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Pervasive environment

• Cannot predict at design time what services 
will be available

• Services and devices appearing and 
disappearing all the time

• Huge variety of platforms, protocols, 
standards and functionality

• How do we compose services at runtime to 
achieve our aims?
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Possible solutions

• Standardisation of interfaces

– So many standards

– Often little incentive to standardise

• Manual translation between interfaces

– Costly, slow

– Cannot be applied at runtime
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Runtime pervasive composition

• Discover services at runtime (WS-Discovery, 
UPNP)

• Select services relevant to goal

• Analyse their descriptions and synthesise a 
mediator

• Compose mediator with services to satisfy 
goal

• Adapt by replacing services that disappear
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Runtime pervasive composition
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Goal model
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Goal model
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<>executed(makeBooking)



Service model
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Service selection
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Mediator synthesis

• Synthesise intermediary that enables 
communication between two differing 
protocols

• Such that the goal formula is achieved

–

• Simple goal language: LTL operators plus

– sent(c), received(c), executed(c)

– Parameter and operation concepts in ontology

– <>executed(makeBooking)
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Mediator synthesis

• Goal LTL compiled to Büchi automaton, 
reachability checked on parallel composition

• Path to goal must be a feasible interaction:

– All input parameters are sent from one partner 
before being needed by the other partner

– All output parameters are eventually provided

– Permits operation re-ordering
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• Services effectively 
synchronise on 
operations with 
matching ontology 
concepts
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Summary

• Build compositions of multiple services discovered at runtime

• Services describe their interface and behaviour (runtime 
models)

• Synthesis overcomes signature and protocol mismatch

• Achieve goals specified using KAOS

• Future:
– Consider non-functional properties

– Relaxed goals guided by what can be realised given discovered services
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