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Pervasive environment

Cannot predict at design time what services
will be available

Services and devices appearing and
disappearing all the time

Huge variety of platforms, protocols,
standards and functionality

How do we compose services at runtime to
achieve our aims?
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Incompatible: sighature & protocol mismatch




Possible solutions

e Standardisation of interfaces

— So many standards

— Often little incentive to standardise
 Manual translation between interfaces

— Costly, slow
— Cannot be applied at runtime



Runtime pervasive composition

Discover services at runtime (WS-Discovery,
UPNP)

Select services relevant to goal

Analyse their descriptions and synthesise a
mediator

Compose mediator with services to satisfy
goal

Adapt by replacing services that disappear



Runtime pervasive composition
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Goal model
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Service model

Service 1

Category (e.g. “entertainment”)

N

Affordance (ontology concept)

Available operations
(e.g. “getTicketPrice”)
labelled with ontology
concepts

N

Interface (WSDL)

Protocol describing valid
combinations of operations

N

Behaviour (state machine)



Service selection
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Mediator synthesis

* Synthesise intermediary that enables
communication between two differing
protocols

* Such that the goal formula is achieved
— Ps, XM X Ps, =G
* Simple goal language: LTL operators plus

— sent(c), received(c), executed(c)
— Parameter and operation concepts in ontology
— <>executed (makeBooking)



Mediator synthesis

* Goal LTL compiled to Blichi automaton,
reachability checked on parallel composition

e Path to goal must be a feasible interaction:

— All input parameters are sent from one partner
before being needed by the other partner

— All output parameters are eventually provided
— Permits operation re-ordering



e Services effectively Ontology:
synchronise on

operations with
matching ontology

concepts

Feasible interaction
in mediator

DateTime chooseDate()

—

VT

void selectDateTime(DateTime t)
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Summary

Build compositions of multiple services discovered at runtime

Services describe their interface and behaviour (runtime
models)

Synthesis overcomes signature and protocol mismatch
Achieve goals specified using KAOS

Future:
— Consider non-functional properties
— Relaxed goals guided by what can be realised given discovered services



