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Abstract—Runtime models play a critical role in modern
self-adaptive systems. Hence, runtime architectural models are
needed when making adaptation decisions in architecture-based
self-adaptive systems. However, when these systems are dis-
tributed and highly dynamic, there is an added need to discover
the systems software architecture model at runtime. Current
methods of runtime architecture discovery take a centralized
approach, in which the process is carried out from a single
location. These methods are inadequate for large distributed
systems because they do not scale up well and have a single
point of failure. Also, systems of such size consist of nodes
that are typically highly dynamic in nature. Existing approaches
to architecture discovery are not capable of addressing these
concerns. This paper describes DeSARM (Decentralized Software
Architecture discoveRy Mechanism), a completely decentralized
and automated approach for runtime discovery of software archi-
tecture models of distributed systems based on gossiping and mes-
sage tracing. DeSARM is able to identify at runtime important
architectural characteristics such as components and connectors,
in addition to synchronous and asynchronous communication
patterns. Furthermore, through its use of gossiping, it exhibits the
properties of scalability, global consistency among participating
nodes, and resiliency to failures. The paper discusses DeSARM’s
architecture and detailed design, and demonstrates its properties
through experimentation.

I. INTRODUCTION

Software architecture—the high level structure of a software
system including a collection of components, connectors and
constraints—plays an increasingly critical role in the design
and development of any large complex software system. These
artifacts (i.e., components, connectors, and constraints) are
needed to reason about the system and act as a bridge
between requirements and implementation as well as provide
a blueprint for system construction and composition. The
architecture helps in the understanding of complex systems,
supports reuse at both the component and architectural level,
indicates the major components to be developed together with
their relationships and constraints, exposes changeability of
the system, and allows for verification and validation of the
target system at a high level [32].

Software architectures have been very influential in
self-adaptive systems, i.e., systems that are capable of

self-configuration, self-optimization, self-healing and self-
protection, and are also called self-* or autonomic sys-
tems [17]. In architecture-based self-adaptive systems, com-
ponents dynamically change in order to continuously adhere
to architectural properties and system goals. As a result, these
systems require runtime architectural models when making
adaptation decisions [11]. However, when these systems are
distributed and highly dynamic there is an added need to
discover the system’s architectural model at runtime.

Current methods of runtime architecture discovery take a
centralized approach to constructing architectures dynamically.
These methods are inadequate for large distributed systems
because they do not scale up well and have a single point of
failure. Also, systems of such size are often dynamic in nature
due to changes in the runtime environment, where nodes join
and leave the system unpredictably, and are subject to fail-
ures. Existing approaches do not address the aforementioned
concerns.

We describe a method for runtime software architecture
discovery in a completely decentralized manner. This is ac-
complished by keeping message logs at each node and dis-
seminating among the nodes identified component interaction
patterns (i.e., synchronous, asynchronous, single or multiple
destination) derived from the logs through selective gossip
exchanges. With selective gossiping, information dissemina-
tion takes place only between nodes that are part of the
same application. This results in the containment of network
traffic, which in effect reduces communication overhead. All
references to DeSARM’s gossiping method heretofore refer
to selective gossiping. Through its use of gossiping, our
mechanism addresses the limitations of the current approaches
and exhibits the following properties: (1) resiliency to failures,
where the gossiping protocol always converges irrespective
of node failures, (2) global consistency among participating
nodes, where all nodes converge to the same architectural
view, and (3) scalability, where the gossiping protocol can
accomodate systems of increasing size [29]. Accordingly, the
scope of our work is the derivation of architectural models
at runtime to be used in decentralized decision making for



architecture-based adaptation in large distributed systems. This
effort is part of a larger project, RASS: Resilient Autonomic
Software Systems [27], aimed at developing a highly-resilient
and highly-dependable system, which is capable of making
adaptation decisions in a distributed fashion without cen-
tralized control. To achieve this goal, each node requires a
complete model of the system at runtime.

Thus, the main contribution of this paper is DeSARM:
Decentralized Software Architecture discoveRy Mechanism,
a completely decentralized and automated method and sys-
tem for runtime discovery of software architecture models
of distributed systems using gossiping [6][18] and message
tracing. The information dissemination and relatively fast
convergence capability of the gossiping protocol aid each node
in deriving a complete model of the architecture. We also
demonstrate experimentally DeSARM properties of resiliency,
global consistency, and scalability. It is important to note that
these properties relate to the architecture discovery process
and not to application failure recovery or adaptation, which
are outside the scope of this paper.

The rest of this paper is organized as follows. Section II
discusses related work. Section III provides some basic as-
sumptions. Section IV describes the architecture of DeSARM.
Section V presents the results of our experiments with De-
SARM. Section VI provides a discussion on important is-
sues related to the architecture discovery mechanism. Finally,
Section VII presents some concluding remarks and discusses
possible future work.

II. RELATED WORK

In this paper we use architecture discovery instead of recov-
ery as is often found in the literature. Architecture recovery
refers to cases where the architecture was known but may have
been lost due to erosion or improper documentation [3], [15],
[33]. In contrast, architecture discovery refers to situations in
which the architecture was not previously known. This is due
to the fact that the architecture may not have previously existed
or may have changed at runtime due to the dynamic nature of
the system as is the case with dynamic software adaptation.

Software architecture discovery approaches can be classi-
fied into dynamic, static, and hybrid, i.e., combining both
dynamic and static analysis. Some examples of static analysis
approaches include [24][4][19] and examples of hybrid ap-
proaches are [28][30]. However, as the objective of this paper
is discovering architectural models at runtime, we shall focus
only on dynamic approaches as follows.

Israr et al. [16] describe SAMEtech, a dynamic approach for
automating the discovery of architecture models and layered
performance models from message trace information. Disco-
Tect [31] uses a set of pattern recognizers and knowledge
of the architectural style being implemented to map low-
level system events into high-level architecturally meaningful
events. Bojic and Velasevic [3] use test cases that cover rele-
vant use-cases, and concept analysis to group system entities
together that implement similar functionality. Vasconcelos et
al. [33] use specified use-cases to generate execution traces

from which interaction patterns are identified using pattern
detection in order to define architectural elements. Yuan and
Malek [35] take a dynamic approach to discovering the ar-
chitectural model of a distributed application by generating a
component interaction model using data mining. Huang et al.
[15] use the reflective ability of the component framework to
discover an up-to-date architecture from the running system.
In contrast to the aforementioned, DeSARM is based on a de-
centralized approach to architecture discovery. This approach
is effective for large distributed systems which pose scalability,
single point of failure and dynamicity concerns, which are not
addressed by the existing methods.

Also related to our work is architecture-based software
dynamic adaptation, which addresses the dynamic software
reconfiguration of the architecture model and corresponding
implementation for the purpose of runtime adaptation and
evolution (see e.g., [10], [21], [23], [25], [34]).

III. ASSUMPTIONS

This paper makes the following assumptions:
1) If a component fails, it is restarted on the same node

if the node is still running. This is common in modern
component-based systems whereby components can be
restarted when they are detected to have failed.

2) If a node fails, all the components running on that node
fail. This assumption is obvious and does not require
further comments.

3) If a node cannot be restarted after a failure, its compo-
nents can be moved to other node(s) using an existing
component recovery mechanism not within the scope of
this work. This assumption is based on existing work on
a runtime application recovery mechanism with which
DeSARM is being integrated. See Section VII.

4) Software components can communicate either through
a connection-less transport protocol such as UDP or a
connection-oriented protocol such as TCP. Both types
of communication are common in distributed systems
and DeSARM supports either.

5) The software architecture is not known because it may
dynamically change due to churn and failures. As ex-
plained in the introduction, this is the focus of this work.

6) The software deployment on physical nodes is not
known. The set of nodes on which the software system is
deployed is not assumed to be known and is discovered
by DeSARM.

IV. SOFTWARE ARCHITECTURE DISCOVERY METHOD

This section discusses DeSARM’s architecture. We first
describe the structure of a node running DeSARM. Then, we
give an overview of how gossiping and message tracing are
incorporated into the discovery process. We then delve into
the details of the architecture model discovery method.

A node in a distributed system consists of three layers
according to Fig. 1: application layer, DeSARM layer, and
communication middleware. The application layer consists
of the distributed application components that communicate



Fig. 2. Details of the DeSARM Layer.

Fig. 1. Layered Structure at a Node of a Distributed System.

over the network via messaging events. Each component has
two logs: message sent log (MSL) and message received log
(MRL) as shown in Fig. 2. The DeSARM layer forms a
wrapper around the communication middleware and provides
the same interface to the application layer components as the
communication middleware. DeSARM consists of a number
of modules each providing different functionality (see Fig.2):

• Message logging: All incoming messages are logged be-
fore being passed to the application layer components and
all outgoing messages are logged before being passed to
the communication middleware. All messages are logged
to stable storage.

• Message log aggregation: The MSLs and MRLs of all

components are aggregated to form an aggregate mes-
sage log (AML) at each node. The AML contains the
interactions between all components and their respective
destination components. This is further merged with the
AMLs from incoming gossip messages received from
other nodes (see below).

• Gossip-based dissemination: This forms the core of our
architecture discovery method and enables the distribu-
tion of AMLs from each node throughout the system.

• Peer node selection: This is achieved through the main-
tenance of a component/node database which is derived
by identifying component IDs and their related node IDs
from incoming and outgoing messages. This ensures that
only nodes running components that are part of the same
application are selected for dissemination.

• Control: The DeSARM controller manages the execution
of the gossip process by maintaining the timing between
consecutive rounds.

• Architecture discovery: This is used to derive the archi-
tectural model of the system based on the message traces.

Finally, the communication middleware provides network ac-
cess allowing the sending and receiving of component-level
and gossiping messages between nodes.

Gossip is an epidemic protocol, which due to its simplicity,
robustness and flexibility makes it ideal for reliable dissem-
ination of data in large-scale distributed systems. In gossip-
based dissemination, data spreads exponentially fast and takes
O (logN) rounds to reach all N nodes [18]. The essence
of this approach, which lies at the core of all gossip-based
dissemination approaches, was first introduced in the seminal
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Fig. 3. Design of the Gossip-based Dissemination Framework

paper by Demers et al. [5] and involves the dissemination of
data by allowing randomly chosen pairs of nodes to exchange
new information. After the exchange, the two nodes forming
a pair should have the same information effectively reducing
the entropy of the system [29].

The main elements of the gossip-based dissemination frame-
work are: (1) peer selection, where a peer (node) selects
another peer uniformly at random from the set of available
peers, (2) data exchanged, which involves the exchange of
data between peers and is specific to the use of the gossip
mechanism, and (3) data processing, which details how each
peer handles the information received from other peers and
is also specific to the use of the gossip mechanism [18].
DeSARM’s gossip-based dissemination is depicted in Fig. 3
and consists of:

• Peer selection: A peer P periodically chooses another
peer Q uniformly at random from the set of peers that
participate in the same application, i.e., DeSARM uses
selective gossiping.

• Data exchanged: The AML is sent from one peer to
another.

• Data processing: The received AML is merged with the
local AML at each node to produce an updated AML.

Once a node detects that there are no further updates to the
gossiped AMLs, it assumes that convergence was reached and
a complete software architecture can be derived.

Fig. 4. Emergency Monitoring System.

Each log entry in the MSL or MRL has the following fields:
• Timestamp

• Destination Type: single destination (SD) or multiple
destination (MD)

• Message Type (mt): request reply (RQ), no-reply re-
quested (NR), a reply to previous request (RP)

• Transaction ID
• Message Unique ID (mid)
• Return ID: equals 0 if mt 6= RP, otherwise equals “mid”

of original request message
• Source Component: component sending the message
• Destination Component: component receiving the mes-

sage
• Source Node ID: ID of sending node
• Destination Node ID: ID of receiving node

The MRL and MSL for each component are scanned and
the interaction patterns for these messages are identified. The
following types of messages are considered: Reply requests
(RQ), No-reply requests (NR), and Replies (RP).

These message types allows us to identify synchronous
vs asynchronous interactions. In the former case, since reply
messages are guaranteed to have a request, then the original
request reply message and its associated reply message are
treated as a single synchronous interaction (SY). If the original
message was sent as a unicast (SD) then the tuple (source,
destination, SY, SD) is added to the AML. Otherwise, if the
original message was sent as a multicast (MD), then the tuple
(source, destination, SY, MD) is added to the AML. No-reply
requested messages on the other hand are treated as asyn-
chronous interactions (AS) and added to the AML as (source,
destination, AS, SD) if the message was sent as a unicast, or
(source, destination, AS, MD) if the message was multicasted.
The AML is treated as a set so only unique tuple entries are
allowed for each component interaction, irrespective of the
frequency of such interactions in the message logs because
a software architecture does not consider how many times
a certain type of interaction occurred between components.
Further details on the algorithms implemented by DeSARM
can be found in [26].

After each round of gossiping, the updated AML is used to
incrementally discover the architecture, which is represented
as a labeled directed graph. The vertices of this graph cor-
respond to unique component ids and the edges correspond
to unique component interactions. Edges are labeled with the
interaction patterns (SY or AS) and destination types (SD or
MD). Further details on this process can also be found in [26].

To depict how DeSARM works, we use an example ar-
chitecture of a distributed emergency monitoring system (see
Fig. 4). The architecture consists of five types of components
with three instances each of the Monitoring Sensor and Re-
moteSystem Proxy components, and a single instance of the
other components. This example assumes that each component
is assigned to a single node. When referring to components we
mean component instances unless otherwise mentioned. The
communication patterns within the system are:

• Operator Presentation sends synchronous messages with
reply to Alarm Service and Monitoring Data Service.
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Fig. 5. Discovered Architecture Model as Labeled Directed Graph

• Alarm Service and Monitoring Data Service send asyn-
chronous multicast messages to Operator Presentation.

• Monitoring Sensor and Remote System Proxy send asyn-
chronous unicast messages to Alarm Service and Moni-
toring Data Service.

The discovered architecture model corresponding to Fig. 4 is
the graph shown in Fig.5. This shows the five component types
of the system and their respective communication patterns as
edge labels, which would have been derived by the architecture
discovery process.

V. DESARM IMPLEMENTATION AND EXPERIMENTS

DeSARM was implemented in Java, and was developed by
extending an open source implementation of gossip [14] that
manages a list of nodes on a network for cluster membership.
We extended the open source gosssip implementation by
adding the core functionality of DeSARM, as described in
Section IV above, as well as incorporated push-pull based
gossip (discussed further below). We emulated a distributed
system by implementing each node of the distributed system
on a different virtual machine (VM) and spread the VMs
over physical machines connected over a network. The VMs
communicate over TCP/IP so they can be located anywhere on
the network. The DeSARM implementation is heavily multi-
threaded with different functions of DeSARM implemented as
different threads. Some examples of threads include sending
and receiving of gossip messages, message log aggregation,
architecture discovery, component/node database maintenance,
and sending and receiving of component messages. All the
communication between nodes uses Java sockets. DeSARM
modules normally communicate using UDP, however if gossip
exchanges become too large, resulting in message fragmenta-
tion in multiple packets, TCP is used to guarantee message
integrity.

Our experiments demonstrate the operation of DeSARM
and assess its convergence and the number of messages
exchanged by the DeSARM middleware. Two sets of exper-
iments were completed. In the first experiment, two types
of tests were conducted. In the first test, there were no
component/node failures. In the second test, we added random
failures with subsequent recovery for each of the components.
This second test reveals the impact of failures on the con-
vergence of DeSARM to the final architecture. In the second
experiment, the scalability of the mechanism is examined.

A. Experiment I

We use the application described in Fig. 4, whose archi-
tecture is known, and show that DeSARM converges exactly
to that known architecture. Table I shows the mapping be-
tween nodes, components, and physical machines for this
architecture. As discussed above, the known and discovered
architectures are represented as graphs; we compare the simi-
larity between the two (the known and current version of the
discovered architecture) over time. For that, we use the graph
comparison algorithms proposed in [20][36][9] and a graph
similarity metric that ranges from 0 to 1, where 0 indicates
no similarity and 1 indicates that the two graphs are identical.
The use of graph comparison using the similarity measure is
only for convergence checking during the experiments and is
not part of DeSARM’s implementation. We plot the evolution
of the similarity metric over time to display the convergence
speed of the discovery mechanism.

TABLE I
MAPPING OF NODES TO COMPONENTS AND PHYSICAL MACHINES.

Node Software Component Machine
Node 1 Monitoring Sensor Component (MSC) Machine 1
Node 2 Monitoring Sensor Component 2 (MSC2) Machine 1
Node 3 Monitoring Sensor Component 3 (MSC3) Machine 1
Node 4 Remote System Proxy (RSP) Machine 1
Node 5 Operator Presentation (OP) Machine 2
Node 6 Alarm Service (ArmS) Machine 2
Node 7 Remote System Proxy 2 (RSP2) Machine 1
Node 8 Monitoring Data Service (MDS) Machine 2
Node 9 Remote System Proxy 3 (RSP3) Machine 2

Figure 6 shows how the architecture converges over time
to the known architecture at each of the nodes shown in
Table I under a no-failure case. Different nodes converge at
different rates but at time 80 sec all nodes have converged
to the correct software architecture. Nodes 6 and 9 are the
first to converge and node 7 is the last. Note that in our
implementation of gossiping, each time a node i sends a gossip
message to node j, node j replies with a gossip message.
This way, two nodes will exchange AMLs more often, leading
to faster convergence. Because of the random nature of peer
selection in the gossip protocol, some nodes may gossip more
often with others, leading to different convergence rates among
nodes. Additionally, the convergence rate is affected by the
communication pattern among components.

Figure 7 shows the evolution of the architecture similarity
when components fail. As the figure shows, failures start to
occur after the first 80 sec, before convergence was achieved.
In fact, the value of the similarity metric was equal to 0.9375
(i.e., < 1) at all nodes at t = 80 sec. The failure probability of
each component, while processing, is set at 20% (a relatively
high value) and the average component down time is set at
180 seconds. Thus, at approximately t = 260 sec, the failed
components will start to recover from the failure and resume
sending messages. DeSARM automatically resumes its mes-
sage collection and gossiping of newly updated AMLs when
components start to recover. When that happens, convergence
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Fig. 6. Architecture similarity at the 9 nodes as a function of time with no
failures.
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Fig. 7. Architecture similarity at the 9 nodes as a function of time with
component failures.

is achieved as illustrated in Table II, which shows the times at
which nodes 1-9 converge after failure recovery. As shown in
Table II, node convergence times are spread between t = 340
sec and t = 400 sec.

Figures 6 and 7 are representative of similar results we
obtained in other experiments.

TABLE II
CONVERGENCE TIME OF NODES 1-9 UNDER COMPONENT FAILURES.

1 2 3 4 5 6 7 8 9
390 380 390 360 340 340 400 340 380

Table III shows the number of gossip messages sent and
received per node until convergence is achieved in the case
when failures do not occur and in the case when failures occur.
As the table shows, the average number of sent and received
gossip messages when no failures occur is almost 1/3 of the
corresponding number when there are failures.

For illustration and debugging purposes, each node collected

TABLE III
NUMBER OF GOSSIP MESSAGES SENT PER NODE.

Sent Received Sent Received
(no failures) (no failures) (failures) (failures)

1 24 14 61 36
2 22 15 59 52
3 20 22 63 50
4 22 14 60 55
5 21 19 39 54
6 22 21 60 68
7 25 11 65 69
8 22 32 50 59
9 21 21 63 59
Avg. 22 19 58 56

an event log (not part of DeSARM) during the experiments.
Entries in these logs are timestamped in nanoseconds and cor-
respond to events such as sending application-level messages,
sending/receiving DeSARM gossip messages, and computing
architecture similarity metrics. At the end of the experiment,
the event logs of all nodes were sort-merged offline to produce
a single log. Figure 8 shows a few excerpts of this log. The first
two entries of this log show application-level messages sent
by component MSC at Node 1 to components ArmS (at Node
6) and MDS (at Node 8). The next two entries correspond
to similar messages sent by MSC2 at Node 2, to components
ArmS and MDS. Later in time, DeSARM at Node 1 sends a
gossip message to Node 8 with Node 1’s current view of the
AML, namely [(MSC,ArmS,AS,SD), (MSC,MDS,AS,SD)].
This view only reflects the messages that component MSC
at Node 1 sent to nodes 6 and 8. Later in time, De-
SARM at Node 8 receives the following gossip message from
Node 4: [(RSP,ArmS,AS,SD), (RSP, MDS,AS, SD), (MDS,
OP, AS, MD), (MSC3,MDS,AS,SD), (MSC2,MDS,AS,SD),
(ArmS,OP,AS,MD), (MSC3, ArmS, AS, SD), (OP, ArmS, SY,
SD), (MSC2, ArmS, AS, SD)]. As a result, Node 8’s similarity
metric becomes 0.6875. Later in time, Node 8 receives a gossip
message from Node 9 with an AML that reflects Node 9’s
current view of the architecture. This AML is aggregated with
Node 8’s AML resulting in an AML that reflects the entire
software architecture. When the similarity metric for Node 8
is next computed, it shows a value of 1, indicating convergence
at Node 8.

B. Experiment II

To test the scalability of the approach we tested DeSARM
on Argo [2], a high performance computing cluster operated
by the Office of Research Computing at George Mason
University. For this purpose, we put together a synthetic
application with 30 components, each one of them residing
on a different node of the research cluster. Some components
have a synchronous communication interface only, sending
and receiving only synchronous messages, some have an
asynchronous communication interface only, sending and re-
ceiving only asynchronous messages, while others comprise
both synchronous and asynchronous interfaces, sending syn-
chronous messages and receiving asynchronous messages or
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Fig. 8. Excerpts of event trace. Components: Monitoring Sensor (MSC, MSC2, and MSC3), Remote System Proxy (RSP, RSP2, and RSP3), Operator
Presentation (OP), Alarm Service (ArmS), and Monitoring DataService (MDS).

vice versa. All communication between components take place
at a random time interval to emulate local processing between
message exchanges.

Each component communicates with only two other com-
ponents so that the initial AML at each node is a very small
fraction of the complete AML. Therefore, the value of the
similarity metric is very small to begin with. It starts at zero in
some cases, when components on a node send a synchronous
message to another component and have to wait for the reply.
This way the DeSARM instance at each node would require
more information to derive the complete architectural model
than in the previous experiment.

The convergence time at the 30 nodes varied significantly
due to the randomness in message exchange. The node that
took the longest time to converge converged in 260 sec (i.e.,
4.3 minutes) as shown in Table IV. This table shows the
progression of the similarity metric over time. The table also
shows that the rate of convergence, roughly defined as the
increase in convergence over time is slower at the beginning
and faster at the end. For example, after 58% of the time, the
similarity metric has only achieved the value of 0.27. At 85%
of the time, the similarity metrics achieved 0.73. While the
slowest node to converge took over four minutes, the fastest
took 30 seconds.

VI. DISCUSSION

We discuss here some additional issues of interest, some of
which are being addressed in ongoing work.

The first issue we address is whether DeSARM’s selec-
tive gossiping mechanism always converges, i.e., if there
is the possibility of different nodes converging to different
discovered architectural models. To address this issue and to
ensure convergence, we employed anti-entropy based gossip
in DeSARM. In anti-entropy gossip, the gossiping protocol
runs indefinitely albeit at specified regular intervals [29]; this
means that all nodes continuously make gossip exchanges. Be-
cause gossiping never stops, updates will reach all nodes and
the system will always eventually converge. However, such
a mechanism can result in unnecessary message exchanges
especially if no architectural changes have taken place within
the system. This problem is exacerbated in large distributed
systems. To address this issue we adjusted the protocol to
gradually decrease the gossip rate δ when no new updates
to the AML have been detected over a period of time. Then,
when an update is received, the original gossip rate is restored
to speedup convergence.

The second issue is the relationship between gossip conver-
gence speed and the gossip rate δ. A higher value of δ implies
faster convergence at the cost of higher message overhead.
Other factors such as system size, component communication
patterns, and gossip mode (see below) also affect convergence
speed. For example, convergence speed is generally affected
by the communication pattern among components, including
how often they communicate and the number of components
they communicate with. Two modes of gossiping can be used:



TABLE IV
SLOWEST CONVEGENCE RATE IN THE 30-NODE EXPERIMENT.

Time (sec) 0-110 120 130 140 150 160-170 180 190-200 210-220 230-250 260
Similarity Metric 0.00 0.10 0.13 0.20 0.27 0.30 0.47 0.57 0.73 0.97 1.00

push gossip (where a peer sends a message but does not
receive one in return) vs. push-pull gossip (where a peer sends
a message and receives one in return). Our implementation
of DeSARM uses push-pull gossip, which accelerates conver-
gence.

The third issue is the implication of dynamic architectural
changes during gossiping and how it affects convergence. We
are currenty addressing this issue through the integration of
DeSARM with an application recovery layer that runs above
DeSARM and provides DeSARM with updates to events that
cause architectural changes. Examples of such events include
component failures as well as component removal due to adap-
tation. When such events occur, this layer informs DeSARM
of the affected component(s). Due to the decentralized nature
of DeSARM, this update can be received at any node. Upon
receipt, the node will remove from its AML all entries related
to the removed component(s) that contain the component(s)
as a sender or receiver and use gossip to propogate these
deletions to other nodes within the system. Note that archi-
tectural changes that result in new components being added
are handled automatically by DeSARM as described here.

The fourth issue is the overhead of the gossip mechanism
in relation to both network traffic as well as latency in the
sending and receiving of component messages. DeSARM has
very little network overhead for two reasons: the size of the
AMLs and its use of selective gossiping. As the AMLs contain
only unique tuple entries of component interactions, the size
of the AMLs are kept small. This in effect reduces the overall
bandwidth needed for gossip exchanges. Also, as mentioned
earlier, selective gossiping allows for the containment of
network traffic to only those nodes that are part of the same
application which further reduces the communication overhead
of the mechanism. With respect to the latency of component
messaging, DeSARM can keep it at a minimum because, as
previously mentioned, all major functionality is separated into
different threads. This allows for all other processing to take
place in the background thus reducing any major impact the
gossip mechanism will have handling component messages.

VII. CONCLUDING REMARKS

This paper described DeSARM, a completely decentralized
and automated approach for software architecture discovery
of distributed systems based on gossiping and message trac-
ing. Through message tracing, DeSARM is able to identify
important architectural characteristics such as components
and connectors in addition to synchronous and asynchronous
communication patterns. Furthermore, through the use of
gossiping, DeSARM exhibits the properties of scalability,
global consistency among participating nodes, and resiliency

to failures. These properties were demonstrated through vari-
ous experiments, with and without component failures. These
experiments assessed the rate of convergence of the DeSARM
nodes towards the software architecture being discovered.
These experiments showed that DeSARM is resilient and
is able to discover the architecture even in the presence of
failures, albeit at a lower pace than the one when no failures
occur. DeSARM was implemented in Java using a multi-
threaded architecture.

In future work we plan to examine DeSARM’s capability
of discovering architectures that change over time as in the
case of dynamic software adaptation [13], [12]. This work will
examine different recovery and adaptation models as well as
dynamic components, i.e., components that change their com-
munication patterns at runtime based on their state or phase
of execution, and the impact on DeSARM. Also of interest,
is addressing the mechanism’s capacity for discovering the
full behavioral architecture of a system such as identifying
component interaction protocols.

In the current experiments, we used a fixed architecture to
illustrate how DeSARM converges with and without failures
and how it operates equally well with two or thirty physical
machines. In the future, we will run experiments in which a va-
riety of software architectures are generated following certain
distributions for parameters such as number of components
and communication pattern types.

As mentioned previously, DeSARM is being integrated
with an existing application recovery mechanism (ARM) that
allows for the runtime recovery of component(s) due to node
failure [1]. Through the peer sampling capability of gossip
[18], DeSARM is able to identify suspected node failures and
alert the ARM. Once the node failure has been verified, the
ARM proceeds to recover the failed component(s) to a new
node and re-instantiates them based on the current architecture
provided by DeSARM. As a result of the decentralized nature
of DeSARM, component recovery can be initiated from any
node as each maintains a complete model of the architecture.
This integration will allow for the development of applications
that are resilient to failures.

ACKNOWLEDGEMENTS

This work was partially supported by the AFOSR grant
FA9550-16-1-0030 and the Office of Research Computing at
George Mason University.



REFERENCES

[1] Albassam, Emad, et al. “Model-based Recovery Connectors for Self-
Adaptation and Self-Healing.” Proc. 11th Intl. Joint Conf. Software
Technologies (ICSOFT 2016), July 24-26, 2016, Lisbon, Portugal.

[2] http://orc.gmu.edu/research-computing/argo-cluster/
[3] Bojic, Dragan, and Dusan Velasevic. “A use-case driven method of ar-

chitecture recovery for program understanding and reuse reengineering.”
IEEE Conf. Software Maintenance and Reengineerig, 2000, pp. 23–32.

[4] Corazza, Anna, Sergio Di Martino, and Giuseppe Scanniello. “A proba-
bilistic based approach towards software system clustering.” IEEE 14th
Conf. Software Maintenance and Reengineering, 2010, pp. 88-96.

[5] Demers, Alan, et al. “Epidemic algorithms for replicated database
maintenance.” Proc.Sixth Annual ACM Symp. Principles of distributed
computing. ACM, 1987.

[6] Dulman, Stefan, and Eric Pauwels. “Self-Stabilized Fast Gossiping
Algorithms.” ACM Tr. Autonomous and Adaptive Systems (TAAS), 10.4
(2015): 29.

[7] Esfahani, Naeem, Eric Yuan, Kyle R, Canavera and Sam Malek. “In-
ferring Software Component Interaction Dependencies for Adaptation
Support.””ACM Tr. Autonomous and Adaptive Systems (TAAS), 10.4
(2016): 26.

[8] Ewing, John, and Daniel A. Menascé, “A Meta-controller method
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