Satisfying requirements for
pervasive service compositions

Luca Cavallaro, Pete Sawyer, Daniel Sykes,
Nelly Bencomo, Valérie Issarny

Lero, Lancaster, INRIA

Models @ Runtime, 2" October 2012

Pervasive environment

Cannot predict at design time what services
will be available

Services and devices appearing and
disappearing all the time

Huge variety of platforms, protocols,
standards and functionality

How do we compose services at runtime to
achieve our aims?

Sterling to

[
&
oS
°

<)

e

>

@

Ticket booking app Ticket booking service

(on smartphone) (on server)

chooseDate pickSeat

Vv

pd
~

chooseSeat selectDateTime

pd
~

makeBooking makeBooking

\
\

pd
~

Ticket booking app Ticket booking service

(on smartphone) (on server)

®

chooseDate = pickSeat

Vv

®

z
~

chooseSeat selectDateTime

Pl
~

makeBooking makeBooking

\
Vv \

Incompatible: sighature & protocol mismatch

Possible solutions

e Standardisation of interfaces

— So many standards

— Often little incentive to standardise
 Manual translation between interfaces

— Costly, slow
— Cannot be applied at runtime

Runtime pervasive composition

Discover services at runtime (WS-Discovery,
UPNP)

Select services relevant to goal

Analyse their descriptions and synthesise a
mediator

Compose mediator with services to satisfy
goal

Adapt by replacing services that disappear

Runtime pervasive composition

Runtime
models

Running
system

(Service 1 Service 2
AN N

< N Mediator synthesis

Y
Abstract mediator
o—0

o oo

{ Concrete mediator Service 2

10

Goal model

/

/
/

Achieve[VisitAt
traction]

/

/

/

/

Achieve[Plan
Visit]

/

/

/

Achieve[Buy
Ticket IF
AttractionNotFree]

/

/

/

/

/ Achieve] / [Ehseel
" Pro oseAttractions] / / Setact
P . / Attraction] ‘
| Achieve[Find | A Achieve[/
/ User / / ProposeAttractions / s
Preference] /" FromPreferences] /’ er i
/ ‘ Achieve[Arrange ;/ / Achieve[Arrange
J / Travel] / fs‘/ Entryl]
/ Achieve[Get @)
AttractionTypes]
/”, Achieve[Get
/ Location , :
/ Constraints] / Achieve[Select /
/ RouteOfTravelFrom /
7 LocationConstraints] /
User Achieve[Get y y Achieve[Select
/ Ti i / 7
iineConsini] / Achieve[Select / / Performance IF
@ 4 ModeOfTravelAlong /»’ AttractionlsAPerformance]
) / / SelectedRoute] /
Achieve[Get / L / ’
/
Achieve[Get < connect > /
@ / TravelTicket IF [
/ ModeNotFree] /

L

CostConstraints]

/

/

User
User

G

=

11

Goal model

User

Achleve[Arrange Achleve[Arrange
Travel] Entryl]

[

3[Arrange
itryl]

Achieve[Select

Achieve[Get ieve[Select Performance IF
AttractionTypes] ' 3fTravelAlong AttractionlsAPerformance]

/ " ameve@CtedRoute]
% j,;‘" ctﬁ?{éi?n"'/ Achieve[Buy
Achieve[Get T'_Cket IF
User TravelTicket IF AttractionNotFree]

% ModeNotFree]
/ Ticket IF

User Q
<>execu ted (makeBOOklng) AttractionNotFree]

Achieve[Buy

User
A

12

Service model

Service 1

Category (e.g. “entertainment”)

N

Affordance (ontology concept)

Available operations
(e.g. “getTicketPrice”)
labelled with ontology
concepts

N

Interface (WSDL)

Protocol describing valid
combinations of operations

N

Behaviour (state machine)

Service selection

ontology
matching

Interface (WSDL) Interface (WSDL)
Behaviour (state machine) Behaviour (state machine)

Mediator synthe5|s

14

Mediator synthesis

* Synthesise intermediary that enables
communication between two differing
protocols

* Such that the goal formula is achieved
— Ps, XM X Ps, =G
* Simple goal language: LTL operators plus

— sent(c), received(c), executed(c)
— Parameter and operation concepts in ontology
— <>executed (makeBooking)

Mediator synthesis

* Goal LTL compiled to Blichi automaton,
reachability checked on parallel composition

e Path to goal must be a feasible interaction:

— All input parameters are sent from one partner
before being needed by the other partner

— All output parameters are eventually provided
— Permits operation re-ordering

e Services effectively Ontology:
synchronise on

operations with
matching ontology

concepts

Feasible interaction
in mediator

DateTime chooseDate()

—

VT

void selectDateTime(DateTime t)

17

Ticket booking app Mediator Ticket booking service

(on smartphone) (on server)

‘ >chooseDate ’
Vv
chooseDate ‘ pickSeat
>chooseSeat 4
¢ ¢
chooseSeat selectDateTime
pickSeat>
" ¢
makeBooking selectDateTime> makeBooking
) 4
¢ ¢ ¢
>makeBooking makeBooking>

pd
~

<>executed (makeBooking)

Ticket booking app Mediator Ticket booking service

(on smartphone) (on server)

‘ >chooseDate ,
A 4
chooseDate ' pickSeat
v >chooseSeat 4
¢ o ®
chooseSeat selectDateTime
pickSeat>
v .V
makeBooking selectDateTime> makeBooking
) 4
v ‘ v
I >makeBooking makeBooking> .

pd
~

<>executed (makeBooking)

19

Ticket booking app Med
(on smartphone)

>chooseDate

pd
~

chooseDate

) 4

>chooseSeat

pd
~

chooseSeat

pd
~

makeBooking

pd
~

Vv

>makeBooking

pd
~

<>executed (makeBooking)

lator

pickSeat>

selectDateTime>

makeBooking>

Ticket booking service
(on server)

pickSeat

) 4

selectDateTime

makeBooking

\
Vv

Ticket booking app

(on smartphone)

chooseDate

chooseSeat

makeBooking

®

>chooseDate

>chooseSeat

>makeBooking

<>executed (makeBooking)

pd pd pd pd
~ ~ ~ ~

pd
~

Mediator Ticket booking service

(on server)

pickSeat

) 4

selectDateTime
pickSeat>

¢
\

selectDateTime> makeBooking

makeBooking>

Summary

Build compositions of multiple services discovered at runtime

Services describe their interface and behaviour (runtime
models)

Synthesis overcomes signature and protocol mismatch
Achieve goals specified using KAOS

Future:
— Consider non-functional properties
— Relaxed goals guided by what can be realised given discovered services

