
Integrating Run-Time Observations and Design
Component Models for Cloud System Analysis?

Robert Heinrich1, Eric Schmieders2, Reiner Jung3, Kiana Rostami1, Andreas
Metzger2, Willhelm Hasselbring3, Ralf Reussner1, Klaus Pohl2

1 Karlsruhe Institute of Technology
{heinrich,rostami,reussner}@kit.edu,

2 paluno, University of Duisburg-Essen
{eric.schmieders,andreas.metzger,klaus.pohl}@paluno.uni-due.de,

3 Kiel University
{reiner.jung,hasselbring}@email.uni-kiel.de

Abstract. Run-time models have been proven beneficial in the past for
predicting upcoming quality flaws in cloud applications. Observation ap-
proaches relate measurements to executed code whereas prediction mod-
els oriented towards design components are commonly applied to reflect
reconfigurations in the cloud. Levels of abstraction differ between code
observations and these prediction models. In this position paper, we ad-
dress the specification of causal relations between observation data and a
component-based run-time prediction model. We introduce a meta-model
for observation data, based on which we propose a mapping language to
(a) bridge divergent levels of abstraction and (b) trigger model updates.

1 Introduction

Cloud applications are subject to continuous change due to modification of the
application itself (e.g., emerging requirements) and its execution environment
(e.g., platform, user quantity). Since they more and more rely on third-party
services, cloud applications increasingly move out of control of the initial devel-
opers. Therefore, they must be observed for quality issues [1]. A way to identify
upcoming quality flaws is to observe the system and to conduct predictions
based on models that reflect the current system state at run-time (i.e. run-time
models [2]). Run-time models are often close to an implementation level of ab-
straction to ease the causal relation between the executed code and the model
[3]. An example is the meta-model in [4]. Existing run-time observation ap-
proaches (cf. [5]) provide event-based data sets on source code level, e.g. service
entry and exit events. However, it is useful to describe the application structure
with design-time components in prediction models [6,7] to analyze the effects of
component-related run-time reconfigurations [8] (e.g., component migration) on
quality. Code artifacts do not necessarily reflect design components. Hence, the

? This work is partially supported by the DFG (German Research Foundation) in the
Priority Programme SPP 1593: Design For Future – Managed Software Evolution.



levels of abstraction deviate between observation events and component-oriented
models. This impedes the traceability from observations to the models and, thus,
hinders the reflection of reconfigurations by run-time prediction models.

In this paper, we propose an approach to specify the causal relation between
low-level monitoring data and component-based run-time prediction models. We
introduce a meta-model for observation data, based on which we propose the
run-time architecture correspondence meta-model (RAC). The RAC (a) bridges
divergent levels of abstraction by providing a language to define mappings and
(b) triggers model updates. This enables updating design-time models by obser-
vations to form run-time models adequate for reflecting the reconfigurations. The
paper is structured as follows. In Sec. 2, we give examples of change scenarios
in a cloud context to discuss the state of the art (Sec. 3) and choose a run-time
prediction meta-model (Sec. 4). Sec. 5 introduces the meta-modeled observation
data. The RAC is described in Sec. 6. The paper concludes in Sec. 7.

2 Dynamic Change at Run-Time

Requirements on the RAC arise from quality-relevant change scenarios of cloud
systems gathered in a literature review [8,9,10,11]. We describe how to observe
them hereafter. We choose performance and privacy as two examples of qualities,
as motivated in [1], while the approach is basically applicable to various quality
properties. A privacy law of the European Union (EU) states that sensitive
data must not leave the EU. Therefore, we analyze privacy by the geographical
location of software components that keep data (e.g., databases). Scenario S1
to S3 refer to deployment changes for solving performance issues, due to better
load balancing, however simultaneously may cause privacy issues due to changes
in the components’ geo-locations. S4 is a provider-intern change of the cloud
configuration and S5 is a change in the system context. Both affect performance.

S1: Migration removes a deployed component instance (cf. [8]) from one exe-
cution container and creates a new instance of the same component on another.
Observing migration requires information about the instances itself as well as
their deployment contexts. In order to verify the privacy constraint, the geo-
graphical location of each execution container must be observed.

S2: (De)-replication [8]; Replication is similar to S1, however, the original
component instance is not removed. Thus, incoming requests to services can
be distributed among the deployed instances. De-replication removes a replica.
Observing (de)-replication is analog to S1 but includes requests to instances.

S3: (De)-allocation [8]; Execution containers may become available for de-
ployment (i.e. allocation) while others disappear (i.e. de-allocation). Observing
this addresses the identity of containers, e.g. by IP addresses and URLs.

S4: Resizing [9]; Cloud providers may change their platform configuration at
run-time, e.g. in-/decrease CPU speed due to energy efficiency. Observing this
strongly depends on the cloud service model. Further reading is given in [9].

S5: Changing usage profile [10]; The usage intensity (i.e. workload) of the
application and the user behavior may change. The amount of users concurrently



at the system (closed workload [6]), the users’ arrival rate (open workload [6]),
and the invoked services are contained in observable user sessions [10].

3 State of the Art

Work on the causal relation between the executed code and run-time models can
be classified by the model types. Approaches on parameterized run-time mod-
els, e.g. [12], map single observed service response times to exactly one run-time
model parameter. Migration (S1 ) and resizing (S4 ) may be reflected as single pa-
rameters. However, information extracted from multiple events (e.g., user behav-
ior (S5 )) requires to process event sets rather than single events. Complex events
are extracted from event sets, e.g. [13], in order to compute QoS properties. How-
ever, aggregating observed events to QoS properties is not sufficient to update
the application structure (S2 ). Approaches on behavioral run-time models, e.g.
[14], exploit observed method traces for generating the states and transitions of
behavioral models. Although these approaches are useful for reflecting changes
in the system usage profiles (S5 ), they lack capturing the system structure (S1-
3 ) and properties of the execution context (S4 ). Approaches on architectural
run-time models establish the causal relation between the executed system and
run-time models by automatically creating structural models from monitoring
data (cf. the survey in [15]). These approaches generate models that are close to
the reflected system and apply graph transformations to create purpose-oriented
views on them or try to reconstruct components from the code [8,11]. All the
surveyed approaches create run-time models from executed code, however, do
not take into account design-time artifacts. Thus, they neglect information that
cannot be gathered from the code, such as logical component structures and
boundaries, and execution context configurations. This is a drawback especially
in a cloud context which is often not completely observable due to the limited
visibility of third-party services and platforms [1]. Further, overdetailed models
impede understanding and manipulation by humans during system evolution.

4 Run-Time Prediction Meta-Models

We assume that an initial prediction model already exists at design-time by prob-
ably making assumption for properties not yet available. This design-time model
then turns into a run-time prediction model by updating the model via obser-
vation data. Hence, combining design-time and run-time properties is straight-
forward since they rely on the same meta-model. In our approach, we apply
the Palladio Component Model (PCM) [6] as a run-time prediction meta-model.
The PCM is tailored to component architectures and provides all the model-
ing constructs to reflect the aforementioned scenarios, except for geo-location.
However, it is straightforward to support geo-location by adding an attribute to
execution environment model elements. In contrast, general-purpose prediction
formalisms, e.g. LQN and QPN [16], do not provide the specific modeling con-
structs for component architectures. There are several meta-models related to



the PCM, such as the Descartes Meta-Model (DMM)[7], and those surveyed by
Koziolek [17]. They are parameterized to explicitly capture the influences of the
components’ execution context [7]. We choose the PCM because it is established
in the community and offers matured tooling.

5 Measurement Meta-Model

Monitoring frameworks provide system and application level monitoring data
in form of single value measurements or more complex data sets [5,18]. These
measurements are stored for later aggregation, transformation, and analysis.

ServletUndeployedEvent

ContainerEvent*

url : EString

IDeallocationRecord

ContainerAllocationEvent ContainerDeallocationEvent

IAllocationRecord

ServletDeployedEvent

IDeploymentRecord

AbstractRecord*

ServletDeploymentEvent*

componentURI : EString

deploymentId : EString

classSignature : EString

operationSignature : EString

orderIndex : EInt

timestamp : ELong

BeforeOperationEvent

TraceMetadata

sessionId : EString

hostname : EString

parentTraceId : ELong

parentOrderId : EInt

AbstractTraceEvent*
events

*

deploymentId and ContainerEvent.url
refer to the same entity in the deploy-
ment model governed by the RAC

ServerGeoLocation

hostname : EString

address : EString

timestamp : ELong

countryCode : EShort

IUndeploymentRecord

Fig. 1. Excerpt of the MMM Based on the Instrumentation Record Language (IRL)
[19]. Interface Names are in Italics and Abstract Classes Have an Asterix (*).

The different record types, used by monitoring frameworks, can be seen as a
measurement meta-model (MMM) where the attributes of the record types are
determined by technological limits, the quality properties, and our change scenar-
ios. S1 and S2 are based on the deployment and undeployment of components,
including, if necessary, the transfer of state. As components, like web-servers and
servlets, are technology dependent, they have different kinds of identity infor-
mation, which require dedicated records. To be still able to distinct deployment
and undeployment, we defined two common marker interfaces – IDeploymentRecord

and IUndeploymentRecord (cf. Fig. 1). Following the same approach, we provide
also marker interfaces for allocation and deallocation for S3. Resizing, as de-
fined in S4, is presently not covered by its own record type, as it is often not
a directly observable event and must be derived from other events. S5 depends
on the observation of operations (i.e. service calls) which is covered by a set
of record types based on AbstractTraceEvent and a record holding common trace
information (TraceMetadata). For S5 these records are filtered for entry level calls
to construct entry level call sequences.

As many measurements depend on technology, we require a monitoring frame-
work and measurement meta-model designed for extendability. The framework
must be fast, reliable, and with low overhead, to ensure that continuous moni-
toring does not affect the operation of the software. Furthermore, measurements
must be accessible in a fast way to support a timely analysis for the operators. In
our work, we selected the Kieker framework [18] as it fulfills these requirements
[5] and provides a technology independent record notation [19].



6 Run-Time Architecture Correspondence Meta-Model

The MMM exhibits a flat (i.e. non-hierarchical) structure where all records are
contained in a large collection and distinguished only by their type and their
attributes. Thus, the RAC (cf. Fig. 2) defines a language to describe the causal
relation between records of the MMM and elements of a run-time prediction
meta-model, here the PCM. A Relation element describes a unidirectional map-
ping between one or more AbstractRecords of the MMM and a certain PCMEle-

ment. The AbstractRecords used in the mapping must fulfill a particular Constraint

which is expressed with respect to the AbstractRecord types and their attributes,
respectively. Each mapping is further specified by certain formal Rules and a
corresponding function to aggregate information, as exemplified hereafter.

Relation*
AbstractRecord* PCMElement*

ChangeEventConstraint
1 0..*

1

*

* 1

1..*

Rule
function()

0..*

corresponds to

Fig. 2. The Run-Time Architecture Correspondence Meta-Model.

Once an instance of the RAC has been created, a procedure recognizes up-
dates in the associated MMM instance. With any changes to the MMM instance
the procedure follows the mappings specified in the RAC instance to update
the related PCM instance by throwing a ChangeEvent. A ChangeEvent specifies
the PCM element(s) and attribute(s) to be modified and the related updated
properties. The ChangeEvent is received by a model update mechanism that is
responsible to adequately change the model. Afterwards, the updated PCM in-
stance is applied to predict upcoming quality flaws using existing solvers [6].

Next, we exemplify one Relation of the RAC for open workload (cf. S5 ). The
Relation determines the PCM element OpenWorkload from the corresponding Be-

foreOperationEvents and TraceMetadata, that fulfill the Constraint specified as Before-

OperationEvent.orderIndex is 0 and TraceMetadata.parentTraceId is null. The mapping
Rule is specified by the following function. We group the observed traces by their
unique TraceMetadata.sessionId. Let τi be the least BeforeOperationEvent.timestamp

for the i-th TraceMetadata.sessionId. The inter-arrival time for the two successive
entries is τi+1 − τi , ∀i ∈ N. Let T be a random variable representing the inter-
arrival rate, the probability distribution function of T can be estimated. The
ChangeEvent contains the OpenWorkload element and its interArrivalTime property.

7 Conclusion

We addressed the observation of change scenarios in a dynamic cloud context and
proposed the RAC to (a) specify the causal relations between code observation
outcomes (MMM) and the corresponding component-based run-time prediction
model (PCM), and (b) to trigger run-time prediction model updates.



Future work includes the implementation of the RAC and related tooling, and
the development of a model update mechanism that is triggered by change events.
Triple graph grammars are a promising starting point for the development of such
an update mechanism. Previously, we will complete the records for observing the
change scenarios, as specified in the MMM. This includes the investigation of
scenarios that are presently not represented by its own record type, such as S4.
We plan to evaluate the RAC and the tooling by observing changes to a real-life
cloud application and updating the corresponding run-time prediction model.

References

1. Hasselbring, W., et al.: iObserve: integrated observation and modeling techniques
to support adaptation and evolution. Technical Report 1309, Kiel University (2013)

2. Morin, B., et al.: Models@run.time to support dynamic adaptation. IEEE Com-
puter 42(10) (2009) 44–51

3. Vogel, T., Giese, H.: Adaptation and abstract runtime models. In: SEAMS, ACM
(2010) 39–48

4. Amoui, M., et al.: Software evolution towards model-centric runtime adaptivity.
In: CSMR, IEEE (2011) 89–92

5. Eichelberger, H., Schmid, K.: Flexible resource monitoring of java programs. Jour-
nal of Software Systems 93 (2014) 163–186

6. Becker, S., et al.: The Palladio component model for model-driven performance
prediction. JSS 82 (2009) 3–22

7. Brosig, F., et al.: Modeling parameter and context dependencies in online
architecture-level performance models. In: CBSE, ACM (2012) 3–12

8. von Massow, R., et al.: Performance simulation of runtime reconfigurable
component-based software architectures. In: ECSA. Volume 6903 of LNCS.,
Springer (2011) 43–58

9. Frey, S., Hasselbring, W.: The CloudMIG approach: Model-based migration of
software systems to cloud-optimized applications. JAS 4(3 and 4) (2011) 342–353

10. van Hoorn, A., et al.: Generating probabilistic and intensity-varying workload for
web-based software systems. In: SIPEW. LNCS, Springer (2008) 124–143

11. Brosig, F., et al.: Automated extraction of arch.-level performance models of dis-
tributed component-based systems. In: ASE. (2011) 183–192

12. Canfora, G., et al.: A framework for QoS-aware binding and re-binding of composite
web services. JSS 81(10) (2008)

13. Michlmayr, A., et al.: End-to-end support for QoS-aware service selection, binding,
and mediation in VRESCo. IEEE TSC 3(3) (2010) 193–205

14. van der Aalst, W., et al.: Time prediction based on process mining. Information
Systems 36(2) (2011) 450–475

15. Szvetits, M., Zdun, U.: Systematic literature review of the objectives, techniques,
kinds, and architectures of models at runtime. SoSyM (December 2013)

16. Kounev, S.: Performance modeling and evaluation of distributed component-based
systems using queueing petri nets. IEEE TSE 32(7) (2006) 486–502

17. Koziolek, H.: Performance evaluation of component-based software systems: A
survey. Perform. Eval. 67(8) (2010) 634–658

18. Hoorn, A., et al.: Kieker: A framework for application performance monitoring and
dynamic software analysis. In: ICPE 2012, ACM (2012) 247–248

19. Jung, R., et al.: Model-driven instrumentation with Kieker and Palladio to forecast
dynamic applications. In: KPDAYS. (2013) 99–108


	Integrating Run-Time Observations and Design Component Models for Cloud System Analysis

