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Introduction

« A DSML Is a special-purpose graphic specification
language that is tailored for a particular domain.

« Two views of DSMLs

— automating the generation of source code from
DSMs

— Interpreting DSMs at runtime to realize user
requirements (Interpreted-DSMLs or i-DSMLs)

* An I-DSML requires an execution engine that
can interpret models at runtime
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Introduction cont

We are currently developing two I-DSMLs:

»+ Communication Modeling Language (CML) — used
to specify and realize user-defined communication,
e.g., send a patient record to doctors in a AV
communication

* Microgrid Modeling Language (MGridML) — used
to specify and realized microgrid energy
management scenarios, e.g., apply the Summer
energy management model to the current system
settings
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Introduction cont
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Introduction cont
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Execution Engines

* Requirements:
— Interpret user-defined I-DSML models at runtime

— Use semantics based on changes to I-DSML
models at runtime.

— Apply policies to I-DSML models

« Two execution engines are currently under
development:

- Communication Virtual Machine (CVM)

- Microgrid Virtual Machine (MGridVM)




CVM Structure
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Problem

- Each time a new i-DSML is created for
a different domain a substantial re-
implementation of the execution engine
has to take place.




Approach

1. Identify a generic architecture for the
execution engine for a class of I-DSMLs

2. Specialization is achieved by modeling in
conformance to a given metamodel

3. Metamodel encompasses constructs
related to the operations needed for the
execution of a class of I-DSMLs
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1. Generic Architecture
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Execution Engine Structure
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2. Specialization
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Broker layer

Provide a uniform interface over resources

Abstract details in the setup, selection and
maintenance of resources

Automatically identify situations that require
runtime adaptation and performs them
transparently

Behavior of the Broker layer is defined by
the way it handles calls from upper layer
and events from resources
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Broker layer metamodel

- name : EString
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Broker Layer Metamodel cont

- Interface describes interfaces of managers
and resources

— Groups a set of calls and events that may be
sighaled

- Handlers define an action to be taken:
— Calls a resource
— Generates an event to upper layers
— Executes a sequence of other actions

— Executes a macro (which may access
resources/state)




Broker Layer Metamodel cont

* Resource Management describes the interface
of the managed resources

» Autonomic Manager coordinates elements
related to autonomic management using
MAPE e.g. Symptom, ChangeRequest,
ChangePlan

» PolicyManager groups policies abstractions
related to the definition of policies and their
evaluation
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Broker Layer Execution Environment

Metamodel enables the definition of a DSML
for the Broker layer

* Provides operational semantics to the Broker
ayer metamodel

* Loads a Broker layer model and executes
accordingly

Provides a library for integrating resource
Implementations to the execution environment
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Broker Layer Execution Environment cont
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CVM - Network Communication Broker

 Provides an uniform API over a set of
communication frameworks

* Abstracts communication framework
selection, setup, monitoring, replacement and
recovery

* Note: the complete model for NCB is too big
and it I1s not feasible to represent it
graphically
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NCB - Example Scenario

« User requests an audio communication
with another party

* A session is initially established using
Framework 1

e A failure is simulated in Framework 1

 NCB automatically switches the session to
be established using Framework 2
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Results for Scenario

« NCB Performance

Avg (ms) Std Dev  Avg (ms) Std (ms)
1369.29 51.60 3058.53 149.70

» Substantial performance loss
— Simple scenarios (significant loading overhead)

— Evaluation of expressions and parameter
bindings




Related Work

* Bryant et al. 2011

— MDD related to DSMLs focuses on the generation
of tools

« Jezequel et al. 2009 (Kermeta)

— Promotes weaving behavior into the metamodels
as a way of defining semantics

— Semantics are described using an action
language

e Chen et al. 2005

— Use semantic units to define the semantics




Conclusions

* Introduced the notion of I-DSMLs and their
execution engines

 Briefly describe an approach for developing
the execution engines for a class of I-DSMLs

* Create a metamodel for one layer (Broker) Iin
the execution engine

Instantiated the metamodel of the Broker to
produce the Network Communication Broker
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