FLORIDA INTERNATIONAL UNIVERSITY bt

School of Computing & Information Sciences

Model-Driven Development of
I-DSML Execution Engines

Gustavo Sousa and Fabio M. Costa (UFG-Brazil)
Peter J. Clarke (FIU) , Andrew A. Allen (GSU)

Models@RunTime 2012

Florida International University School of Computing & Information Sciences

Introduction

« A DSML Is a special-purpose graphic specification
language that is tailored for a particular domain.

« Two views of DSMLs

— automating the generation of source code from
DSMs

— Interpreting DSMs at runtime to realize user
requirements (Interpreted-DSMLs or i-DSMLs)

* An I-DSML requires an execution engine that
can interpret models at runtime

DN\

// / SxrrTmr
o
,f an
) o
Ny
Al

Introduction cont

We are currently developing two I-DSMLs:

»+ Communication Modeling Language (CML) — used
to specify and realize user-defined communication,
e.g., send a patient record to doctors in a AV
communication

* Microgrid Modeling Language (MGridML) — used
to specify and realized microgrid energy
management scenarios, e.g., apply the Summer
energy management model to the current system
settings

Vg N\
f
|
|

s NT10 \\

' ey

| U
Ei Ny

Y™

Introduction cont

cl &

p——
) Voice Disabled

CVM A

Application Name: c1
Application ID: cl
Actions: Q Save Application

Video Camera [Audio

Controls Forms

Welcome Monteiro Logout

e
i Y |

Ly us cvmtesterd
vic Skype Conversation Call View Tools Help
cvmtesterd

[&] Take a snapshot

Chat Participants

(Generic Form)

cﬁ baby.Jane.xcml
i DisPkg_1.xcml

(Specific Form)

+ Add people

User Interface for CML execution engine

Introduction cont

L

File Controllers

L ogical controters NN

! i BACKYARD e
S

Il

MASTER BEDROOM

GARAGE

/ =)
I-‘\ __J. ™ aun
' 7l ,

3 — "
I N f /
i T E@ | A STORAGE
/ | -
/ (_ e - J
o

LIVING ROOM

— - ,w--- = & v,-

W BEDROOM
("_l .

User Interface for MGridML execution engine

Outline

* Execution Engines

* Problem

* Approach

* Broker Layer MetaModel
 Instance of Broker Layer
* Related Work

 Conclusion

Execution Engines

* Requirements:
— Interpret user-defined I-DSML models at runtime

— Use semantics based on changes to I-DSML
models at runtime.

— Apply policies to I-DSML models

« Two execution engines are currently under
development:

- Communication Virtual Machine (CVM)

- Microgrid Virtual Machine (MGridVM)

CVM Structure

User / Application (local) User / Application (remote)
A A
Input
v CVM control / data Instances v CVM
(cml models)
User Comm. Interface (UCI) <t ——————— — — — — > User Comm. Interface (UCI)
i A
Comm. Instances Comm. Instances
v negotiation of v

control instances

Synthesis Engine (SE) *«t———— = — — — — — — > Synthesis Engine (SE)
i i
Comm. Control Script SE Events
Y manages delivery of Y
User-Centric Comm. o _CEm_m-_SELViC_ES_ I User-Centric Comm.
Middleware (UCM) Middleware (UCM)
i i
API Calls UCM Events
v ¥
manages delivery of media F
Network Comm. Broker (NCB) (¢ — — — — — — — — — — — -» Network Comm. Broker (NCB)
A 'y
API Calls NCB Events
Y v
Comm. Frameworks - > Comm. Frameworks

(e.q., Skype, Google Talk, Asterisk)

Legend
L= - |
Control and Data Flow -+ —— - Virtual Communication

Problem

- Each time a new i-DSML is created for
a different domain a substantial re-
implementation of the execution engine
has to take place.

Approach

1. Identify a generic architecture for the
execution engine for a class of I-DSMLs

2. Specialization is achieved by modeling in
conformance to a given metamodel

3. Metamodel encompasses constructs
related to the operations needed for the
execution of a class of I-DSMLs

/5 N
/" CRTIATIIR
I
,f LL}
Yy
) ™

1. Generic Architecture

| User { Application (local) J |L.Iser.fﬂ-pgllcaﬂon {remaole) |

cvm CVvM
| User Comm. Interface (UCI) |-l-— —_—

°-| User Comm, Inerface (UCI) |

User / Application

A | Synthesis Engine (SE) |-1-— —_—— —Il-l Synthesis Engine (SE) |
Input
User-Centric Comm. Usar-Centric Comim.
¥ VM ‘ Middleware (LCM) |*_ - _"{ Middleware (UCM) |
A
Y A
Matwork Comm. Eroker Mabtwork Comm. Broker
User Interface (Ul)
A ‘ (NCB) |‘_ — " ‘ (NCE) |
Instance Models Instance Models

J

Y | Comm. Frameworks |-—-‘ Comm. Frameworks |
Synthesis Engine (SE)

i Communication Virtual Machines
Control Script SE Events | Users |
Y
Middleware (M) MGridVM
Microgrid User Interface
'y (ML)
API Calls M Events H
v Micragrid Synthesls
Engine (M3E)
Broker (B) Gonerai 1!
28“"-7'!1 Micragrid Control
A Middleware (MCM)
API Calls B Events H
Micragrid Hardware
Y Broker (MHB}
Frameworks/Contollers

Flant Cantrollers

Generic Virtual Machine 1}
Smart Controller Smart
Contoller A

Microgrid Virtual Machine

11

Execution Engine Structure

User / Application

A
Input

VM

Y

User Interface (Ul)

Instance Models l T Instance Models

Synthesis Engine (SE) ‘

Control Script lx SE Events

Middleware (M)

API Calls H CM Events

Broker (B)

A
API Calls B Events

Y
Frameworks/Contollers

UI - supports creation of DSMs

SE — synthesizes model instances
generating control scripts for M

M — executes the control scripts to
manage and coordinate the delivery
of domain services

B — provides an independent APl to M
and interfaces with the underlying
frameworks and controllers to realize
the services

2. Specialization

User / Application

Input

L

Y

VM

User Interface (Ul)

Instance Models
Y

i

L

Instance Models

Synthesis Engine (SE)

Control Script

Y

L

SE Events

Middleware (M)

API Calls
A J

L

M Events

Broke

r(B)

API Calls

1

B Events

<<conforms to>>

€ -~ ===

EE
MetaModel

A

Frameworks/Contollers

<<conforms to>>

MGridVM
EE Model

Users

MGridVM

Microgrd User Interface

(MUY

i

Microgrid Synthesis
Engine (MSE)

i

Microgrid Control
Middlewara (MCM)

!

Microgrid Hardware
Broker (MHB)

L

Plant Controllers

Contrallar Smart
B Device C

Smart
Contoller A

| User / Application (local) |

)

| User | Application (remaote) |

CVM
EE Model

CVM CVM
lUssr Comm. Interface (UCI) I—ﬂ— —_—— —'-I User Comm, Interface (UCI) |
r
| Synthesis Engine (SE) |-d— —— —t-l Synthesis Engine (SE) |

User-Cenfric Comm.
Middleware (LLCM)

-

|

User-Centric Cormm,

Middleware (LICM)

Y

Network Comm, Broker |

(NCE)

Comm, Frameworks

Y

Comm. Frameworks

13

Broker layer

Provide a uniform interface over resources

Abstract details in the setup, selection and
maintenance of resources

Automatically identify situations that require
runtime adaptation and performs them
transparently

Behavior of the Broker layer is defined by
the way it handles calls from upper layer
and events from resources

DN\

// / SxrrTmr

Ioh o [m
Ny

> 'n}.f\‘ P

- key
1

Property

Broker layer metamodel

- name : EString

- name : EString
| I

State

Symptom |- basedOn | ChangeRequest |—E basedOn | changePlan
]
@ . /
AutonomicManager
Handler
&*
Action

Manager

- | StateManager

- properties x | l

- subStates

PolicyEvaluationHandler

,* ;| PolicyManager

- ha

Signal

Parameter

- name : EString

- name : EString

e

Call

Event

ResourceMan

N

Instance

Interface ‘ :

D-

InstanceResourceManager

Policy

dler

PolicyEvaluationRequest

- name : EString

- businessValue : ElntegerObject

Broker Layer Metamodel cont

- Interface describes interfaces of managers
and resources

— Groups a set of calls and events that may be
sighaled

- Handlers define an action to be taken:
— Calls a resource
— Generates an event to upper layers
— Executes a sequence of other actions

— Executes a macro (which may access
resources/state)

Broker Layer Metamodel cont

* Resource Management describes the interface
of the managed resources

» Autonomic Manager coordinates elements
related to autonomic management using
MAPE e.g. Symptom, ChangeRequest,
ChangePlan

» PolicyManager groups policies abstractions
related to the definition of policies and their
evaluation

./‘— [si : ‘\\\
' /' m \\
{ D
= |
Yoo

Broker Layer Execution Environment

Metamodel enables the definition of a DSML
for the Broker layer

* Provides operational semantics to the Broker
ayer metamodel

* Loads a Broker layer model and executes
accordingly

Provides a library for integrating resource
Implementations to the execution environment

/ \
fo A N\
/ ST

‘f" q FD
% g

Broker Layer Execution Environment cont

enqueues evant

' , - ‘

Broker Manager

" W T ! Palicy Resource
DSML model
\J/ Signal Handler Manager Manager 2| Manager e
! Policy Evaluation
User Interface | Signal Handler
' .] Facade Autonomic Signal Autonomic |~ State
Synthesis Engine ! Handler “| Manager < Manager)
- notfes

Event ¥ Handler

‘ t=te change
| Call X Handler executes a s g
Middleware - Oueue e

Broker engudueag call —_ Action A
)] handles signal k 4 USesS resources
X J — W and'or updates state

Action B |

CVM - Network Communication Broker

 Provides an uniform API over a set of
communication frameworks

* Abstracts communication framework
selection, setup, monitoring, replacement and
recovery

* Note: the complete model for NCB is too big
and it I1s not feasible to represent it
graphically

/‘/’ < 3 \\\
4 /(Vm‘ \\
{ D
| v
Yoo

NCB - Example Scenario

« User requests an audio communication
with another party

* A session is initially established using
Framework 1

e A failure is simulated in Framework 1

 NCB automatically switches the session to
be established using Framework 2

./"— % : \\\
/ /' m \\
{ LL)
0)
Yoz

Results for Scenario

« NCB Performance

Avg (ms) Std Dev Avg (ms) Std (ms)
1369.29 51.60 3058.53 149.70

» Substantial performance loss
— Simple scenarios (significant loading overhead)

— Evaluation of expressions and parameter
bindings

Related Work

* Bryant et al. 2011

— MDD related to DSMLs focuses on the generation
of tools

« Jezequel et al. 2009 (Kermeta)

— Promotes weaving behavior into the metamodels
as a way of defining semantics

— Semantics are described using an action
language

e Chen et al. 2005

— Use semantic units to define the semantics

Conclusions

* Introduced the notion of I-DSMLs and their
execution engines

 Briefly describe an approach for developing
the execution engines for a class of I-DSMLs

* Create a metamodel for one layer (Broker) Iin
the execution engine

Instantiated the metamodel of the Broker to
produce the Network Communication Broker

DN\

// / SxrrTmr
o
,f an
Ny
Al

Acknowledgements

* This work was partly supported by the Capes
Foundation, Brazil, Proc. 0759-11-2 and FAPEG

Thanks

Questions???

