in http://www.wisdom.weizmann.
ac.il/~maozs/tracer/.

http://www.wisdom.weizmann.ac.il/~maozs/tracer/
http://www.wisdom.weizmann.ac.il/~maozs/tracer/
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4 Related work

We briefly discuss related work. Generating model-based traces requires an ob-
server with monitoring and decision-making capabilities; a so called ‘runtime
awareness’ component (see, e.g., [5,11]). However, while model-based traces can
be used for error detection and runtime verification, the rich information embed-
ded in them supports more general program comprehension and analysis tasks
and allows the reconstruction and symbolic replay of a program’s run at the
abstraction level defined by the model used for tracing.

The use of AOP in general and AspectJ in particular to monitor program
behavior based on behavioral properties specified in (variants of) LTL has been
suggested before (see, e.g., [5,16]). As LSCs can be translated into LTL (see [12]),
these work have similarities with our use here of S2A. Like [16], S2A auto-
matically generates the AspectJ code which simulates the scenario automaton
(see [13]). Unlike both work however, S2A outputs a rich trace reflecting state
changes and related data (binding etc.), to serve our goal of generating model-
based traces that allow visibility and replaying, not only error detection.

Many work suggest various trace generation and visual exploration techniques
(e.g., for a survey, see, [6]). Most consider code level concrete traces. Some at-
tempt to extract models from these traces. In contrast, model-based traces use
an abstraction given by user-defined models. They are generated by symbolically
running these models simultaneously with a concrete program execution.

5 Discussion and Challenges for Future Work

We introduced model-based traces and presented two example applications. The
focus of model-based traces is on providing visibility into an execution of a
program at the abstraction level defined by a model, enabling a combination of
dynamic analysis and model-driven engineering. Below we discuss our approach
and list related challenges.

Trace generation S2A provides an example of a model-based trace generation
technology, based on programmatically generated aspects. Two major advan-
tages of this approach are that the monitoring code is automatically generated
from the models, and that the code of the system under investigation itself
is oblivious to the models ‘watching’ it. Related challenges include minimizing
runtime overhead, scalability in terms of trace length and model size, and the ap-
plication of similar technology to domains where aspect technology is not readily
available (e.g., various embedded or distributed systems).

Analysis and reasoning We consider the development of analysis methods for
model-based traces. For example, define and measure various vertical and hori-
zontal metrics (e.g., ‘bandwidth’, state / transition coverage per trace per model,
how many times was each state visited), abstraction and refinement operators
(e.g., hide events and keep states, hide sub states of composite states), ways
to represent and compare different model-based runtime configurations (‘snap-
shots’, perhaps most important for dynamic adaptation), or ways to align and
compare between traces of different runs of the same system, or very similar
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runs of different versions of the same system. In addition, we consider additional
types of abstractions over the same models, e.g., real-time based vs. event-based
trace representation (as is supported by the Tracer (see [14])). Also, an agree-
able, common representation format for model-based traces, where applicable
(e.g., for specific types of models), should perhaps be defined and agreed upon,
so that not only models but also their traces may be exchanged between tools
in a standard format like XMI.
Visualization and interaction The visualization and interaction supported
by the Tracer allows a human user to explore and analyze long and complex
model-based traces that are otherwise very hard to handle manually in their
textual form. Still, a lot more can be done on this front, from finding “economic”
visualizations for model-based snapshots to animation to visual filters etc.
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