
© Springer-Verlag Berlin Heidelberg 2013

Towards Business Process Models at Runtime

Thomas Johanndeiter, Anat Goldstein, Ulrich Frank

Institute for Computer Science and Business Information Systems,

University of Duisburg-Essen, Germany

{thomas.johanndeiter, anat.goldstein, ulrich.frank}@uni-due.de

Abstract. Business Process Management (BPM) suffers from inadequate con-

cepts and tools for monitoring and evaluation of process executions at runtime.

Conversely, models at runtime promise to give insights into the state of a soft-

ware system using the abstract and concrete appearance of design time process

models. Therefore, we at first advocate to use models at runtime in business

process (BP) modeling. Then, we outline the implementation of a prototypical

modeling framework for BP runtime models based on metaprogramming. This

framework supports the integration of BP type models – models that are en-

hanced with statistics of runtime data – and instance models – visual representa-

tions of executed BPs – resulting in versatile process monitoring dashboards.

The approach is superior to object-oriented programming, as it provides a

common representation for models and code at various levels of classification,

and represents an attractive alternative to object-oriented languages for the im-

plementation of runtime models in general.

1 Introduction

Conceptual runtime models of a software system are able to give insights into the

current state of a system using concepts of higher levels of abstraction than those of

the computational model. Thus, in addition to fostering system (self)-adaptation, these

models improve monitoring and understanding of a system’s runtime behavior [1].

In existing research work on models at runtime, we see a focus on software archi-

tecture [2]. In this paper, we suggest extending the scope of runtime models to the

area of Business Process Management (BPM). Business process (BP) modeling plays

a major role in BPM. In section 2, we argue why runtime models of BP executions –

which are enacted and recorded by BPM systems – present a valuable contribution to

process monitoring and decision support in BPM, while only few researchers have

expanded their work on runtime models to this particular domain (e.g. [3]).

 The implementation of a modeling tool for respective runtime models creates chal-

lenges which can hardly be overcome with traditional object-oriented (OO) program-

ming languages, the prevalent programming paradigm used for realizing BP modeling

tools. In section 3 we discuss these challenges, which relate to the support of multiple,

adaptable levels of classification in software. In section 4, we present an approach

which enables overcoming them, exploiting a metaprogramming language. We

demonstrate how a modeling tool allows for integrating a BP modeling language,

process type models and process instance models as adaptable runtime objects. Limi-

tations and future research opportunities are discussed in the concluding section 5.

2 Background and Motivation

BPM primarily aims at facilitating a) comprehension and communication of business

processes, b) continuous process improvement, c) organizational flexibility, and d)

process enactment [4]. To achieve these objectives, BPM initiatives typically follow a

lifecycle covering the four phases of process design, process implementation, enact-

ment, and monitoring and evaluation [4]. In this lifecycle, conceptual models of BPs

play a pivotal role [5], as they are used for representing (literally) how an organization

works at the operational level. The pivotal concepts for modeling BPs are ‘activity’

and ‘event’. An activity describes a unit of work. An event indicates completion of

activities and might trigger new activities. It may also represent state changes in the

external environment of a business process. Activities and events are logically or-

dered in a BP model with control flow constructs like sequence or fork [4]. BP mod-

els ought to be visualized using a notation catering to the perception of business

stakeholders [6]. An example of a BP model is given in Fig. 1. As regards the BPM

lifecycle, BP models play an important role in process design, implementation, and

enactment. In these phases, BP models serve as e.g. descriptive documentations or

design specifications. However, BP models created during design and implementation

are surprisingly ignored for process monitoring and evaluation [7].

Fig. 1. Exemplary business process type model (MEMO OrgML notation)

2.1 Business Process Modeling with OrgML

In this work, we use MEMO OrgML as a BP modeling language. MEMO [8] is a

multi-perspective enterprise modeling method based on a high-level framework struc-

turing the enterprise with three generic perspectives: strategy, organization, and in-

formation system. To allow for more elaborate analyses, each perspective is associat-

ed with a domain-specific modeling language (DSML) which defines a set of diagram

types focusing on different aspects of the perspective. Among the various DSMLs of

MEMO, OrgML [6] accounts for BP modeling. OrgML offers the core concepts of

BP modeling: (sub-) processes (i.e. activities), and events. A set of control flow con-

cepts specify the orchestration of processes, e.g. sequence and branching. OrgML

offers a visual notation catering to the business domain (see Fig. 1).

The abstract syntax and semantics of MEMO DSMLs are specified using the

metamodeling language MML [9]. MML is tailored for designing DSMLs and offers

some unique advantages over other metamodeling languages. Most notably, MML

supports intrinsic features. With intrinsic features, a MEMO DSML can include meta

concepts which are not relevant for the types of a model created with the DSML (i.e.

instances of meta concepts), but only for instances of these types. In other words,

intrinsic features allow deferring instantiation of meta concepts. This is supported

only by few metamodeling languages (e.g. the UML infrastructure does not support

such a mechanism). Thus, intrinsic features create a strong motivation for using

OrgML in the proposed solution, as further discussed in section 3.1 and in section 4.3.

Sharing a common metamodel facilitates the integration of MEMO DSMLs, thereby

supporting the integration of different perspectives. For example, OrgML references

concepts of the IT perspective (e.g. used IT resources). This renders OrgML BP mod-

els more useful for comprehensive business analysis and decision making than other

BP modeling languages.

2.2 Issues of Process Monitoring Support

For process monitoring and evaluation, process executions ought to be observed and

interpreted by responsible managers with respect to different performance indicators.

These indicators support e.g. identifying bottlenecks with respect to throughput times

of a process. Therefore, process managers require extracting runtime information

from BPM systems. However, reporting of runtime information to process managers

is not supported with BP models of earlier phases of the BPM lifecycle. This dissatis-

factory situation has already been acknowledged in the area of BPM [7].

In fact, the gap between process design and implementation, and runtime process

monitoring and associated decision support tasks materializes on three levels. Firstly,

there is a difference in domain-specific concepts employed. Design time BP models

are typically constituted of activities, events, and control flow concepts (cf. beginning

of section 2), whereas for decision support and analysis we typically conceptualize

data in ‘facts’ and ‘dimensions’ [10]. Secondly, visualization of runtime information

of process executions often diverges from those of design time BP models. Moreover,

visualizations of process instances employed in BPM systems are deemed insufficient

for process managers [11]. Thirdly, as BP models are not employed for process moni-

toring and corresponding decision support, there is a fragmentation of tools across the

BPM lifecycle [11]. For instance, process managers have to apply Business Intelli-

gence (BI) tools for offline, ex-post analysis of process performance, instead of being

able to revert to modeling tools used for process design [7].

2.3 Prospects of Business Process Models at Runtime

Against the background of the discussed issues in BP monitoring, we propose to es-

tablish BP models at runtime as monitoring and decision support tools for process

managers. In particular, we advocate that representing runtime data of a BPM system

in BP models enables the following capabilities (illustrated in Fig. 2):

1. Enhancing BP type models with information that is aggregated from the runtime

environment of a BPM system, that is, from actual BP executions. For example we

enrich activities of a BP with information such as their average cost (e.g. and

in Fig. 2). In this way, BP modeling tools serve as managerial dashboards.

2. Visualizing executions of BPs with graphical notations of design models, establish-

ing a more meaningful context for giving better insight into runtime behavior of

BPs (e.g. and in Fig. 2).

3. Navigating (e.g. in Fig. 2) between the enhanced BP type models (type level)

and the visualizations of actual executions (instance level). When problematic per-

formance is reflected in BP type models, it is then possible to drill down to the

source of the problem.

Fig. 2. Monitoring dashboard for BP type and instance models at runtime

The listed capabilities shall be realized within a BP modeling framework. Such a

framework should offer a suitable BP modeling language and a modeling tool serving

as a process monitoring dashboard. The approach presented in this paper for realizing

such a modeling tool for OrgML enables various levels of classifications in software

code, which are adaptable at runtime. In this approach, we highlight the realization of

performance indicators in BP type models, and of instance level attributes that are

defined in the modeling language. The implementation uses the metaprogramming

language XMF [12].

In the presented work, we substitute interaction of runtime models and BPM sys-

tems with process execution simulations. In addition, we restrict adaptations of BP

instance models after changes of BP type models, as will be discussed in section 5.

3 BP Modeling Framework: Shortcomings of OO Languages

Realizing a modeling tool for BP models at runtime faces unique requirements, which

do not apply to “ordinary” modeling tools. In particular, we discuss the need for an

implementation approach that is able to offer more than one static and one dynamic

programming language level. OO languages typically do not offer this feature. To

justify this requirement, we analyze the levels of abstractions required for BP models.

3.1 Business Process Types and Instances

The domain concepts of BP runtime modeling recommend three levels of classifica-

tion. On the highest level, generic concepts of the domain, e.g. activity and event (cf.

section 2), are captured in a metamodel, specifying a BP modeling language. This

level is denoted M2. BP models commonly refer to what is known as the type level.

They describe types or classes of BPs (e.g. processing of an order) rather than particu-

lar instances (e.g. processing a specific order of a particular customer). This level is

denoted M1. A BP instance model is characterized by a one-to-one representation of

elements of a single BP execution and located on M0 [4], [14]. In addition, conceptual

modeling frameworks (e.g. the MEMO framework or the UML infrastructure) com-

prise a fourth level of abstraction: the meta-metamodel level M3 where concepts for

defining modeling languages of any kind are specified (see Fig. 3).

Representing runtime information recorded in a BPM system requires accounting

for the peculiarities of BPs in such a four level modeling architecture. Indeed, a

runtime model must always reflect the correct state of software system. Applying this

requirement to process executions, we find that the essential attributes reflecting a

process instance at runtime comprise timestamps, activity cost, used resources, and

source / target activities of events [7]. They may comprise further attributes like the

particular employee executing the process.

The identified instance level abstractions need to be included in the BP modeling

language. Ignoring instance model abstractions in the language (M2) implies burden-

ing language users with the responsibility of defining type level runtime attributes and

associations, such as a timestamp and cost, in every BP model they create [15]. This

hampers a shared understanding and reusability of resulting models, as an apparent

abstraction is ignored, resulting in dangerous redundancies [9]. Furthermore, accord-

ing to the relation of BP types and instances (cf. section 2), a type level view on

runtime attributes of a BP reflects a set of runtime instances, e.g. by calculating the

performance indicator ‘average cost’ for a set of process instances. Support of such

performance indicators is facilitated by specifying selected properties of instances,

like execution time or cost, in the modeling language. Only then, we are able to define

that a performance indicator is always calculated from the same kind of instance level

runtime information, regardless of the actual user-created BP type model (M1). To

address instance level abstractions on the modeling language level, we implement

intrinsic features of MEMO OrgML (cf. section 2.1) in our modeling tool.

Fig. 3. Levels of abstraction of BP (runtime) models

In conclusion, both type and instance level shall represent runtime phenomena of

BPs. BP instance models have to be represented as runtime objects in the modeling

tool so that they can be adapted according to the execution of BPs over time. Addi-

tionally, the type level is subject to modifications at runtime, since it classifies

runtime information in performance indicators, which shall be updated in real-time.

Therefore, the type level describes properties of BP instance models, while at the

same time types are runtime objects, as exemplified on the right side of Fig. 3.

3.2 Metamodel-based Modeling Tool Creation

The state-of-the-art approach for creating modeling editors, inter alia BP modeling

tools, compiles a modeling editor for type models from a metamodel of a modeling

language. Most metamodeling facilities following this approach, e.g. the Eclipse

Modeling Framework (EMF) [16], rely on OO languages (e.g. Java). OO languages

typically support two language levels: classes and objects. Correspondingly, during

language design the metamodel is maintained in M0 programming language objects.

These objects are used for generating classes, which define the software structure of a

modeling editor for corresponding type models. For creating instance model editors,

the same “edit-generate-compile-validate”-cycle is applied to type models created by

language users, as they are stored in M0 runtime objects of the generated editor and

thus cannot be instantiated into process instance representations [17].

We argue that this approach is not feasible a BP runtime modeling tool, as type and

instance models must be maintained in adaptable, yet integrated runtime objects of the

modeling environment (cf. section 3.1). Only then, performance indicators and in-

stance model representations are able to react to changes of runtime data from a BPM

system. In the OO approach, type and instance model editors are disconnected due to

the unfavorable “edit-generate-compile-validate”-cycle [17] (see Fig. 4). Hence, con-

ceptual models and implementation code do not share a common representation, as

they are connected via generation and compilation [18]. Type and instance models are

depicted in disconnected editors, severely hampering runtime synchronization be-

tween type and instance level. Synchronizing the evolution of the type level with the

instance level is hampered: whenever a type model changes, the described cycle needs

to be iterated. Moreover, when a BP instance is created or changed, e.g. a subprocess

terminates, corresponding changes should be immediately reflected in relevant type

model editors, e.g. within performance indicators. This indicates that recompilation of

the editor, as dictated in the OO approach, is not feasible for runtime models.

Fig. 4. Edit-generate-compile-validate cycle for metamodeling based model editor creation

A workaround for OO implementations is to mimic the classification relationship

of types and instances with a manually implemented relationship. For example, a

class representing the type features, and a class representing the instance features may

be introduced and associated by a ‘typeOf’ relationship. Such a relationship, however,

lacks the formal semantics of “true” instantiation. Thus, additional code is required,

which produces a severe threat to system integrity [19].

4 Solution Approach

In this section we explain the core features of XMF, which serves to implement an

OrgML modeling editor. Then, we describe the implementation architecture of a

modeling tool for BP runtime models that supports a runtime integration and syn-

chronization of type and instance level within a multi-level classification hierarchy.

4.1 XMF

A metaprogramming language is distinguished from regular programming languages

through its ability to manipulate programs (e.g. the class level of OO languages) in-

stead of program instances at runtime [13]. The metaprogramming capabilities used in

the presented work derive from XMF [12]. XMF’s pivotal paradigm is the application

of executable metamodeling for language design, which is reflected in its core fea-

tures. Firstly, XMF comprises a metamodeling language: XCore. The metamodeling

language is complemented with an extended version of the Object Constraint Lan-

guage (OCL), called XOCL. XOCL includes action primitives for defining executable

semantics. These action primitives allow, amongst other aspects, specifying sequen-

tial execution paths, e.g. object creation and imperative control structures.

Secondly, similar to OO languages, XCore distinguishes the concepts of ‘Class‘

and ‘Object’. A particular class is instantiated into objects, which by default cannot be

instantiated again and cannot inherit. However, in contrast to regular OO languages,

instances of a class may again specialize the XMF concept ‘Class’, instead of ‘Ob-

ject’, as ‘Class’ in XMF is a specialization of ‘Object’. This implies two things. First-

ly, in XMF classes are always objects at the same time, i.e. they are dynamic runtime

elements which can be manipulated during program execution. Secondly, as an in-

stance of a class is able to again serve as a class, multiple consecutive instantiations

are enabled. This recursive style of language definition employed in XMF, where

only relative metatype to type to instance relationships are distinguished, is called

golden braid architecture. Because of this architecture, XMF is more powerful than

those OO languages offering a meta-object protocol (MOP), for example Smalltalk. A

MOP basically consists of meta classes which allow accessing the class level (M1) at

runtime. However, the MOP of Smalltalk only allows for a meta-class to classify a

single class (M1). Therefore, for making classes adaptable at runtime in Smalltalk,

every class requires a particular meta class, whereas XMF enables creating a single

meta class for multiple classes on M1.

The described architecture of XMF, in which instances of classes can again serve

as classes, justifies why implementing a BP modeling tool with XMF avoids the “ed-

it-generate-compile-validate”-cycle.

4.2 Tool Implementation Architecture

As a first step to implement a modeling editor featuring OrgML, we reconstruct

MEMO MML (cf. section 2.1) with XMF metamodeling concepts. In other words, we

instantiate XMF concepts like ‘Class’ and ‘Attribute’ in order to model the MML.

Because of this instantiation, MML concepts possess executable features, as discussed

in section 4.1, e.g. execution of operations. In addition, MML concepts are set to in-

herit XMF concepts in order to add executable semantics to instances of the MML

meta-metamodel. Through this specialization, instances on M2 are equipped with

executable features, like setters and getters, which are crucial to modeling editors.

Secondly, we model OrgML with the implemented MEMO MML and account for

runtime model capabilities. For this purpose, runtime functionality relevant to all

instances of ‘MetaEntity’ (the meta meta class all concepts of OrgML are instantiated

from, see Fig. 5) is captured in a concept called ‘Entity’. The functionality mainly

comprises navigation from type to instance models, calculation of performance indi-

cators, and instantiation of intrinsic features (described in section 4.3). ‘Entity’ also

specializes XMF’s ‘Class’ in order to add execution semantics to instances of

MetaEntity and enable their further instantiation. Thereby, every OrgML concepts

transitively through ‘Entity’ specializes XMF’s ‘Class’. In combination, we can use

the implementation of OrgML to create an OrgML editor at runtime with XMF. BP

type models created with this editor can be directly instantiated into instance models,

implying the ability to create instance model editors at runtime from BP type model

specifications. The specialization hierarchy enabling the instantiation of dynamic type

level entities is given in Fig. 5. All levels can be dynamically manipulated.

 ‘Entity’ also encapsulates an operation for querying instances of a type. With said

operation, M1 level concepts are able to get a list of its instances, which serves as a

foundation for integrating and navigating to the instance level at runtime.

Fig. 5 exhibits a pivotal idea of the proposed modeling tool for coping with the

multiple dynamic levels implied by BP runtime models: cross-level inheritance. In-

deed, ‘Entity’ inherits from ‘Class’, while being at the same time an instance of

‘Class’; all OrgML entities specialize ‘Entity’, while OrgML entities are instances of

‘MetaEntity’. ‘MetaEntity’ and ‘Entity’ are, however, on the same level of abstrac-

tion. Because of the (transitive) cross-level specialization of XMF concepts within the

presented architecture, the role XMF plays in relation to the four modeling levels of

MEMO is twofold: on the one hand, XMF can be considered a fifth level of abstrac-

tion above M3; on the other hand, XMF serves as a modeling infrastructure offered to

all MEMO modeling levels via transitive specialization / generalization.

4.3 Implementation of Business Process Runtime Abstractions

The implementation of performance indicators starts with modeling them as meta-

attributes in the OrgML definition. These meta-attributes are marked ‘derivable’ in

order to demand a calculation (e.g. see meta-attributes of ‘AnyProcess’ in Fig. 5). For

providing the calculation logic, we specify a generic operation for ‘Entity’, which

offers an interface for setting data source and calculation (‘calculateDerivable()’ in

Fig. 5). Additionally, we add a set of generic calculation operations to ‘Entity’, e.g.

mean and maximum value. However, the specific derivation often needs to be defined

by the language designer. Therefore, custom derivation operations can be added to

any child class of ‘Entity’. For instance, in order to calculate the average duration of a

subprocess, we add a calculation operation to ‘AnyProcess’ which is able to identify

the amount of time incurred between two timestamps.

In order to include attributes for instance level runtime information in the BP mod-

eling language level, we use MEMO’s intrinsic features (cf. section 2.1). Features

such as meta-entities, meta-attributes or meta-association of the metamodel (M2) can

be defined as intrinsic, meaning that they are relevant only at the instance level (M0),

while at the type level we abstract from them. For example, defining a meta-attribute

‘cost’ for the OrgML concept of ‘Subprocess’ and marking it as intrinsic entails that

the attribute is – in contrast to regular meta-attributes – not instantiated into a particu-

lar value on the M1 level, but on the level M0 (see illustration in Fig. 5).

Fig. 5. OrgML entities are instantiated from MML and inherit from XMF concepts

(boxed letter ‘i’ indicates intrinsic feature, boxed letter ‘d’ indicates derivable feature)

While deferring the instantiation of meta-attributes can be straightforwardly ac-

counted for in the constructors of ‘MetaEntity’ and ‘Entity’, for meta-associations we

require a more elaborate solution. The problem is that until BP type models are de-

fined on M1, we do not know which associations are valid on M0 and what are their

cardinalities. Consider the intrinsic association ‘triggers’ from event to subprocess in

Fig. 5. Now take the instances of event (‘Order received’) and subprocess (‘Check

Availability’) on M1 into consideration. The concepts on M1 are linked via an instance

of the regular meta-association ‘triggers’. Only because of this link, which is set by a

BP modeler, i.e. a user of the language, the typing of the intrinsic meta-association

‘triggers’ can be restricted such that only instances of ‘Order Received’ can be con-

nected to instances of ‘Check Availability’ on M0. Since this information may change

dynamically in the user model, the modeling tool needs to continuously observe the

creation and modification of links in BP type models.

The cause of this problem is located in underspecified semantics of classifications

across several modeling levels. Thus, we propose a workaround solution. Once the

definition of the BP type model on M1 is completed, at the behest of the modeler an

operation called ‘updateIntrinsics()’ is executed. This operation goes over the BP type

model and sets the types of all intrinsic association of the particular M1 model based

on actual links. Such a workaround is practicable for BP models, as it allows chang-

ing a BP type model and instantiating new, valid BP instance model editors from the

specification of said type model.

Finally, in order to automatically synchronize representations of BP type and in-

stance models with the actual runtime information of BP instances, our prototype uses

change listeners, called daemons. With daemons, we exploit that in XMF every ele-

ment is aware of the higher-level concept it is an instance of. Furthermore, in our

implementation every ‘Entity’ instance is able to query for its instances. Correspond-

ingly, daemons can notify types on changes of their instances. Thus, when the execu-

tion of a BP instance proceeds, corresponding listeners are notified and automatically

update derivable attributes in the type model. The update of the BP type model can

take place at runtime, because owing to the features of XMF the ‘classes’ of BP in-

stance models are stateful runtime objects at the same time.

When combining type level performance indicators and instance level attributes in

integrated modeling editors, we arrive at a tool serving process design on the one side,

and versatile process monitoring on the other, as exemplified in Fig. 2.

5 Conclusion, Limitations and Future Work

We started this paper by pointing out to the prospects potentially offered by runtime

models to the field of BPM. It was shown how BP runtime models can overcome the

insufficiencies of available approaches for process monitoring. Then, we elaborated

on how to implement a modeling tool supporting such a BP modeling environment. It

was shown that due to the two dynamically adaptable modeling levels of BPs (section

3.1), common metamodeling frameworks and OO implementation languages are not

suitable for integrating BP type and instance models at runtime. This led us to propose

an alternative solution based on implementing OrgML with the metaprogramming

language XMF.

We advocate that the proposed approach is advantageous whenever multiple dy-

namic levels of abstraction need to be accounted for in a tool environment for runtime

models. For example, runtime models of software architecture will presumably re-

quire a synchronization of system instance (i.e. the running system), system instance

models and system configuration models.

However, we purposefully ignored some aspects of BP models at runtime in this

work. Firstly, we did not address the synchronization of runtime models and BPM

systems. Instead we used a simulator to imitate BP executions. Accordingly, we con-

template interfacing a BPM system for feeding operational data into BP runtime mod-

els, and invoking model-based modifications to a BPM system. For this purpose, we

consider exploiting XMF’s low-level messaging API to connect to external software,

which requires an interface observing a BPM system and informing XMF listeners

about the arrival of data. Yet, in this approach the BP model and the representation of

the model in the BPM system code would still be separated, which requires complex

synchronizations for enabling mutual adaptations. Therefore, we envision extending

our prototype with actual BP enactment features in order to directly use the BP

runtime models as code for the enactment of processes.

Secondly, we did not discuss how BP instances and models of these instances react

to changes of BP type models. In our prototype, we do not allow changes in type

models to affect already executed BP instances in order to not invalidate originally

legal process executions. Coping with type level changes in this respect recommends

implementing policies that ensure avoiding inconsistent system and model states.

References

1. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), pp. 22–27

(2009)

2. Bencomo, N.: On the use of software models during software execution. In: ICSE Work-

shop on MISE '09, pp. 62–67. IEEE Press, Piscataway, NJ (2009)

3. Sánchez, M., Barrero, I., Jorge, V., Deridder, D.: An Execution Platform for Extensible

Runtime Models. In: 3rd Workshop on Models@run.time at MoDELS ’08 (2008)

4. Weske, M.: Business process management. Concepts, languages, architectures, 2nd ed.

Springer, Heidelberg et al. (2012)

5. Kettinger, W.J., Teng, J.T.C., Guha, S.: Business Process Change: A Study of Methodolo-

gies, Techniques, and Tools. MIS Quarterly 21(1), pp. 55–80 (1997)

6. Frank, U.: MEMO Organisation Modelling Language (2): Focus on Business Processes.

ICB Research Report 49. University of Duisburg-Essen (2011)

7. van der Aalst, W.M.P.: Process mining. Discovery, conformance and enhancement of

business processes. Springer, Heidelberg et al. (2011)

8. Frank, U.: Multi-perspective enterprise modeling: foundational concepts, prospects and fu-

ture research challenges. Soft. Syst. Model., pp. 1–22 (2012)

9. Frank, U.: The MEMO Meta Modelling Language (MML) and Language Architecture.

2nd Edition. ICB Research Report 43. University of Duisburg-Essen (2011)

10. Kimball, R.: The Data Warehouse Toolkit. Practical Techniques for Building Dimensional

Data Warehouses. Wiley, New York et al. (1996)

11. Bandara, W., Indulska, M., Chong, S., Sadiq, S.: Major Issues in Business Process Man-

agement: An Expert Perspective. In: Proceedings ECIS 2007, pp. 1240–1251 (2007)

12. Clark, T., Sammut, P., Willans, J.: Applied metamodelling: a foundation for language

driven development, 2nd edn. Ceteva (2008)

13. Spinellis, D.: Rational Metaprogramming. IEEE Software 25(1), pp. 78–79 (2008)

14. Kühne, T.: Matters of (meta-) modeling. Soft. Syst. Model. 5(4), pp. 369–385 (2006)

15. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. Proceedings of the 4th

UML ‘01. LNCS, vol. 2185, pp. 19–33. Springer, Berlin, Heidelberg (2001)

16. Eclipse: Eclipse Modeling Project, www.eclipse.org/modeling/emf/ (2013)

17. Atkinson, C., Kühne, T.: Concepts for comparing modeling tool architectures. In: Model

Driven Engineering Languages and Systems. LNCS, vol. 3713, pp. 398-413. Springer,

Berlin, Heidelberg (2005)

18. Frank, U., Strecker, S.: Beyond ERP Systems: An Outline of Self-Referential Enterprise

Systems. ICB Research Report 31. University of Duisburg-Essen (2011)

19. Kühne, T., Schreiber, D., New York: Can programming be liberated from the two-level

style: multi-level programming with deepjava. In: Proceedings OOPSLA '07, pp. 229–244.

ACM Press (2007)

