
Model-Driven Development of 
i-DSML Execution Engines

Gustavo Sousa and Fábio M. Costa (UFG-Brazil) 

Peter J. Clarke (FIU) , Andrew A. Allen (GSU)

Models@RunTime 2012



Introduction

• A DSML is a special-purpose graphic specification 

language that is tailored for a particular domain.

• Two views of DSMLs

– automating the generation of source code from 

DSMs

– interpreting DSMs at runtime to realize user 

requirements (Interpreted-DSMLs or i-DSMLs)

• An i-DSML requires an execution engine that 

can interpret models at runtime

2



Introduction cont
We are currently developing two i-DSMLs:

• Communication Modeling Language (CML) – used 

to specify and realize user-defined communication, 

e.g., send a patient record to doctors in a AV 

communication

• Microgrid Modeling Language (MGridML) – used 

to specify and realized microgrid energy 

management scenarios, e.g., apply the Summer 

energy management model to the current system 

settings

3



Introduction cont

User Interface for CML execution engine
4



Introduction cont

User Interface for MGridML execution engine
5



Outline

• Execution Engines

• Problem

• Approach

• Broker Layer MetaModel

• Instance of Broker Layer

• Related Work

• Conclusion

6



Execution Engines

• Requirements:

– Interpret user-defined i-DSML models at runtime

– Use semantics based on changes to i-DSML 

models at runtime.

– Apply policies to i-DSML models

• Two execution engines are currently under 

development:

– Communication Virtual Machine (CVM)

– Microgrid Virtual Machine (MGridVM)

7



CVM Structure

8

(e.g., Skype, Google Talk, Asterisk) 



Problem

• Each time a new i-DSML is created for 
a different domain a substantial re-
implementation of the execution engine 
has to take place. 

9



Approach

1. Identify a generic architecture for the 

execution engine for a class of i-DSMLs

2. Specialization is achieved by modeling in 

conformance to a given metamodel

3. Metamodel encompasses constructs 

related to the operations needed for the 

execution of a class of i-DSMLs

10



1. Generic Architecture

11



Execution Engine Structure

12

UI - supports creation of DSMs

SE – synthesizes model instances 

generating control scripts for M

M – executes the control scripts to 

manage and coordinate the delivery 

of domain services

B – provides an independent API to M
and interfaces with the underlying 

frameworks and controllers to realize 

the services 



2. Specialization

MGridVM

EE Model

CVM

EE Model

EE 

MetaModel

<<conforms to>>

<<conforms to>>

13



Broker layer 

• Provide a uniform interface over resources

• Abstract details in the setup, selection and 

maintenance of resources

• Automatically identify situations that require 

runtime adaptation and performs them 

transparently

• Behavior of the Broker layer is defined by 

the way it handles calls from upper layer 

and events from resources

14



Broker layer metamodel

15



Broker Layer Metamodel cont 

• Interface describes interfaces of managers 
and resources

– Groups a set of calls and events that may be 
signaled

• Handlers define an action to be taken:

– Calls a resource

– Generates an event to upper layers

– Executes a sequence of other actions

– Executes a macro (which may access 
resources/state)

16



Broker Layer Metamodel cont 

• Resource Management describes the interface 

of the managed resources

• Autonomic Manager coordinates elements 

related to autonomic management using 

MAPE e.g. Symptom, ChangeRequest, 
ChangePlan

• PolicyManager groups policies abstractions 

related to the definition of policies and their 

evaluation 

17



Broker Layer Execution Environment

• Metamodel enables the definition of a DSML 
for the Broker layer

• Provides operational semantics to the Broker 
layer metamodel

• Loads a Broker layer model and executes 
accordingly

• Provides a library for integrating resource 
implementations to the execution environment



Broker Layer Execution Environment cont 

19



CVM - Network Communication Broker

• Provides an uniform API over a set of 

communication frameworks

• Abstracts communication framework 

selection, setup, monitoring, replacement and 

recovery

• Note: the complete model for NCB is too big 

and it is not feasible to represent it 

graphically

20



NCB - Example Scenario

• User requests an audio communication 

with another party

• A session is initially established using 

Framework 1

• A failure is simulated in Framework 1

• NCB automatically switches the session to 

be established using Framework 2

21



Results for Scenario

• NCB Performance

• Substantial performance loss

– Simple scenarios (significant loading overhead)

– Evaluation of expressions and parameter 
bindings

Original NCB Modeled NCB

Avg (ms) Std Dev Avg (ms) Std (ms)

1369.29 51.60 3058.53 149.70

22



Related Work

• Bryant et al. 2011

– MDD related to DSMLs focuses on the generation 
of tools

• Jezequel et al. 2009 (Kermeta)

– Promotes weaving behavior into the metamodels
as a way of defining semantics

– Semantics are described using an action 
language 

• Chen et al. 2005

– Use semantic units to define the semantics 

23



Conclusions

• Introduced the notion of i-DSMLs and their 

execution engines

• Briefly describe an approach for developing 

the execution engines for a class of i-DSMLs

• Create a metamodel for one layer (Broker) in 

the execution engine

• Instantiated the metamodel of the Broker to 

produce the Network Communication Broker 

24



Acknowledgements

• This work was partly supported by the Capes 

Foundation, Brazil, Proc. 0759-11-2 and FAPEG

25

Thanks

Questions???


