REQUIREMENTS OF RUN-TIME MODELS

DIFFERENCE BETWEEN DESIGN TIME AND RUN-TIME MODELS

Betty Cheng, Gereon Weiss, Hui Song, Tobias Schwalb, Grzegorz Lehmann, Frank Trollman, Robert France
Contents of Run-time Model

• Environmental conditions
 – Design time info (e.g., plant model)
 – Run-time info (e.g., [more abstract] plant model with values)

• System conditions
 – Design time info
 • Traditional system models (e.g., class, state, etc.)
 – Run-time info
 • Present information (e.g., current task, service, attribs, processing node)
 • Traceability information to design-time info
Purpose of Run-Time Models (for adaptive systems)

• Monitoring (collect system and env. State)
 – Domain model with current evalues
 – Trace data
 – Feature, service, component models

• Decision-Making (process data to adapt, validate, simulate)
 – State-based (e.g., state, petri-nets); simulation
 – Machine learning/search-based; rule-based
 – Descriptive (constraints, contracts, etc.)

• Adaptation (mode change; reconfiguration)
 – Structure
 • Add information (active/inactive)
 • Abstract away irrelevant information (e.g., parts that are not adaptive)
 – Behavior
 • Current state;
 • History
 • Preservation of data from one config to another config
Findings

• Need a means to represent information about
 – environment
 – system

• Purpose of run-time models and how to change
 – Monitoring
 • Model + Monitoring Functionality
 – Decision Making
 • Model + Decision Algorithms
 – Adaptation
 • Model + Representation of the current state
 • Model + Reconfiguration Rules
Recommendations

• Move towards multiple run-time models, rather than a monolithic run-time model

• The kinds of run-time models strongly depend on what we want to do with the system
 – Performance analysis; fault tolerance, diagnosis; adaptive; safety

• We should look into possible purposes of run-time models and find additional ones
 – Change existing model types
 – Develop new ones