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Trend Towards Mobile Computing Devices
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Mobility = Changing Contexts = Changing Requirements
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Individual apps may have different context information
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VARIATION DIMENSIONS
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Approach
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Literature Study

- Investigation of 16 publications of technologies with the ability to exchange context information

- Result: Different strategies are used for different aspects

1. What context information is accessible

2. When context information should be exchanged

3. Who initiates the exchange of context information

4. How should context information be managed

5. Where should context information be managed

- Concrete strategy depends on concrete requirements (may change at runtime)

 e.g., data traffic, expressiveness, size of the models, performance, ability to handle privacy constraints

 Context model management must itself be adaptive

 Meta-Adaptation required 
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1) What context information is accessible
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1.A Complete

- Most common solution

- Sink as full access to the context model of the source

- Sink can decide which information is relevant

- Privacy issues cannot be addressed

- Potentially a large amount of data traffic 

Source Sink
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1) What context information is accessible
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1.B Partial

- Not all context information should be accessible by or are 

relevant for the sink

- Access to information might restricted 

 Privacy issues can be addressed

- Sink has the option to exclude irrelevant information 

 Data traffic might be reduced

- Higher complexity 

Source Sink
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1) What context information is accessible
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1.C View-Based

- Source provides views on the context model

- Explicit handling of privacy issues

- Reduction of data traffic due to potential abstraction

- Views can be defined by the source or sink   

Source Sink
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2) When context information should be exchanged
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2.A Periodically

- Information is pulled or pushed in certain time intervals

- Update frequency defined statically or dynamically 

- Easy to implement

- Potentially unnecessary data traffic due to transfer of 

unchanged information

- Subsampling must be prevented

Source Sink
every n
seconds
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2) When context information should be exchanged
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2.B Event-Based

- Source and/or sink can produce events 

- Event processing leads to context information exchange 

e.g., a certain value changed a certain amount 

- Reduce data traffic

- Prevent subsampling 

- Introduction of further complexity 

Source
Event

Processing Sink
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2) When context information should be exchanged
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2.C Context-Based 

- Context-dependent exchange

- Feedback loop decides based on context information

e.g., two devices are very close

- Higher complexity 

- Higher flexibility (auto-tune data-traffic etc.)

M A

PE SinkSource
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3) Who initiates the exchange of context information
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3.A Source

- Source proactively distributes context information

- Source has full control what data is distributed

 improves privacy issue handling 

 may reduce data traffic (e.g., only pushed when value changed)

- Sink may not be able to specify what information is relevant

 may increase necessary data traffic

Source Sink
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3) Who initiates the exchange of context information
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3.B Sink

- Sink pulls context information

- Source sends information as response

- Source has full control what data is distributed

 improves privacy issue handling 

 may reduce data traffic (e.g., only pushed when value changed)

- Sink may not be able to specify what information is relevant

Source Sink

1

2
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3) Who initiates the exchange of context information
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3.C Negotiation

- Combination of source- and sink-based initiation in a black-board 

architecture

- Sinks can access the context model via a query interface 

- Source might grant or deny access and might offer views

- Sinks may be able to register for certain events and get notified

- Higher complexity 

- Higher flexibility

Source Sink
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4) Where should context information be managed
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4.A Centralized

- Central server manages one context model for multiple clients

- Every updated value is sent to the sink

- Reduction of the number of required connections

- Reduction of data traffic

- For devices with limited resources (e.g., main memory) this might be beneficial

- Single point of failure

- Potentially large single model

- Handling privacy issues gets complicated 

Source Source

Sink

Sensors Sensors
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4) Where should context information be managed
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4.B Decentralized

- Applications manage their own context model and are able to exchange 

context information with other applications

- Handling privacy issues possible

- Decrease the size of the individual models (compared to the centralized approach)

- Higher number of required connections 

- Potentially decreased data traffic

S/S

S/S

S/S
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4) Where should context information be managed
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4.C Hybrid

- Combination of centralized and decentralized approaches

- Multiple central sinks that are connected in a peer-to-peer network

- Applications can be grouped in a centralized style while the sinks can 

exchange context information

- Concrete architecture might be defined statically or organized dynamically 

- Possible to dynamically combine the benefits of both approaches

S/S Source/Sink S/S

Source SourceS S S
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5) How should context information be managed
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5.A Copy

- Sink copies the received information into the own context model

- Most common strategy

- Easy to implement 

- Suitable when number of reads exceed to the number of writes

Source Client
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5) How should context information be managed
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5.B Proxy

- Sink stores a reference to the actual (remotely available) 

information

- Every read gets transformed into a remote call

- Size of the stored data is decreased

- Decrease data traffic when the number writes exceed to the number of reads

- Evaluation performance is decreased

Source Client
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5) How should context information be managed
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5.C Hybrid

- Some information is copied other managed by proxies

- Dynamic decision based on read/write characteristics 

- Optimization of data traffic

- Optimization of the size of the managed models

- Higher complexity (additional monitoring components required)

Source Client



Examplary Implementation

GOAL: Show feasability

- Only a small first example

- Domain: Blended Interactive Spaces (Multi-Device Interaction)

- Use Case: Bump-to-Give Interaction Pattern 

When two devices are bumped together, content (e.g., an image) 

is transferred from one device to the other

- Recognition: A special function on accelerometer data

 Both devices must show this pattern at the same point of time
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Examplary Implementation

Copy-based

- Interpretation of the data of both devices

on Device B

- Copying the accelerometer data from

Device A to Device B

- Very easy to implement

 Synchronization etc. can be done on one device

- Data Traffic: 20kB/s

- Data of Device A is only read when the interpretation

of the data of Device B detects a bump
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Accelerometer

Source Sink

Accelerometer Interpretation

Device A Device B



Examplary Implementation

Proxy-Based

- DataMonitor roles monitors read/write access of 

context information

- When read/write actions exceeds a ration of 1:2, values

are no more copied but a reference stored

 Actual values are no longer transferred

 When information is read, a remote call is generated

- Data Traffic: Almost 0kB/s

- Interpretation takes a little bit longer (337ms more)

 hardly recognizable
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Accelerometer

Source Sink

Accelerometer Interpretation

Device A Device B

Data

Monitor

Proxy

Sink

Proxy

Source
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Thank You!
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