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Abstract. Software product line engineering (SPLE) techniques revolve
around a central variability model which in many cases is a feature model
that documents the logical capabilities of the system as features and the
variability relationships between them. In more traditional SPLE, this
feature model is a result of domain analysis and requirement elicitation,
while more recently this approach has been extended to represent also
design-time variability, for example to document different ways to realize
the same functionality.
In many approaches, the feature model has run-time relevance as well.
For example, in earlier work, we have used SPLE techniques to develop
customizable multi-tenant SaaS applications, i.e. SaaS applications of
which a single run-time instance is offered to many customer organiza-
tions (tenants), often with widely different requirements. In such systems,
tenant customization is accomplished entirely at run time.
In this paper, we present and explore the idea of promoting the feature
model as a run-time artifact in the context of customizable multi-tenant
SaaS applications, and we discuss the potential benefits in terms of the
deployment, operation, maintenance, and evolution of these systems. In
addition, we discuss the requirements this will impose on the develop-
ment methods, the variability modeling languages, and the middleware.

1 Introduction

Software as a Service (SaaS) is a software delivery model in which the software
is offered as an online service by a SaaS provider and remotely accessed by dif-
ferent customer organisations to which we refer hereafter as tenants. In order
to optimize cost efficiency, SaaS providers aim to exploit economies-of-scale ef-
fects by sharing resources and artifacts among a large number of tenants; when
sharing even run-time instances, it is called a multi-tenant SaaS application [1].
As different tenants impose different requirements, a multi-tenant SaaS applica-
tion typically supports a number of variations, which affects the design of the
application profoundly.

Software Product Line Engineering (SPLE) [2] introduces software develop-
ment techniques that focus on structuring a set of closely-related application
variants and supporting application-level variability for the early stages of de-
velopment. A SPL revolves around a central variability model (i.e. in many cases



a feature model [3, 4]) that documents the logical capabilities of the system as
features and the variability relationships between them.

In earlier work [5], we have applied SPLE techniques to systematically prepare
the multi-tenant SaaS application for this type of run-time variability. Specifi-
cally, we have presented a methodology called Service Line Engineering (SLE).
As with traditional SPLE [2], the feature model is a key artifact that defines
variability supported by the MT SaaS application at run time. Variability is
realized at the architecture level by defining a number of components which
are interchangeable and correspond to different features defined in the feature
model. More specifically, feature-to-composition mappings are created that doc-
ument the traceability link between a feature and its realization in terms of
technical compositions (between beans, packages, classes, etc.) and that can be
activated at run time. Maintaining these traceability relations, ensuring com-
pleteness (e.g. for every feature there must be at least one realization) is a
manual and complex development task, and these mappings are prone to ar-
chitectural erosion. For example, in a prototype [6], we have realized variability
in the context of a SOA system by supporting customization at the level of the
overall business process workflow and the individual back-end services. A key dif-
ference however with traditional and more recent applications of SPLE is that
activation of variants is not done at design, packaging, or deploy time, but at run
time: based on a specific incoming tenant request, the service line will activate
different application configurations that comply to the tenants requirements. As
for many other, in our case, variability support is based on custom development
of common requirements, which is an error-prone task that is better provided
by a middleware.

In this paper, we argue that in the context of such configurable multi-tenant
SaaS applications a feature is a useful abstraction to leverage from development
to run time. We present our vision on a Feature Middleware, i.e. middleware
that supports feature decomposition as the main component model and run-
time activation of different feature configurations, and we outline our research
roadmap to realize this vision.

The remainder of this paper is structured as follows: Section 2 presents the
potential role of features at run time in the context of customizable multi-tenant
SaaS applications. Section 3 discusses the gap analysis w.r.t. the current state-
of-the-art (Sec. 4) and outlines our roadmap in terms of realizing this more
advanced feature middleware. Finally, Section 5 concludes the paper.

2 Motivation and Benefits

In the current state of the art of SPLE-based techniques that support customiza-
tion at run time (e.g. [7, 8, 5, 9]), the feature itself is a development abstraction,
compiled away and invisible at run time. This section argues why features would
be suitable abstractions also beyond the development stages, i.e. for structur-
ing the run time of, for operating, maintaining and evolving a customizable
multi-tenant SaaS application. This is based on the observation that many key



activities rely on translating lower-level abstractions into features and vice versa,
and that this translation has to be done by many different stakeholders involved
in the eco-system of the multi-tenant SaaS application.

2.1 Stakeholder-specific Requirements at Run Time

The SaaS developer is concerned with the technical realization of the variability
expressed in the feature model. Creating a system that has the capabilities to
dynamically adapt itself at the basis of specific tenant requests is a complex
endeavour that relies heavily on middleware support. In our vision of a feature
middleware, variability is supported explicitly at the level of features instead
of lower layer, technical compositions. When adding or changing a feature, de-
velopers could additionally validate planned changes against the currently used
feature model. Moreover, the set of impacted tenants could be determined from
the tenant’s feature selections using the run-time feature model.

The tenant administrator is an employee of the tenant organisation, responsi-
ble for configuring the application to the requirements of the tenant organisation.
Typically, configuration interfaces either expose internals and low-level details,
or are custom developed to provide application abstractions and thus are costly
to co-evolve with the SaaS offering. Exposing the feature model as a configura-
tion interface is a good compromise to allow the tenant some insight into the
SaaS offering and enable some degree of self-service [10]. Self-service is a key
enabler for scalability and profitability of SaaS offerings: by allowing the tenant
to register himself, no extra cost or effort is required from the SaaS provider, and
economies-of-scale benefits can be obtained. Self-service remains beneficial be-
yond the initial setup, especially when complemented with monitoring data: By
reporting about usage and ((un-)expected) application events, the system would
leverage self-service for maintenance and debugging, e.g. tenant administrators
would be able to reconfigure their feature selection based on their actual cost,
or wish to disable features that cause the application to malfunction.

Similar benefits of transparency applies for the billing department of the SaaS
provider. Typically, billing is done in terms of either resource usage of the under-
lying platform (CPU hours, memory usage, etc.), or in terms of application-level
abstractions (service hours). While the latter case is more natural, in many cases
billing support for these application abstractions typically have to be custom-
developed by the SaaS developer. Billing at the basis of individual features
(feature hours) will enable (i) more fine-grained pricing schemes and policies
(e.g. discounts at the basis of feature combinations, premium versus regular ser-
vice levels, etc.), and (ii) the creation of reusable and generic middleware support
of such complex billing functionalities (policy-based billing middleware support).

After the initial design and implementation of the Multi-tenant SaaS appli-
cation, the focus shifts away from these initial development stages to run-time
operation and evolution. Allowing the inspection of a run-time SaaS applica-
tion in terms of features will enable the SaaS operator to map the impact of
a technical change to affected features, and furthermore to affected tenants:
since multiple tenants are serviced by one operational instance, these systems
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Fig. 1. Document Processing Application using Features at Run Time (Feature Model
inspired by FODA [3]).

should be adaptable without any service disruption. The feature as an explicit
abstraction at run time could be a major enabler for a gradual, fine-grained and
impact-sensitive evolution: updates could be partially applied to avoid impact on
on-going operations, in the sense that updated and previous versions of feature
are operated in parallel, and older versions are gradually removed.

2.2 Illustration

This section presents our vision of features at run time by means of an example
application for document processing. This multi-tenant SaaS application offers
services for generating, signing, distributing and archiving digital documents to
B2B customers (cf. [6]). For illustration purposes, we limit the set of features
to two optional ones: document generation and document distribution (see
Figure 1). The presented feature model indicates that document generation

is deployed in two versions (dg v1 and dg v2), which refers to solution space
variability that is typically not modelled together with problem space elements.

By having these different types of variability in the same model, a SaaS
provider can reason about the implementation artifacts dg v1 and dg v2 in
terms of the higher-level abstraction Document Generation (e.g. when trou-
bleshooting). At the same time, for example, a tenant administrator can re-
main agnostic of dg v1 and dg v2, e.g. when inspecting the costs of Document

Generation on a dashboard.

3 Requirements and Challenges

In this section, we discuss the features at run time from an engineering method-
ology perspective, point-out limitations of current feature modelling techniques,
and present our vision on a middleware support for features at run time, while
referring to related work.

3.1 Engineering Methodology

Ideally, we would like to think of a multi-tenant SaaS application as a collection
of features: implement and test features during the development independently,
configure and compose them to a meaningful application at run time, and add



evolved features to the application after its initial release. This imposes the
following requirements to the engineering methodology:

R1. Modular development of a feature, i.e. independent of other features
R2. Production of reusable and composable features
R3. Features are automatically composable at run time

Aspect-oriented Software Development [11] uses Aspects (AOP [12]) to employ
modular development of a concern that may affect multiple program locations.
It is highly related to R1, as features are likely to affect other features’ imple-
mentations.

Feature-oriented Software Development (FOSD) [7] is an engineering concept
that relates even closer to our vision and requirements, as it shares our require-
ments to combine the aspects of modular development with reusable features
as resulting artifacts: To realize the former, the methodology relies on feature-
oriented programming [13] in which a program is modelled as layers of feature
artifacts, that is, the code of a feature artifact is applied to a base program.
In that, it is similar to AOP and often uses aspect-oriented techniques for de-
ployment [7]. To realize the latter, FOSD uses feature modelling as known from
SPLE to structure the requirements into common and variable items. In con-
trast to FOSD, we are aiming to use components as the unit of modules that
implements a feature, as components in their nature (i.e. through encapsulation
and information hiding) offer better reusability.

However, we share two challenges with FOSD when it comes to composition.
First, composing feature implementations is non-trivial due to feature interac-
tions [14] (R2). Second, in FOSD and multi-tenant SaaS applications that pro-
vide configuration through a self-service interface, automated instantiation of the
application is highly desired. Yet, requirements-describing features and variant
implementations usually map in a many-to-many relationship [15], but produc-
ing a variant composition from a given selection of features requires a unique
mapping from requirements and implementation artifacts (R3); this transforma-
tion is non-trivial.

3.2 Dynamic and Decentralized Feature Model

Our motivation to compose at run time stems from the goal to specialize im-
plementation artifacts (towards tenant specificities) the latest possible, in order
to maximize the potential for sharing it at run time among other tenants. Van
Gurp et al. have observed that in order to maintain variability throughout the
development phases, “design decisions are delayed and left open for variability
deliberately” [15]. This results in a more complex feature model.

In addition, a SaaS application is subject to different types of variability at
run time. One type results from frequently changing the context-based trade-off
setting between cost, performance, latency, and other properties during oper-
ation and on a per-tenant basis: a SaaS application may choose to dispatch
between different deployments of the same implementation, or between different



implementations (e.g. from different vendors, as for databases). When evolving,
updated versions of run-time components are typically operated in parallel to
ensure service continuity while phasing out previous versions gradually. In such
a case, the co-existence of multiple versions of the same component depicts an-
other type of variability. Being a service among others, a SaaS application may
also vary in implementing a certain feature with in-house or external services.
This list of run-time-related types of variability is not meant to be exhaustive,
but to provide a coarse-gained impression of different types of variability. As
motivated earlier, there is a significant benefit in fully maintaining the composi-
tional model (which includes all kinds of variability necessary for a multi-tenant
SaaS application) as an implementation artifact during development and run
time.

Traditional feature modelling techniques, however, focus on modelling require-
ments (thereby not distinguishing between different types of variability), and
typically create a model first and translate it afterwards into an architecture
and implementation [16]. Modelling the additional complexity that features at
run time expose – additional complexity that results from the delayed design de-
cisions during development, and from necessary flexibilities at run time – would
render the feature model impractical. The same complexity makes also frequent
changes likely, and thereby such a complex feature model fragile. As a result, we
expect the following requirements from a suitable feature model for multi-tenant
SaaS applications:

R1. Native support of different types of variability
R2. To be decentralized in a way that meta-data that describes a single feature

is stored close to its application context, and a feature model is dynamically
constructed from a set distributed feature descriptions

Next, we reason how those requirements are beneficial to tackle said gaps. One
benefit is the capability to automatically provision views that do and do not in-
clude a certain type of variability (such as versions) to tenant administrators
and SaaS provider. Another type, for example: deployment-related variability
could be entirely hidden from operators and administrators, but be subject to a
self-adaptive control loop. The most prevalent benefit of a dynamic and decen-
tralized feature model is access to a consistent feature model at run time. More
specifically, a feature model that is constructed from artifacts of a running ap-
plication at run time has the benefit over a design-time artifact that it cannot be
outdated and always provides a consistent model of the application. In addition,
it naturally provides a smaller scope for reading, processing or changing a feature
model. For example, SaaS developers that are interested in learning about only
a certain part of the application (e.g. for extending or debugging) could dynam-
ically construct only the feature model that is related to the features of their
interest. Moreover, processing the feature model (e.g. for analysis) can naturally
be limited in scope as in the previous example, from which processing time and
complexity benefits significantly. When evolving the feature model, a dynamic
and decentralized approach facilitates to limit the impact on the adaptation, as
changes are localized and components that dynamically fetch all feature descrip-
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Fig. 2. Feature Middleware: Execution Environment and Services for Feature Bundles.

tions to construct a feature model will naturally adapt at the next time at which
they retrieve information about the changed feature.

3.3 Feature Middleware

The composition model we envision consists of components that have a descrip-
tive, modelling part (including interrelations and constraints) and an implemen-
tation part of features. We refer to both parts together as a feature bundle. Figure
2 shows our vision of a middleware that operates on the basis of feature bun-
dles, which will be elaborated next. Note that certain services are assumed from
the underlying cloud platform; for the sake of scoping the presentation in this
paper to the Feature Middleware, a tenant management service is included that
provides management of tenant accounts and provides a self-service interface for
the tenant administrator to setup and configure the SaaS application.

Each service request from a tenant application is received from the dispatcher
component that queries the tenant configuration via the feature management

component from the cloud platform, and prepares the execution context for that



request. If necessary, this may include to spawn additional instances of feature
bundles. Thereafter, the tenant configuration is added to the request which is
then dispatched to the according feature bundles.

At any time during operation, the tenant administrator (TA) can use an
inspection interface to access a dashboard that presents usage history as
well as the current load of its configured features, and thereby essentially the
current consumption and cost of those features. This enables the TA to adjust
the configuration and to replace features that are not beneficial against other
features autonomously. The same dashboard also captures and presents events
of the TA’s features. This facilitates self-service for debugging (cf. Section 2).

The same capabilities are available for the SaaS provider but without a view
that is limited to a tenant context. This dashboard could additionally be used
as an input for a self-adaption control loop (cf. MAPE-K component).

In order to present this information at the abstraction of features, the compo-
nent feature model constructor observes deployed feature bundles and ac-
tively maintains a constructed feature model, while the feature-usage and

-events dashboard component logs single events and presents them in differ-
ent (e.g. accumulated) views.

The Feature Middleware provides also interfaces for the SaaS provider, if not
the most significant ones. Using the analysis interface, he can understand the
impact of updating a feature bundle. A list of affected tenants can be queried,
given a set of feature bundles that are potentially subject to change. Additionally,
planned changes can be simulated on the constructed feature model in order to
validate the results or to perform consecutive simulations. Finally, by using the
deploy interface, a SaaS developer can safely deploy a new feature bundle. That
is, only updates that are supposed not to impact the correctness of any on-going
operation, will replace active features, others are deployed but not activated and
will require manual activation via the tenant configuration interface.

4 Related Work

Dynamic SPLE (DSPLE) [8] is a very prominent SPLE-based approach that sup-
ports variability activation at run time. Typically, development models [17] that
express variability are compiled into run-time models [17] that facilitate adapta-
tion of the application at run time using solution-space abstractions (cf. Sec. 2).

In DSPLE, adaptation at run time is often understood (e.g. [18, 19]) as a
necessary response of the application to changes in the computing environment
(e.g. the underpinning (cloud) infrastructure) in order to meet or to maintain
functional or non-functional goals. Some of these approaches (e.g. [20–22]) ad-
ditionally support the evolution of variability at run time. For example, Morin
et al. [22] propose a separate adaptation management [23] to control the main
application’s adaptation using a goal-driven approach, and which can be evolved
(for example, by changing the goals) at run time.

These approaches require the necessary run-time models to be up-to-date and
thus manually synchronized with development models. In our target domain –



large-scale multi-tenant SaaS applications with a numerous amount of differently
typed variations – such an assumption seems impractical. By merging develop-
ment and run-time models, our envisioned solution aims at naturally providing
a variability model that is constructed at run time and is thus at all times up-
to-date. Moreover, it provides stakeholder-friendly problem-space abstractions
to facilitate self-management at run time. In addition, we envision the feature
model to be decomposed and distributed to facilitate evolution (to accommo-
date changing application requirements) with minimal impact through dynamic
adaptation.

5 Conclusion and Future Work

Efficiently managing and operating a SaaS application that provides variability
at large scale is challenging. In ongoing research, we aim at efficient development
and operation of customizable multi-tenant SaaS applications. Specifically in
this paper, we motivated feature decomposition as main component model at
development and run time. We pointed out the benefits of modular development
for a SaaS developer, increased opportunities for self-service (inducing lower
operations costs) and decreased impact of evolution on service continuity for
the SaaS operator. We discussed the implied complexity that comes with such
a component model and assessed that current feature modelling techniques lack
the support for additional types of variability that occur at run time. Finally, we
presented our vision on a middleware that tackles this complexity in an efficient
way.

This paper presents our mid-term research goals, in the sense that in future
work, we will address the challenges sketched in Section 3, and will validate the
resulting middleware in the context of realistic SaaS offerings [24, 25].
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