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Abstract. Business Process Management (BPM) suffers from inadequate con-

cepts and tools for monitoring and evaluation of process executions at runtime. 

Conversely, models at runtime promise to give insights into the state of a soft-

ware system using the abstract and concrete appearance of design time process 

models. Therefore, we at first advocate to use models at runtime in business 

process (BP) modeling. Then, we outline the implementation of a prototypical 

modeling framework for BP runtime models based on metaprogramming. This 

framework supports the integration of BP type models – models that are en-

hanced with statistics of runtime data – and instance models – visual representa-

tions of executed BPs – resulting in versatile process monitoring dashboards. 

The approach is superior to object-oriented programming, as it provides a 

common representation for models and code at various levels of classification, 

and represents an attractive alternative to object-oriented languages for the im-

plementation of runtime models in general. 

1 Introduction  

Conceptual runtime models of a software system are able to give insights into the 

current state of a system using concepts of higher levels of abstraction than those of 

the computational model. Thus, in addition to fostering system (self)-adaptation, these 

models improve monitoring and understanding of a system’s runtime behavior [1].  

In existing research work on models at runtime, we see a focus on software archi-

tecture [2]. In this paper, we suggest extending the scope of runtime models to the 

area of Business Process Management (BPM). Business process (BP) modeling plays 

a major role in BPM. In section 2, we argue why runtime models of BP executions – 

which are enacted and recorded by BPM systems – present a valuable contribution to 

process monitoring and decision support in BPM, while only few researchers have 

expanded their work on runtime models to this particular domain (e.g. [3]).  

 The implementation of a modeling tool for respective runtime models creates chal-

lenges which can hardly be overcome with traditional object-oriented (OO) program-

ming languages, the prevalent programming paradigm used for realizing BP modeling 

tools. In section 3 we discuss these challenges, which relate to the support of multiple, 

adaptable levels of classification in software. In section 4, we present an approach 

which enables overcoming them, exploiting a metaprogramming language. We 

demonstrate how a modeling tool allows for integrating a BP modeling language, 



process type models and process instance models as adaptable runtime objects. Limi-

tations and future research opportunities are discussed in the concluding section 5. 

2 Background and Motivation 

BPM primarily aims at facilitating a) comprehension and communication of business 

processes, b) continuous process improvement, c) organizational flexibility, and d) 

process enactment [4]. To achieve these objectives, BPM initiatives typically follow a 

lifecycle covering the four phases of process design, process implementation, enact-

ment, and monitoring and evaluation [4]. In this lifecycle, conceptual models of BPs 

play a pivotal role [5], as they are used for representing (literally) how an organization 

works at the operational level. The pivotal concepts for modeling BPs are ‘activity’ 

and ‘event’. An activity describes a unit of work. An event indicates completion of 

activities and might trigger new activities. It may also represent state changes in the 

external environment of a business process. Activities and events are logically or-

dered in a BP model with control flow constructs like sequence or fork [4]. BP mod-

els ought to be visualized using a notation catering to the perception of business 

stakeholders [6]. An example of a BP model is given in Fig. 1. As regards the BPM 

lifecycle, BP models play an important role in process design, implementation, and 

enactment. In these phases, BP models serve as e.g. descriptive documentations or 

design specifications. However, BP models created during design and implementation 

are surprisingly ignored for process monitoring and evaluation [7]. 

 

Fig. 1. Exemplary business process type model (MEMO OrgML notation) 

2.1 Business Process Modeling with OrgML 

In this work, we use MEMO OrgML as a BP modeling language. MEMO [8] is a 

multi-perspective enterprise modeling method based on a high-level framework struc-

turing the enterprise with three generic perspectives: strategy, organization, and in-

formation system. To allow for more elaborate analyses, each perspective is associat-

ed with a domain-specific modeling language (DSML) which defines a set of diagram 

types focusing on different aspects of the perspective. Among the various DSMLs of 

MEMO, OrgML [6] accounts for BP modeling. OrgML offers the core concepts of 

BP modeling: (sub-) processes (i.e. activities), and events. A set of control flow con-



cepts specify the orchestration of processes, e.g. sequence and branching. OrgML 

offers a visual notation catering to the business domain (see Fig. 1). 

The abstract syntax and semantics of MEMO DSMLs are specified using the 

metamodeling language MML [9]. MML is tailored for designing DSMLs and offers 

some unique advantages over other metamodeling languages. Most notably, MML 

supports intrinsic features. With intrinsic features, a MEMO DSML can include meta 

concepts which are not relevant for the types of a model created with the DSML (i.e. 

instances of meta concepts), but only for instances of these types. In other words, 

intrinsic features allow deferring instantiation of meta concepts. This is supported 

only by few metamodeling languages (e.g. the UML infrastructure does not support 

such a mechanism). Thus, intrinsic features create a strong motivation for using 

OrgML in the proposed solution, as further discussed in section 3.1 and in section 4.3. 

Sharing a common metamodel facilitates the integration of MEMO DSMLs, thereby 

supporting the integration of different perspectives. For example, OrgML references 

concepts of the IT perspective (e.g. used IT resources). This renders OrgML BP mod-

els more useful for comprehensive business analysis and decision making than other 

BP modeling languages. 

2.2 Issues of Process Monitoring Support 

For process monitoring and evaluation, process executions ought to be observed and 

interpreted by responsible managers with respect to different performance indicators. 

These indicators support e.g. identifying bottlenecks with respect to throughput times 

of a process. Therefore, process managers require extracting runtime information 

from BPM systems. However, reporting of runtime information to process managers 

is not supported with BP models of earlier phases of the BPM lifecycle. This dissatis-

factory situation has already been acknowledged in the area of BPM [7].  

In fact, the gap between process design and implementation, and runtime process 

monitoring and associated decision support tasks materializes on three levels. Firstly, 

there is a difference in domain-specific concepts employed. Design time BP models 

are typically constituted of activities, events, and control flow concepts (cf. beginning 

of section 2), whereas for decision support and analysis we typically conceptualize 

data in ‘facts’ and ‘dimensions’ [10]. Secondly, visualization of runtime information 

of process executions often diverges from those of design time BP models. Moreover, 

visualizations of process instances employed in BPM systems are deemed insufficient 

for process managers [11]. Thirdly, as BP models are not employed for process moni-

toring and corresponding decision support, there is a fragmentation of tools across the 

BPM lifecycle [11]. For instance, process managers have to apply Business Intelli-

gence (BI) tools for offline, ex-post analysis of process performance, instead of being 

able to revert to modeling tools used for process design [7]. 

2.3 Prospects of Business Process Models at Runtime 

Against the background of the discussed issues in BP monitoring, we propose to es-

tablish BP models at runtime as monitoring and decision support tools for process 



managers. In particular, we advocate that representing runtime data of a BPM system 

in BP models enables the following capabilities (illustrated in Fig. 2): 

1. Enhancing BP type models with information that is aggregated from the runtime 

environment of a BPM system, that is, from actual BP executions. For example we 

enrich activities of a BP with information such as their average cost (e.g.  and  

in Fig. 2). In this way, BP modeling tools serve as managerial dashboards. 

2. Visualizing executions of BPs with graphical notations of design models, establish-

ing a more meaningful context for giving better insight into runtime behavior of 

BPs (e.g.  and  in Fig. 2).  

3. Navigating (e.g.  in Fig. 2) between the enhanced BP type models (type level) 

and the visualizations of actual executions (instance level). When problematic per-

formance is reflected in BP type models, it is then possible to drill down to the 

source of the problem.  

 

Fig. 2. Monitoring dashboard for BP type and instance models at runtime 

The listed capabilities shall be realized within a BP modeling framework. Such a 

framework should offer a suitable BP modeling language and a modeling tool serving 

as a process monitoring dashboard. The approach presented in this paper for realizing 

such a modeling tool for OrgML enables various levels of classifications in software 

code, which are adaptable at runtime. In this approach, we highlight the realization of 

performance indicators in BP type models, and of instance level attributes that are 

defined in the modeling language. The implementation uses the metaprogramming 

language XMF [12]. 



In the presented work, we substitute interaction of runtime models and BPM sys-

tems with process execution simulations. In addition, we restrict adaptations of BP 

instance models after changes of BP type models, as will be discussed in section 5.   

3 BP Modeling Framework: Shortcomings of OO Languages 

Realizing a modeling tool for BP models at runtime faces unique requirements, which 

do not apply to “ordinary” modeling tools. In particular, we discuss the need for an 

implementation approach that is able to offer more than one static and one dynamic 

programming language level. OO languages typically do not offer this feature. To 

justify this requirement, we analyze the levels of abstractions required for BP models. 

3.1 Business Process Types and Instances 

The domain concepts of BP runtime modeling recommend three levels of classifica-

tion. On the highest level, generic concepts of the domain, e.g. activity and event (cf. 

section 2), are captured in a metamodel, specifying a BP modeling language. This 

level is denoted M2. BP models commonly refer to what is known as the type level. 

They describe types or classes of BPs (e.g. processing of an order) rather than particu-

lar instances (e.g. processing a specific order of a particular customer). This level is 

denoted M1. A BP instance model is characterized by a one-to-one representation of 

elements of a single BP execution and located on M0 [4], [14]. In addition, conceptual 

modeling frameworks (e.g. the MEMO framework or the UML infrastructure) com-

prise a fourth level of abstraction: the meta-metamodel level M3 where concepts for 

defining modeling languages of any kind are specified (see Fig. 3). 

Representing runtime information recorded in a BPM system requires accounting 

for the peculiarities of BPs in such a four level modeling architecture. Indeed, a 

runtime model must always reflect the correct state of software system. Applying this 

requirement to process executions, we find that the essential attributes reflecting a 

process instance at runtime comprise timestamps, activity cost, used resources, and 

source / target activities of events [7]. They may comprise further attributes like the 

particular employee executing the process. 

The identified instance level abstractions need to be included in the BP modeling 

language. Ignoring instance model abstractions in the language (M2) implies burden-

ing language users with the responsibility of defining type level runtime attributes and 

associations, such as a timestamp and cost, in every BP model they create [15]. This 

hampers a shared understanding and reusability of resulting models, as an apparent 

abstraction is ignored, resulting in dangerous redundancies [9]. Furthermore, accord-

ing to the relation of BP types and instances (cf. section 2), a type level view on 

runtime attributes of a BP reflects a set of runtime instances, e.g. by calculating the 

performance indicator ‘average cost’ for a set of process instances. Support of such 

performance indicators is facilitated by specifying selected properties of instances, 

like execution time or cost, in the modeling language. Only then, we are able to define 

that a performance indicator is always calculated from the same kind of instance level 



runtime information, regardless of the actual user-created BP type model (M1). To 

address instance level abstractions on the modeling language level, we implement 

intrinsic features of MEMO OrgML (cf. section 2.1) in our modeling tool. 

 

Fig. 3. Levels of abstraction of BP (runtime) models 

In conclusion, both type and instance level shall represent runtime phenomena of 

BPs. BP instance models have to be represented as runtime objects in the modeling 

tool so that they can be adapted according to the execution of BPs over time. Addi-

tionally, the type level is subject to modifications at runtime, since it classifies 

runtime information in performance indicators, which shall be updated in real-time. 

Therefore, the type level describes properties of BP instance models, while at the 

same time types are runtime objects, as exemplified on the right side of Fig. 3.  

3.2 Metamodel-based Modeling Tool Creation 

The state-of-the-art approach for creating modeling editors, inter alia BP modeling 

tools, compiles a modeling editor for type models from a metamodel of a modeling 

language. Most metamodeling facilities following this approach, e.g. the Eclipse 

Modeling Framework (EMF) [16], rely on OO languages (e.g. Java). OO languages 

typically support two language levels: classes and objects. Correspondingly, during 

language design the metamodel is maintained in M0 programming language objects. 

These objects are used for generating classes, which define the software structure of a 

modeling editor for corresponding type models. For creating instance model editors, 

the same “edit-generate-compile-validate”-cycle is applied to type models created by 

language users, as they are stored in M0 runtime objects of the generated editor and 

thus cannot be instantiated into process instance representations [17].  

We argue that this approach is not feasible a BP runtime modeling tool, as type and 

instance models must be maintained in adaptable, yet integrated runtime objects of the 

modeling environment (cf. section 3.1). Only then, performance indicators and in-

stance model representations are able to react to changes of runtime data from a BPM 



system. In the OO approach, type and instance model editors are disconnected due to 

the unfavorable “edit-generate-compile-validate”-cycle [17] (see Fig. 4). Hence, con-

ceptual models and implementation code do not share a common representation, as 

they are connected via generation and compilation [18]. Type and instance models are 

depicted in disconnected editors, severely hampering runtime synchronization be-

tween type and instance level. Synchronizing the evolution of the type level with the 

instance level is hampered: whenever a type model changes, the described cycle needs 

to be iterated. Moreover, when a BP instance is created or changed, e.g. a subprocess 

terminates, corresponding changes should be immediately reflected in relevant type 

model editors, e.g. within performance indicators. This indicates that recompilation of 

the editor, as dictated in the OO approach, is not feasible for runtime models. 

 

Fig. 4. Edit-generate-compile-validate cycle for metamodeling based model editor creation 

A workaround for OO implementations is to mimic the classification relationship 

of types and instances with a manually implemented relationship. For example, a 

class representing the type features, and a class representing the instance features may 

be introduced and associated by a ‘typeOf’ relationship. Such a relationship, however, 

lacks the formal semantics of “true” instantiation. Thus, additional code is required, 

which produces a severe threat to system integrity [19].  

4 Solution Approach     

In this section we explain the core features of XMF, which serves to implement an 

OrgML modeling editor. Then, we describe the implementation architecture of a 

modeling tool for BP runtime models that supports a runtime integration and syn-

chronization of type and instance level within a multi-level classification hierarchy. 



4.1 XMF 

A metaprogramming language is distinguished from regular programming languages 

through its ability to manipulate programs (e.g. the class level of OO languages) in-

stead of program instances at runtime [13]. The metaprogramming capabilities used in 

the presented work derive from XMF [12]. XMF’s pivotal paradigm is the application 

of executable metamodeling for language design, which is reflected in its core fea-

tures. Firstly, XMF comprises a metamodeling language: XCore. The metamodeling 

language is complemented with an extended version of the Object Constraint Lan-

guage (OCL), called XOCL. XOCL includes action primitives for defining executable 

semantics. These action primitives allow, amongst other aspects, specifying sequen-

tial execution paths, e.g. object creation and imperative control structures.  

Secondly, similar to OO languages, XCore distinguishes the concepts of ‘Class‘ 

and ‘Object’. A particular class is instantiated into objects, which by default cannot be 

instantiated again and cannot inherit. However, in contrast to regular OO languages, 

instances of a class may again specialize the XMF concept ‘Class’, instead of ‘Ob-

ject’, as ‘Class’ in XMF is a specialization of ‘Object’. This implies two things. First-

ly, in XMF classes are always objects at the same time, i.e. they are dynamic runtime 

elements which can be manipulated during program execution. Secondly, as an in-

stance of a class is able to again serve as a class, multiple consecutive instantiations 

are enabled. This recursive style of language definition employed in XMF, where 

only relative metatype to type to instance relationships are distinguished, is called 

golden braid architecture. Because of this architecture, XMF is more powerful than 

those OO languages offering a meta-object protocol (MOP), for example Smalltalk. A 

MOP basically consists of meta classes which allow accessing the class level (M1) at 

runtime. However, the MOP of Smalltalk only allows for a meta-class to classify a 

single class (M1). Therefore, for making classes adaptable at runtime in Smalltalk, 

every class requires a particular meta class, whereas XMF enables creating a single 

meta class for multiple classes on M1. 

The described architecture of XMF, in which instances of classes can again serve 

as classes, justifies why implementing a BP modeling tool with XMF avoids the “ed-

it-generate-compile-validate”-cycle.  

4.2 Tool Implementation Architecture 

As a first step to implement a modeling editor featuring OrgML, we reconstruct 

MEMO MML (cf. section 2.1) with XMF metamodeling concepts. In other words, we 

instantiate XMF concepts like ‘Class’ and ‘Attribute’ in order to model the MML. 

Because of this instantiation, MML concepts possess executable features, as discussed 

in section 4.1, e.g. execution of operations. In addition, MML concepts are set to in-

herit XMF concepts in order to add executable semantics to instances of the MML 

meta-metamodel. Through this specialization, instances on M2 are equipped with 

executable features, like setters and getters, which are crucial to modeling editors.  

Secondly, we model OrgML with the implemented MEMO MML and account for 

runtime model capabilities. For this purpose, runtime functionality relevant to all 



instances of ‘MetaEntity’ (the meta meta class all concepts of OrgML are instantiated 

from, see Fig. 5) is captured in a concept called ‘Entity’. The functionality mainly 

comprises navigation from type to instance models, calculation of performance indi-

cators, and instantiation of intrinsic features (described in section 4.3). ‘Entity’ also 

specializes XMF’s ‘Class’ in order to add execution semantics to instances of 

MetaEntity and enable their further instantiation. Thereby, every OrgML concepts 

transitively through ‘Entity’ specializes XMF’s ‘Class’. In combination, we can use 

the implementation of OrgML to create an OrgML editor at runtime with XMF. BP 

type models created with this editor can be directly instantiated into instance models, 

implying the ability to create instance model editors at runtime from BP type model 

specifications. The specialization hierarchy enabling the instantiation of dynamic type 

level entities is given in Fig. 5. All levels can be dynamically manipulated.  

 ‘Entity’ also encapsulates an operation for querying instances of a type. With said 

operation, M1 level concepts are able to get a list of its instances, which serves as a 

foundation for integrating and navigating to the instance level at runtime.  

Fig. 5 exhibits a pivotal idea of the proposed modeling tool for coping with the 

multiple dynamic levels implied by BP runtime models: cross-level inheritance. In-

deed, ‘Entity’ inherits from ‘Class’, while being at the same time an instance of 

‘Class’; all OrgML entities specialize ‘Entity’, while OrgML entities are instances of 

‘MetaEntity’. ‘MetaEntity’ and ‘Entity’ are, however, on the same level of abstrac-

tion. Because of the (transitive) cross-level specialization of XMF concepts within the 

presented architecture, the role XMF plays in relation to the four modeling levels of 

MEMO is twofold: on the one hand, XMF can be considered a fifth level of abstrac-

tion above M3; on the other hand, XMF serves as a modeling infrastructure offered to 

all MEMO modeling levels via transitive specialization / generalization. 

4.3 Implementation of Business Process Runtime Abstractions 

The implementation of performance indicators starts with modeling them as meta-

attributes in the OrgML definition. These meta-attributes are marked ‘derivable’ in 

order to demand a calculation (e.g. see meta-attributes of ‘AnyProcess’ in Fig. 5). For 

providing the calculation logic, we specify a generic operation for ‘Entity’, which 

offers an interface for setting data source and calculation (‘calculateDerivable()’ in 

Fig. 5). Additionally, we add a set of generic calculation operations to ‘Entity’, e.g. 

mean and maximum value. However, the specific derivation often needs to be defined 

by the language designer. Therefore, custom derivation operations can be added to 

any child class of ‘Entity’. For instance, in order to calculate the average duration of a 

subprocess, we add a calculation operation to ‘AnyProcess’ which is able to identify 

the amount of time incurred between two timestamps. 

In order to include attributes for instance level runtime information in the BP mod-

eling language level, we use MEMO’s intrinsic features (cf. section 2.1). Features 

such as meta-entities, meta-attributes or meta-association of the metamodel (M2) can 

be defined as intrinsic, meaning that they are relevant only at the instance level (M0), 

while at the type level we abstract from them. For example, defining a meta-attribute 

‘cost’ for the OrgML concept of ‘Subprocess’ and marking it as intrinsic entails that 



the attribute is – in contrast to regular meta-attributes – not instantiated into a particu-

lar value on the M1 level, but on the level M0 (see illustration in Fig. 5).  

 

Fig. 5. OrgML entities are instantiated from MML and inherit from XMF concepts  

(boxed letter ‘i’ indicates intrinsic feature, boxed letter ‘d’ indicates derivable feature) 

While deferring the instantiation of meta-attributes can be straightforwardly ac-

counted for in the constructors of ‘MetaEntity’ and ‘Entity’, for meta-associations we 

require a more elaborate solution. The problem is that until BP type models are de-

fined on M1, we do not know which associations are valid on M0 and what are their 

cardinalities. Consider the intrinsic association ‘triggers’ from event to subprocess in 

Fig. 5. Now take the instances of event (‘Order received’) and subprocess (‘Check 

Availability’) on M1 into consideration. The concepts on M1 are linked via an instance 

of the regular meta-association ‘triggers’. Only because of this link, which is set by a 

BP modeler, i.e. a user of the language, the typing of the intrinsic meta-association 

‘triggers’ can be restricted such that only instances of ‘Order Received’ can be con-

nected to instances of ‘Check Availability’ on M0. Since this information may change 

dynamically in the user model, the modeling tool needs to continuously observe the 

creation and modification of links in BP type models.  

The cause of this problem is located in underspecified semantics of classifications 

across several modeling levels. Thus, we propose a workaround solution. Once the 

definition of the BP type model on M1 is completed, at the behest of the modeler an 

operation called ‘updateIntrinsics()’ is executed. This operation goes over the BP type 



model and sets the types of all intrinsic association of the particular M1 model based 

on actual links. Such a workaround is practicable for BP models, as it allows chang-

ing a BP type model and instantiating new, valid BP instance model editors from the 

specification of said type model.  

Finally, in order to automatically synchronize representations of BP type and in-

stance models with the actual runtime information of BP instances, our prototype uses 

change listeners, called daemons. With daemons, we exploit that in XMF every ele-

ment is aware of the higher-level concept it is an instance of. Furthermore, in our 

implementation every ‘Entity’ instance is able to query for its instances. Correspond-

ingly, daemons can notify types on changes of their instances. Thus, when the execu-

tion of a BP instance proceeds, corresponding listeners are notified and automatically 

update derivable attributes in the type model. The update of the BP type model can 

take place at runtime, because owing to the features of XMF the ‘classes’ of BP in-

stance models are stateful runtime objects at the same time.  

When combining type level performance indicators and instance level attributes in 

integrated modeling editors, we arrive at a tool serving process design on the one side, 

and versatile process monitoring on the other, as exemplified in Fig. 2. 

5 Conclusion, Limitations and Future Work 

We started this paper by pointing out to the prospects potentially offered by runtime 

models to the field of BPM. It was shown how BP runtime models can overcome the 

insufficiencies of available approaches for process monitoring. Then, we elaborated 

on how to implement a modeling tool supporting such a BP modeling environment. It 

was shown that due to the two dynamically adaptable modeling levels of BPs (section 

3.1), common metamodeling frameworks and OO implementation languages are not 

suitable for integrating BP type and instance models at runtime. This led us to propose 

an alternative solution based on implementing OrgML with the metaprogramming 

language XMF. 

We advocate that the proposed approach is advantageous whenever multiple dy-

namic levels of abstraction need to be accounted for in a tool environment for runtime 

models. For example, runtime models of software architecture will presumably re-

quire a synchronization of system instance (i.e. the running system), system instance 

models and system configuration models.  

However, we purposefully ignored some aspects of BP models at runtime in this 

work. Firstly, we did not address the synchronization of runtime models and BPM 

systems. Instead we used a simulator to imitate BP executions. Accordingly, we con-

template interfacing a BPM system for feeding operational data into BP runtime mod-

els, and invoking model-based modifications to a BPM system. For this purpose, we 

consider exploiting XMF’s low-level messaging API to connect to external software, 

which requires an interface observing a BPM system and informing XMF listeners 

about the arrival of data. Yet, in this approach the BP model and the representation of 

the model in the BPM system code would still be separated, which requires complex 

synchronizations for enabling mutual adaptations. Therefore, we envision extending 



our prototype with actual BP enactment features in order to directly use the BP 

runtime models as code for the enactment of processes. 

Secondly, we did not discuss how BP instances and models of these instances react 

to changes of BP type models. In our prototype, we do not allow changes in type 

models to affect already executed BP instances in order to not invalidate originally 

legal process executions. Coping with type level changes in this respect recommends 

implementing policies that ensure avoiding inconsistent system and model states.  
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