
Satisfying requirements for 
pervasive service compositions

Luca Cavallaro, Pete Sawyer, Daniel Sykes, 
Nelly Bencomo, Valérie Issarny

Lero, Lancaster, INRIA

Models @ Runtime, 2nd October 2012



Pervasive environment

• Cannot predict at design time what services 
will be available

• Services and devices appearing and 
disappearing all the time

• Huge variety of platforms, protocols, 
standards and functionality

• How do we compose services at runtime to 
achieve our aims?

2



3



4

Travel 
by 

cabriolet

Opera Louvre

Convert 

Sterling to 

eurodollars!

Travel by 

Hansom 

cab

Orsay

Reserve a 

journey by 

balloon



5

Travel 
by 

cabriolet

Opera Louvre

Convert 

Sterling to 

eurodollars!

Travel by 

Hansom 

cab

Orsay

Reserve a 

journey by 

balloon



6

Ticket booking app
(on smartphone)

Ticket booking service
(on server)

chooseDate

chooseSeat

makeBooking

pickSeat

selectDateTime

makeBooking



7

Ticket booking app
(on smartphone)

Ticket booking service
(on server)

chooseDate

chooseSeat

makeBooking

pickSeat

selectDateTime

makeBooking

Incompatible: signature & protocol mismatch



Possible solutions

• Standardisation of interfaces

– So many standards

– Often little incentive to standardise

• Manual translation between interfaces

– Costly, slow

– Cannot be applied at runtime

8



Runtime pervasive composition

• Discover services at runtime (WS-Discovery, 
UPNP)

• Select services relevant to goal

• Analyse their descriptions and synthesise a 
mediator

• Compose mediator with services to satisfy 
goal

• Adapt by replacing services that disappear

9



Runtime pervasive composition

10

GoalService 1 Service 2

Abstract mediator

Mediator synthesisRuntime
models

Service 1 Service 2Concrete mediator
Running

system



Goal model

11



Goal model

12

<>executed(makeBooking)



Service model

13

Affordance (ontology concept)

Interface (WSDL)

Behaviour (state machine)

Service 1

Category (e.g. “entertainment”)

Available operations
(e.g. “getTicketPrice”) 
labelled with ontology 
concepts

Protocol describing valid 
combinations of operations



Service selection

14

Affordance (ontology concept)

Interface (WSDL)

Behaviour (state machine)

Service 1

Affordance (ontology concept)

Interface (WSDL)

Behaviour (state machine)

Service 2

?

ontology
matching

Mediator synthesis



Mediator synthesis

• Synthesise intermediary that enables 
communication between two differing 
protocols

• Such that the goal formula is achieved

–

• Simple goal language: LTL operators plus

– sent(c), received(c), executed(c)

– Parameter and operation concepts in ontology

– <>executed(makeBooking)
15



Mediator synthesis

• Goal LTL compiled to Büchi automaton, 
reachability checked on parallel composition

• Path to goal must be a feasible interaction:

– All input parameters are sent from one partner 
before being needed by the other partner

– All output parameters are eventually provided

– Permits operation re-ordering

16



• Services effectively 
synchronise on 
operations with 
matching ontology 
concepts

17

DateTime chooseDate()

void selectDateTime(DateTime t)

chooseDate selectDateTime

DateTimeOperation

Ontology:

Feasible interaction
in mediator



18

Ticket booking app
(on smartphone)

Ticket booking service
(on server)

chooseDate

chooseSeat

makeBooking

pickSeat

selectDateTime

makeBooking

Mediator

>chooseDate

>chooseSeat

pickSeat>

selectDateTime>

>makeBooking makeBooking>

<>executed(makeBooking)



19

Ticket booking app
(on smartphone)

Ticket booking service
(on server)

chooseDate

chooseSeat

makeBooking

pickSeat

selectDateTime

makeBooking

Mediator

>chooseDate

>chooseSeat

pickSeat>

selectDateTime>

>makeBooking makeBooking>

<>executed(makeBooking)



20

Ticket booking app
(on smartphone)

Ticket booking service
(on server)

chooseDate

chooseSeat

makeBooking

pickSeat

selectDateTime

makeBooking

Mediator

>chooseDate

>chooseSeat

pickSeat>

selectDateTime>

>makeBooking makeBooking>

<>executed(makeBooking)



21

Ticket booking app
(on smartphone)

Ticket booking service
(on server)

chooseDate

chooseSeat

makeBooking

pickSeat

selectDateTime

makeBooking

Mediator

>chooseDate

>chooseSeat

pickSeat>

selectDateTime>

>makeBooking makeBooking>

<>executed(makeBooking)



Summary

• Build compositions of multiple services discovered at runtime

• Services describe their interface and behaviour (runtime 
models)

• Synthesis overcomes signature and protocol mismatch

• Achieve goals specified using KAOS

• Future:
– Consider non-functional properties

– Relaxed goals guided by what can be realised given discovered services

22


