
Fakultät Informatik | Institut für Software- und Multimediatechnik | Lehrstuhl für Softwaretechnologie

Managing Distributed Context Models

Requires Adaptivity too

Technische Universität Dresden

Software Engineering Group

Christian Piechnick, Maria Piechnick, Sebastian Götz, Georg Püschel and Uwe Aßmann

Trend Towards Mobile Computing Devices

30.09.2015 Managing Distributed Context Models Requires Adaptivity too 2

3
1
2

3
3
7

3
4
1

3
1
5

2
7
7

2
5
2

2
4
3

3
1
7

7
8
9

1
6
5
0 1
8
9
0 2
1
4
2

2
2
3
5

2
3
5
0

2010 2011 2012 2013 2014 2015 2016

PCs Mobile Devices

1000 Sales of devices (Source Gartner)

Mobility = Changing Contexts = Changing Requirements

30.09.2015 Managing Distributed Context Models Requires Adaptivity too 3

S
m

a
rt

 C
a
r

Individual apps may have different context information

30.09.2015 Managing Distributed Context Models Requires Adaptivity too 4

S
m

a
rt

p
h

o
n

e

M

A P

E

Knowledge Base

M

A P

E

Knowledge Base

S
m

a
rt

w
a
tc

h

M

A P

E

Knowledge Base

M

A P

E

Knowledge Base

S
m

a
rt

 C
a
r

Individual apps may have different context information

30.09.2015 Managing Distributed Context Models Requires Adaptivity too 5

S
m

a
rt

p
h

o
n

e

M

A P

E

Knowledge Base

M

A P

E

Knowledge Base

S
m

a
rt

w
a
tc

h

M

A P

E

Knowledge Base

M

A P

E

Knowledge Base

Ex
ch
an
ge

S
m

a
rt

 C
a
r

Individual apps may have different context information

30.09.2015 Managing Distributed Context Models Requires Adaptivity too 6

S
m

a
rt

p
h

o
n

e

M

A P

E

Knowledge Base

M

A P

E

Knowledge Base

S
m

a
rt

w
a
tc

h

M

A P

E

Knowledge Base

M

A P

E

Knowledge Base

Ex
ch
an
geHow to implement

context information

exchange?

Managing Distributed Context Models Requires Adaptivity too

VARIATION DIMENSIONS

Managing Distributed Context Models Requires Adaptivity too

30.09.2015 7

Managing Distributed Context Models Requires Adaptivity too

Approach

30.09.2015 8

Literature Study

- Investigation of 16 publications of technologies with the ability to exchange context information

- Result: Different strategies are used for different aspects

1. What context information is accessible

2. When context information should be exchanged

3. Who initiates the exchange of context information

4. How should context information be managed

5. Where should context information be managed

- Concrete strategy depends on concrete requirements (may change at runtime)

 e.g., data traffic, expressiveness, size of the models, performance, ability to handle privacy constraints

 Context model management must itself be adaptive

 Meta-Adaptation required

Managing Distributed Context Models Requires Adaptivity too

1) What context information is accessible

30.09.2015 9

1.A Complete

- Most common solution

- Sink as full access to the context model of the source

- Sink can decide which information is relevant

- Privacy issues cannot be addressed

- Potentially a large amount of data traffic

Source Sink

Managing Distributed Context Models Requires Adaptivity too

1) What context information is accessible

30.09.2015 10

1.B Partial

- Not all context information should be accessible by or are

relevant for the sink

- Access to information might restricted

 Privacy issues can be addressed

- Sink has the option to exclude irrelevant information

 Data traffic might be reduced

- Higher complexity

Source Sink

Managing Distributed Context Models Requires Adaptivity too

1) What context information is accessible

30.09.2015 11

1.C View-Based

- Source provides views on the context model

- Explicit handling of privacy issues

- Reduction of data traffic due to potential abstraction

- Views can be defined by the source or sink

Source Sink

Managing Distributed Context Models Requires Adaptivity too

2) When context information should be exchanged

30.09.2015 12

2.A Periodically

- Information is pulled or pushed in certain time intervals

- Update frequency defined statically or dynamically

- Easy to implement

- Potentially unnecessary data traffic due to transfer of

unchanged information

- Subsampling must be prevented

Source Sink
every n
seconds

Managing Distributed Context Models Requires Adaptivity too

2) When context information should be exchanged

30.09.2015 13

2.B Event-Based

- Source and/or sink can produce events

- Event processing leads to context information exchange

e.g., a certain value changed a certain amount

- Reduce data traffic

- Prevent subsampling

- Introduction of further complexity

Source
Event

Processing Sink

Managing Distributed Context Models Requires Adaptivity too

2) When context information should be exchanged

30.09.2015 14

2.C Context-Based

- Context-dependent exchange

- Feedback loop decides based on context information

e.g., two devices are very close

- Higher complexity

- Higher flexibility (auto-tune data-traffic etc.)

M A

PE SinkSource

Managing Distributed Context Models Requires Adaptivity too

3) Who initiates the exchange of context information

30.09.2015 15

3.A Source

- Source proactively distributes context information

- Source has full control what data is distributed

 improves privacy issue handling

 may reduce data traffic (e.g., only pushed when value changed)

- Sink may not be able to specify what information is relevant

 may increase necessary data traffic

Source Sink

Managing Distributed Context Models Requires Adaptivity too

3) Who initiates the exchange of context information

30.09.2015 16

3.B Sink

- Sink pulls context information

- Source sends information as response

- Source has full control what data is distributed

 improves privacy issue handling

 may reduce data traffic (e.g., only pushed when value changed)

- Sink may not be able to specify what information is relevant

Source Sink

1

2

Managing Distributed Context Models Requires Adaptivity too

3) Who initiates the exchange of context information

30.09.2015 17

3.C Negotiation

- Combination of source- and sink-based initiation in a black-board

architecture

- Sinks can access the context model via a query interface

- Source might grant or deny access and might offer views

- Sinks may be able to register for certain events and get notified

- Higher complexity

- Higher flexibility

Source Sink

Managing Distributed Context Models Requires Adaptivity too

4) Where should context information be managed

30.09.2015 18

4.A Centralized

- Central server manages one context model for multiple clients

- Every updated value is sent to the sink

- Reduction of the number of required connections

- Reduction of data traffic

- For devices with limited resources (e.g., main memory) this might be beneficial

- Single point of failure

- Potentially large single model

- Handling privacy issues gets complicated

Source Source

Sink

Sensors Sensors

Managing Distributed Context Models Requires Adaptivity too

4) Where should context information be managed

30.09.2015 19

4.B Decentralized

- Applications manage their own context model and are able to exchange

context information with other applications

- Handling privacy issues possible

- Decrease the size of the individual models (compared to the centralized approach)

- Higher number of required connections

- Potentially decreased data traffic

S/S

S/S

S/S

Managing Distributed Context Models Requires Adaptivity too

4) Where should context information be managed

30.09.2015 20

4.C Hybrid

- Combination of centralized and decentralized approaches

- Multiple central sinks that are connected in a peer-to-peer network

- Applications can be grouped in a centralized style while the sinks can

exchange context information

- Concrete architecture might be defined statically or organized dynamically

- Possible to dynamically combine the benefits of both approaches

S/S Source/Sink S/S

Source SourceS S S

Managing Distributed Context Models Requires Adaptivity too

5) How should context information be managed

30.09.2015 21

5.A Copy

- Sink copies the received information into the own context model

- Most common strategy

- Easy to implement

- Suitable when number of reads exceed to the number of writes

Source Client

Managing Distributed Context Models Requires Adaptivity too

5) How should context information be managed

30.09.2015 22

5.B Proxy

- Sink stores a reference to the actual (remotely available)

information

- Every read gets transformed into a remote call

- Size of the stored data is decreased

- Decrease data traffic when the number writes exceed to the number of reads

- Evaluation performance is decreased

Source Client

Managing Distributed Context Models Requires Adaptivity too

5) How should context information be managed

30.09.2015 23

5.C Hybrid

- Some information is copied other managed by proxies

- Dynamic decision based on read/write characteristics

- Optimization of data traffic

- Optimization of the size of the managed models

- Higher complexity (additional monitoring components required)

Source Client

Examplary Implementation

GOAL: Show feasability

- Only a small first example

- Domain: Blended Interactive Spaces (Multi-Device Interaction)

- Use Case: Bump-to-Give Interaction Pattern

When two devices are bumped together, content (e.g., an image)

is transferred from one device to the other

- Recognition: A special function on accelerometer data

 Both devices must show this pattern at the same point of time

30.09.2015 Managing Distributed Context Models Requires Adaptivity too 30

Examplary Implementation

Copy-based

- Interpretation of the data of both devices

on Device B

- Copying the accelerometer data from

Device A to Device B

- Very easy to implement

 Synchronization etc. can be done on one device

- Data Traffic: 20kB/s

- Data of Device A is only read when the interpretation

of the data of Device B detects a bump

30.09.2015 Managing Distributed Context Models Requires Adaptivity too 31

Accelerometer

Source Sink

Accelerometer Interpretation

Device A Device B

Examplary Implementation

Proxy-Based

- DataMonitor roles monitors read/write access of

context information

- When read/write actions exceeds a ration of 1:2, values

are no more copied but a reference stored

 Actual values are no longer transferred

 When information is read, a remote call is generated

- Data Traffic: Almost 0kB/s

- Interpretation takes a little bit longer (337ms more)

 hardly recognizable

30.09.2015 Managing Distributed Context Models Requires Adaptivity too 32

Accelerometer

Source Sink

Accelerometer Interpretation

Device A Device B

Data

Monitor

Proxy

Sink

Proxy

Source

Managing Distributed Context Models Requires Adaptivity too

Thank You!

30.09.2015 34

