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Abstract. As software systems become more pervasive and increase in
both size and complexity, the requirement for systems to be able to self-
adapt to changing environments becomes more important. This paper
describes a model-based approach for adapting to dynamic runtime envi-
ronments using metaheuristic optimisation techniques. The metaheuris-
tics exploit metamodels that capture the important components in the
adaptation process. Firstly, a model of the environment’s behaviour is
extracted using a combination of inference and search. The model of the
environment is then used in the discovery of a model of optimal system
behaviour – i.e. how the system should best behave in response to the
environment. The system is then updated based on this model. This pa-
per focuses on investigating the extraction of a behaviour model of the
environment and describes how our previous work can be utilised for
the adaptation stage. We contextualise the approach using an example
and analyse different ways of applying the metaheuristic algorithms for
discovering an optimal model of the case study’s environment.

1 Introduction

Software that can adapt to changes in its environment without, or with mini-
mal, human intervention is a key challenge in current software development [1].
One method of deciding upon the most appropriate adaptation to perform is to
utilise metaheuristic optimisation techniques. These techniques may be used to
efficiently locate (near) optimal solutions by assessing how close candidate solu-
tions are to solving a problem and using this information to guide the search over
the the space of all possible solutions [5, 4]. Therefore, in reformulating system
adaptation as an optimisation problem, these techniques can be applied.

Previous work by Ramirez and Cheng [8] uses metaheuristics to discover op-
timal system configurations at runtime. These configurations are represented as
a graph of interconnected system components. A genetic algorithm is used to
activate and deactivate links between components in the hunt for an optimal
configuration, using sensory information from the environment to evaluate can-
didate configurations. Earlier work by Goldsby and Cheng [3] uses metaheuristics
to discover optimal component behaviour models (state machines). Performance



issues, related to an expensive fitness function and the time taken to generate
models, were cited for this technique as only being effective at design time [8].

The main contribution of this paper is a model- and search-based approach
to self-adaptation. We focus in this paper on adaptation at the component level,
providing a fine-grained level of adaptation whilst aiming to overcome the per-
formance issues found in [3]. Rather than encoding static information from the
environment in fitness functions (as in [8]), our approach uses metaheuristics to
extract a model of the environment’s dynamic behaviour. From this environment
model, we apply a second metaheuristic to discover a model of the optimal sys-
tem/component behaviour. In order to do this, we use a generic search-amenable
representation of models – making our approach applicable to any problem do-
main where adaptable parts of the system, and the environment’s behaviour,
can be represented as a model. It is worth noting that modelling the behaviour
of the environment may be very challenging and expensive. Our previous re-
search demonstrated how we can discover optimal system models [12]. In this
paper we focus on exploring the use of metaheuristics to extract a model of the
environment’s behaviour. We investigate ways in which we might improve the
metaheuristic’s efficacy in order to make this approach applicable at runtime.

To illustrate our approach, we aim to adapt our “Super Awesome Fighter”
(SAF) computer game [12] to maintain the challenge of the game as a player
learns new strategies. The environment to which the SAF system must adapt is
thus a human player, for which a behaviour model is extracted. The objective
is to evolve the game – in terms of providing suitable opponents – and tailor
it for that player. We define maximal gameplay enjoyment and challenge as a
condition where, irrespective of skill level, a player never plays an opponent that
they have no chance of beating, nor fights an opponent that they find easy to
defeat. The system component being adapted, therefore, is the opponent.

The paper is as follows. Section 2 describes our adaptation approach and
introduces the SAF game, whilst highlighting how our previous work can be
used to discover optimal system models. Section 3 then presents our approach
to extracting models from an environmental behaviour trace at runtime, and de-
scribes how this can be applied to SAF. We evaluate the efficacy of our approach
applied to SAF in section 4, examining ways to improve the performance of the
metaheuristic. The paper concludes in section 5 by discussing limitations and
highlighting future work.

2 Adaptation through Optimisation

Figure 1 shows our runtime adaptation approach that combines the use of models
and metaheuristic search. The first stage to adapting runtime system behaviour
in response to a dynamic environment is to extract a model from the behaviour
trace of the environment. Utilising a meaningful representation of the sensory
information can enable better runtime decision making [10]. This data model
guides a metaheuristic search algorithm to extracting a model of the behaviour
of the environment (e.g. a set of rules, or a finite state machine). By determin-



ing a model of the environment’s behaviour, we can use a second metaheuristic
algorithm to discover a model of the optimal system/component behaviour in
response to the environment. In [12] we demonstrate how to automatically dis-
cover models with desirable characteristics using metaheuristic optimisation. To
do this, we defined a way to search over the space of models conforming to
a given metamodel of a textual language. We have extended this technique to
all models (textual or graphical) by defining an integer-based, metaheuristic
search-amenable representation of models that can encode any model conform-
ing to any given metamodel [11]. After mapping this encoding to a model, it
can be evaluated by a problem-specific fitness function. This representation al-
lows us to easily apply metaheuristic optimisation techniques to any problem
where the solution is a model, therefore by defining metamodels for the adapt-
able components in a system we can discover optimal configurations in response
to environment changes.
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Fig. 1. The process of extracting a
model of the environment and using it
to adapt system behaviour.

We now describe the example
through which we explore our adap-
tation approach.

2.1 Example: SAF

Super Awesome Fighter1 has been
developed to illustrate MDE con-
cepts to high-school students. The
game is played between two human-
specified fighters, or one human-
specified fighter and a pre-defined
opponent. Fighters are specified us-
ing a bespoke language, the Fighter
Description Language – a language
developed using MDE technologies
(Xtext2 [2]) – meaning that each
fighter in SAF is a model. SAF logs
the state at each time step in a fight
for playback purposes.

In [12] we exploited the FDL to
derive opponents with desirable behaviour using metaheuristic optimisation al-
gorithms. In the context of SAF, the solution space is all instances of the FDL
grammar. The optimisation algorithm is guided through the search space by
assigning fitnesses to each candidate solution it examines – i.e. how close that
candidate solution is to solving the designated problem. The grammatical evo-
lution algorithm [7, 9] is used to instantiate candidate fighters which are then
evaluated against some desirable criteria. The goal was to discover opponents
that would be ‘interesting and challenging’ for the player, which was defined as

1 super-awesome-fighter.appspot.com
2 www.eclipse.org/Xtext



meaning an opponent who wins 80% of its fights against other fighters (the hu-
man’s goal is to iteratively improve their player so that it beats the opponents).
We demonstrated that it was possible to discover these desirable fighters, thus
concluding that the optimisation algorithm was effective. Although performed
in a purely illustrative context (a simple computer game), the principles extend
to any domain where searching for optimal models is of interest.

The process of selecting opponents for a player can be seen as analogous to
adaptation – the opponent is the adaptable component, and the game aims to
adapt the opponent in order to keep the player interested. Assuming the game
is directly interactive (unlike SAF where the player is already represented by a
model), it is possible to extract a model of the player’s behaviour. This model
can then be used to select appropriate opponents to pit against the human. In
other words, we use a model of the human behaviour to discover an optimal
model of the adaptable system behaviour. It is purely due to the nature of our
case study that both of these models conform to the same metamodel (FDL):
the important point is that both the environment and the adaptable part of
the system can be represented by models. Therefore, the technique presented
in this paper is applicable to adapting system behaviour for any system whose
adaptable components can be represented as a model and providing that this
model can be evaluated to guide the optimisation algorithm.

As our approach, when applied to SAF, will be to extract and discover FDL
models, we now briefly overview the FDL.

Fighter Description Language FDL conforms to the metamodel shown in
figure 2. The language allows players to specify their character’s Personality –
the punch and kick power and reach – and define their character’s behaviour
using a set of Rules. Each rule is composed of a Condition, a MoveAction, and a
FightAction. Listing 1.1 shows an example of a fighter described using FDL. It
also illustrates some of the more complex parts of the language (which are not
shown in figure 2). Firstly, there is the choose construct which allows players
to specify a set of actions (movement or fighting) and the game selects one at
random. Secondly, FDL supports composite conditions using the and and or
constructs. Finally there is a special Condition called always. This is a rule that
is always applicable; if none of the other rules’ condition’s are valid, then the
always rule is applied.

1 JackieChan{
2 kickPower = 7
3 punchPower = 5
4 kickReach = 3
5 punchReach = 9
6 far[run_towards punch_high]
7 near and stronger[choose(stand crouch) kick_high]
8 weaker[run_away choose(block_high block_low)]
9 always[walk_towards punch_high]

10 }

Listing 1.1. An example character defined using FDL.
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Fig. 2. Simplified metamodel for the FDL used to describe players in SAF.

At runtime, each player’s rules are examined sequentially in the order they
were defined and the first rule whose condition(s) are applicable in the current
game state is selected for execution.

We now describe our metaheuristic-based approach to extracting a model of
then environment and describe how it can be applied to SAF.

3 Model Extraction using Search

Our approach proposes that information of interest expressed by the environ-
ment be captured in a data model. This model becomes the starting point of a
metaheuristic search algorithm which attempts to extract a model of the environ-
ment’s behaviour. This model is then used to discover optimal system behaviour
(see section 2 and [12]). This section overviews our environment behaviour model
extraction process and describes its application in the context of SAF.

3.1 Model Extraction Process

Extracting a model from a corpus of data can be achieved in numerous ways,
such as game theory or inference from domain knowledge [1]. In this paper, we
examine an extraction process based on metaheuristic optimisation. The process
assumes the existence of two metamodels: one that meaningfully captures data
coming from the environment; and another that represents the environment’s
behaviour – this could, for example, be a state machine or a domain-specific
model. The information contained in the environment data model is used to
guide the metaheuristic algorithm to infer the model of environment’s behaviour.
In order to infer the behaviour model, we utilise our generic, search-amenable
representation of models [11]. For model extraction purposes, we search over the
space of environment behaviour models (defined by the metamodel) using the



environment data model to inform the search. We describe this approach now
using SAF as a contextualising example.

3.2 SAF: Extracting Player Behaviour

Our goal to make SAF self-adapting needs to be met by trying to infer a FDL
model of the way the human is playing the game, and using this model to select
appropriate opponents. In SAF’s current form, player’s specify their behaviour
using a FDL model, which may not accurately reflect human behaviour in a
more interactive, reactive game. To address this, our experiments (section 4)
create mutations of the human model as a method of introducing noise into the
data to better simulate the non-uniform behaviour of a human player. Having
the original FDL model of the actual human, however, does allow us to validate
the extracted model by comparing it against the human model (see section 4).

Our extraction workflow is a series of model management operations, and
is illustrated (with respect to the experimentation) in figure 3. To increase the
chances of finding optimal solutions, we defined a simplified (but equivalent)
version of the FDL metamodel which is more amenable3 to our model-search
technique. We have defined a two-way model-to-model transformation from our
simplified metamodel to the FDL metamodel. During the evaluation of a can-
didate solution, it is transformed into FDL for use in SAF. The model manage-
ment operations, and the model-search tool, are all written using the Epsilon4

languages, and are chained together using Epsilon’s orchestration framework [6].

The Environment SAF produces a log file for each fight that takes place,
where each game state is formatted as follows:

P1X , P1H , P1M , P1F ;P2X , P2H , P2M , P2F

where PN refers to either player one or player two; X is the player’s position; H
is the player’s health; and M and F are the player’s movement action and fight
action that they are performing. Some actions take more than one time step.
In these cases, SAF logs the player as being blocked and stops the player from
performing another action. The contents of the log files are the behaviour trace
being produced by the environment.

We have defined a data metamodel (available at www.jamesrobertwilliams.
co.uk/adaptation) which captures the information contained in the logs in a
more useful way - frequency counts of conditions and actions. In every game
state, there are always two conditions that are applicable. This is due to the
fact that conditions come in two distinct categories: those related to health
(e.g. much weaker, stronger) and those related to distance from the opponent

3 The FDL metamodel is reference-heavy; a feature which the model-search tool strug-
gles with. We believe this refactoring process could be automated but leave this for
future work.

4 www.eclipse.org/epsilon



(far, near). Exactly one condition from each category will be applicable in each
game state. Therefore, our data model captures the log file information in two
ways. Firstly, it captures the frequencies of actions against single conditions, and
secondly, it captures the frequencies of actions against pairs of conditions. The
two conditions applicable in each game state are calculated using the same rules
that SAF uses. For example, near is applicable when |P1X − P2X | ≤ 5.

Logging two conditions in every state makes manually inferring the player’s
behaviour rules very tricky. When defining behaviour rules in FDL, the player is
not required to specify two conditions and so a rule whose only condition is near
may be executed in any of the health-related conditions. Therefore, although
manual inference of the behaviour rules initially seemed trivial, further inspection
suggested that it is not and therefore might be a good candidate for metaheuristic
optimisation.

Partial Model Extraction The logs produced by SAF only give information
about the behaviour of the fighter, and not its personality. This information
cannot be extracted from the data model5 and so we propose a two stage ex-
traction process. These stages are SAF-specific but may proof useful for other
case studies. Firstly, we extract the behaviour rules from the data model using
a genetic algorithm (GA), and then we use a hill climbing algorithm to discover
the personality parameters and thus complete the environment behaviour model.
We use a GA to discover the rules because the behaviour rules are complex and
interrelated, meaning that there are likely to be many local optima which makes
the problem unsuitable for hill climbing. To discover the personality parameters,
however, the search space is much smaller and contains fewer local optima and
so hill climbing is used.

To evaluate the fitness of a candidate solution in the GA, we compare its
behaviour with respect to the information contained in the data model. Each
condition pair entry in the data model is passed to the candidate solution as
if it were the game state. The first rule that is applicable with respect to the
pair of conditions is selected and ‘executed’ the same number of times that the
condition pairs appear in the data model. The rule is ‘executed’ multiple times
because it may contain action choices and therefore result in different actions.
The frequencies of the resulting move and fight actions are compared against
the frequencies found in the data model. The fitness is calculated as the sum of
squares of the distance between the target frequency and the actual frequency.
We also reward partial matches (e.g. where the move action matches, but the
fight action does not).

Population Seeding For many metaheuristic optimisation algorithms, the ef-
fectiveness of the algorithm can depend on where in the solution space the algo-
rithm begins. For population-based metaheuristic algorithms, such as GAs, it is

5 Thorough analysis of the log file can actually shed some light on the personality. For
instance, by tracking the distance moved when running, or analysing the effects of
punches that make contact. This, however, is out of scope for this paper.



common to create an initial population of diverse candidate solutions in order
to promote exploration of the search space.

We can, however, make use of the information contained in the data model
and attempt to create an initial population which starts the search in an area of
the solution space that is closer to the optimal solution and therefore improve the
performance of the search. This process is called seeding, and is not SAF-specific.
We have implemented two different types of seeding which we compare in section
4. Although seeding can be useful, it may bias the search towards sub-optimal
solutions. As such, when seeding we also include some other solutions created
randomly. We assess the effectiveness of these seeding strategies in section 4.

Random Seeding Our random seeding algorithm creates a set of simple candidate
solutions (fighters) by random selecting entries from the data model and creating
behaviour rules. Up to 4 composite condition rules are created from randomly
selected condition-pair entries in the data model, and up to 3 single condition
rules are created by randomly selecting single condition entries from the data
model. Once the set of rules has been created, the fighter is mapped down to its
integer string form and added to the initial population.

‘Intelligent’ Seeding Instead of random selecting entries from the data model,
we can do a small amount of inference using domain knowledge to create the
rules. For example if we have two condition-pair entries which have different
action sets, we can create a composite condition rule which uses FDL’s choice
construct to select between the actions.

Model Completion As previously mentioned, it may not always be possi-
ble to infer the entire environment behaviour model, as is the case in SAF. In
this instance, we propose using a different metaheuristic optimisation algorithm
called hill climbing. This algorithm attempts to find the correct allocation of
personality parameters to the partial model that resulted from the GA. As SAF
is aware of the previous opponents that the player has fought, we can use them
to evaluate candidate personality parameters. The partial model is, therefore,
updated with the candidate personality and then pit against the same opponents
that produced the data in the original data model. The fitness of the personality
is calculated as the distance between the resulting data model and the original
data model.

We now illustrate this approach by investigating whether or not it is able to
successfully extract human models of increasing complexity.

4 Exploring the Effectiveness of Search

We now evaluate our approach by attempting to successfully extract the models
of three input fighters. The fighters (available at www.jamesrobertwilliams.

co.uk/adaptation) are of increasing complexity: the simple fighter uses only
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Fig. 3. The process of extracting a model of the player used for the experimentation.

atomic conditions and no action choice; the medium fighter has some rules with
composite conditions but still no action choice; and the complex fighter has rules
with both composite conditions and action choices.

To make the problem more challenging and simulate the non-uniform be-
haviour of real humans, we also automatically create new instances of each fighter
with slight stochastic variations, called mutants. For instance, we might mutate
the condition of a particular rule to produce variable behaviour. When creating
the data model, one of the mutants is selected randomly to participate in the
fight. This produces a noisier data model, which is intended to simulate more
realistic behaviour.

Following the process outlined in figure 3, we investigate six scenarios for
each of the three human models, analysing both the effects of mutants and the
effects of population seeding:

1. #mutants = 0; population seeding = none
2. #mutants = 0; population seeding = random
3. #mutants = 0; population seeding = intelligent
4. #mutants = 5; population seeding = none
5. #mutants = 5; population seeding = random
6. #mutants = 5; population seeding = intelligent

For fairness, each experiment is executed ten times, each with a different
seed to the pseudo-random number generator. The environment is simulated by
fighting the human (and mutants) against 50 random opponents.

Algorithm Settings The GA is configured with a population of size 10, and
executed for 20 generations, and the personality hill climbing algorithm was exe-
cuted for 50 generations. The complete set of parameters used in for metaheuris-
tic algorithm is available at www.jamesrobertwilliams.co.uk/adaptation. The



parameter values selected for a metaheuristic technique plays a crucial role in
its efficacy. At this stage, we are not concerned with efficiency (although this is
obviously extremely important for adaptation at runtime) and so no substantial
effort was made to tune the parameters to this problem. Our goal is determine the
feasibility of using this approach to adapt components at runtime, and analyse
whether population seeding is a potential method of improving the performance.

Response In order to validate whether or not we successfully extracted the hu-
man model, we devised a semantic fighter comparator. A structural comparison
of the fighters would not be enough, as different combinations of rules and per-
sonalities can result in equivalent behaviour. Our semantic comparator, there-
fore, aims to see if the the extracted model is semantically equivalent to the
input model. In other words, when fighting against the same opponents, do they
perform as well. In order to calculate a semantic similarity score, the extracted
model and the input model both fight against 100 randomly generated oppo-
nents. Each opponent is fought ten times, and the number of times that the
human model (extracted or input) wins is noted. If the human has mutants,
one of the mutants is selected randomly for each individual fight. The semantic
similarity score is then calculated as:∑100

i=1 |#WIN i
input −#WIN i

extracted|
100

where #WIN i
model is the number of times out of ten that the model beat op-

ponent i. Scores range between 0 (semantically equivalent) and 10 (semantically
dissimilar).

It is worth emphasising that this semantic comparison would not occur at
runtime (indeed, it would not be possible); it is used here purely as a way of
validating the approach. In addition to a semantic similarity score, we log the
time taken for the experiment to execute from start to finish (i.e. follow the
entire path through figure 3).

4.1 Results

Figure 4 shows the results of each experiment. The increase in difficulty caused
by adding mutants is immediately apparent when examining the results of the
simple and medium humans. Without mutants the metaheuristics find near op-
timal solutions (when seeded), but struggle when mutants are introduced. Un-
expectedly, the addition of mutants actually improved the performance for the
complex human; the variation in the results suggests that the fitness landscape
is noisy, which could attribute towards this phenomenon.

The simple and medium human results highlight the effect of seeding. The
GA performs poorly without being seeded – likely due to the randomly initialised
population containing many more complex solutions than simple ones. This ran-
domness appears to be advantageous for the complex human where it is better
to omit than perform seeding – highlighting that our seeding techniques may
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need re-examining. Furthermore, the random seed outperforms the intelligent
seed for a similar reason – the intelligent seeder creates much more complex so-
lutions using choice and composite rule conditions which are not needed by the
two simpler humans. We performed a three-way analysis of variance (ANOVA)
and found that all three factors (human complexity, mutants, and seeding) have
a significant effect (p < 0.05).

Execution times for the entire extraction process ranged in the region of one
to ten minutes (median five). This, however, includes the semantic validation
phase which would not occur at runtime. Furthermore, no effort has been made to
tune the performance of the implementation of the metaheuristics or integer-to-
model transformation that they use. While this approach may not be fast enough
for systems requiring near-instantaneous adaptation, a tuned implementation
may adapt sufficiently quickly for systems where the environment changes more
slowly (such as the change in the ability of a game player considered here).

5 Discussion

The aim of this paper was to explore the potential of utilising metaheuristics to
enable efficient component-based adaptation at runtime. We presented a model-
driven approach to adapting systems at runtime which utilises metaheuristic op-
timisation in order to, firstly, extract a model of the environment, and secondly,
discover the optimal system response. Our focus was on using metaheuristic op-
timisation techniques to extract a model of the environment’s behaviour, and we
illustrated using a case study the positive effects of seeding the metaheuristic.

One issue is performance. Search can be expensive to perform and may not
be appropriate for systems whose adaptation time is very small. On the contrary,



search can be useful in some time-dependent scenarios (such as adaptation), as
it can always return a ‘good enough’ solution at any point in its execution (as
opposed to a constructive approach to model inference which is unable to return
a solution until it completes).

There is much work that we would like to investigate in the future: further
analysis of seeding strategies and search parameters to improve performance;
optimisation of the search algorithms; extracting an environment model based
on time (e.g. player behaviour may change at different times, such as the start
or end); analysis of the realism that mutants introduce; application of the tech-
niques to other systems; comparison against other model extraction techniques.
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