
Caching Strategies for Run-time Probabilistic Model
Checking

Hiroyuki Nakagawa, Kento Ogawa, Tatsuhiro Tsuchiya
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, Osaka, Japan

Email: {nakagawa, o-kento, t-tutiya}@ist.osaka-u.ac.jp

Abstract—For software systems that need to adapt to their en-
vironment at run-time, run-time verification is useful to guarantee
the correctness of their behaviors. Probabilistic model checking
using discrete time Markov chain (DTMC) model has been
applied to implement run-time verification. A current existing
approach provides an efficient run-time verification mechanism
by pre-generating expressions for model checking at design time.
In case that a system model is changed, the system is required to
re-generate the expressions. In order to expand the applicability
of the approach, we propose three strategies, caching, prediction,
and reduction, for reducing computational time for re-generated
expressions at run-time. We conduct preliminary experiments and
demonstrate that our approach could expand the applicability of
run-time verification by reducing the computational cost at run-
time.

I. Introduction

Software systems are often required to be able to main-
tain high performance and high reliability even though their
environments are changeable or uncertain at design time.
Traditional software systems are difficult to demonstrate the
best performance or even run correctly under their change-
able or uncertain environments. Constructing systems as self-
adaptive systems [1], [2], which enable run-time adaptation,
is an efficient way of dealing with such environments. Since
self-adaptive systems modify their behaviors for adaptation,
first, the systems should be able to autonomously control
their behaviors. Model-based approaches [3], in particular,
models@run.time [4] approach, which focuses on dynamically
changeable models of the systems, provide a promising way
of modifying behaviors at runtime. Second, the correctness
of their behavior after adaptation should be verified. Such
systems can benefit from a run-time verification mechanism
[5], [6], [7] that checks whether a new behavior satisfies system
requirements.

Unlike verification techniques at design-time, run-time
verification techniques should be efficiently executed not to
degrade system performance. Some studies on efficient verifi-
cation for self-adaptive systems have been developed. Filieri
et al [8] proposed an efficient run-time verification technique
that divided a verification process into pre-computation at
design time and value calculation at run-time. Pre-computation
constructs expressions for verification from a system model
described in discrete time Markov chain (DTMC) model [9],
which associates state transitions with probabilities represented
by fixed values or parameter variables, and requirements
described in probabilistic computational tree logic (PCTL) at

design time; value calculation assigns values that are measured
by monitoring the environment to the variables in expressions
at run-time. In such a verification process, the verification
activity during run-time is only substituting the variables with
values obtained by monitoring the environment. Although
the process allows efficient run-time verification, this method
assumes that the structure of the system model is not changed,
that is, states or transitions are not added or deleted. If such
changes happen, the system has to update (re-generate) the
expression at run-time. This re-generation usually requires
large computational time.

In expression generation, variables in DTMC models,
which represent uncertain transition probabilities, lead to a
large computational cost. DTMC models are represented as
matrices, and the expression generation requires the compu-
tation of determinants. The computation of determinants is
performed by using Laplace expansion and LU-decomposition.
We previously evaluated the computational cost for gener-
ating expressions and concluded that the number of times
of performing Laplace expansions considerably affects the
computational cost [10].

In this study, we aim to expand the applicability of the
efficient run-time verification technique by reducing the com-
putational time for executing Laplace expansions. We reuse
intermediate expressions obtained in pre-computation. Our
approach is on the basis of caching. We store pairs of a
partial matrix in DTMC and the corresponding intermediate
expression as key-value pairs into cache. Moreover, to increase
cache hit ratio and decrease cache size, we apply additional
strategies, prediction and reduction.

We conduct preliminary experiments on randomly gen-
erated DTMC models. The experimental results demonstrate
that our approach could expand the applicability of run-time
verification by reducing the computational cost at run-time
while keeping from rapidly increasing memory usage.

This paper is organized as follows: Section II describes
theoretical background of our study. Section III explains
our approach for an efficient run-time verification with three
strategies. Section IV evaluates our approach from preliminary
experimental results. Section V presents related work, and
Section VI concludes this paper.

II. Theoretical Background

Since systems that need to adapt to their environment
have to face uncertainty, we deal with the systems under

Fig. 1. Filieri’s approach [8].

development as probabilistic systems. In many cases, behaviors
of such systems are described in Discrete Time Markov Chain
(DTMC) [9]. Probabilistic model checking [11] is a verification
technique for the probabilistic systems. Probabilistic Compu-
tation Tree Logic (PCTL) [12] is a probabilistic temporal logic
that extends CTL to express probabilistic properties, which can
be interpreted over the DTMC model. As in Filieri’s study
[8], which our study is based on, we assume that the system
model is described as a DTMC and requirements are expressed
in PCTL. Daws [13] also gives a theoretical background of
parametric model checking of PCTL formulae over DTMC
models. In this section, we first present the verification process
that Filieri et al. proposed and then briefly explain DTMC and
PCTL. The last subsection explains how Filieri et al. construct
expressions at design time.

A. Efficient Run-time Verification

Figure 1 illustrates an efficient run-time verification process
that Filieri et al. proposed in [8]. To realize on-the-fly analysis,
the process separates a model checking activity into two steps,
ones executed at design time and run-time. In the step at design
time, expressions for verification are generated from a system
model represented as DTMC and requirements expressed in
PCTL. Transition probabilities in DTMC are represented as
real values [0, 1] or variables. A variable in the DTMC model
represents that a transition probability is unknown at design
time. In the step at run-time, values of the variables are
identified by monitoring the system or its environment, and
then the system evaluates the expression by substituting the
values to the transition variables to verify whether the system
model satisfies requirements or not.

B. Discrete Time Markov Chain

A DTMC model is a state transition diagram that has state
transitions represented as probabilities. DTMC is a stochastic
process [14] that has transitions from one state to another state
on a state space. DTMC must respect the following property
of Markov chains: the probability distribution of the next state
depends only on the current state and not on the sequence
of events that preceded the current state. We consider finite
and time-homogeneous DTMC models, i.e., where the state
space is finite and transition probabilities between states do
not change with time, in this paper.

1 1

1

0.2

0.8

1
1

1 *0.1

1 *0.9

1

1

Fig. 2. An example of DTMC model: a cleaning robot.

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0.2 0.8 0 0 0

0 0 0 0 0 0.9 1 0 0.1 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

P =

Fig. 3. The matrix P and its sub-matrices Q, R, O, and I of the DTMC
model for the cleaning robot illustrated in Figure 2

Formally, a DTMC is represented as a tuple (S , S 0, P, L),
where S is a set of states; S 0 (⊆ S) is a set of initial states;
P : S × S → [0, 1] is a stochastic matrix, in which an element
of P(si, s j) represents the probability that the next state of the
process will be s j given the current state is si; L : S → 2AP is
a labeling function, where AP is a set of atomic propositions
that represent basic properties. A state s ∈ S with P(s, s) = 1 is
called an absorbing state. A state that is not an absorbing state
is called a transient state. A DTMC is said to be absorbing if
it contains at least one absorbing state and from every state it
is possible to go to an absorbing state. In order to apply the
Filieri’s approach, the DTMC must be absorbing. It should
be noted that the approach can sometimes be applied to a
non-absorbing DTMC with some modifications to the model.
For example, if the DTMC contains an absorbing connected
component that has no absorbing state, then replacing the
component with an absorbing state yields an alternative DTMC
model that is absorbing.

We show an example of a DTMC model in Figure 2.
This model represents a behavioral model for a cleaning
robot. Since some of the transition probabilities are determined
by monitoring the environment at run-time and cannot be
determined at design time, these transitions are described as
variables. For example, the cleaning robot detects obstacles
by using sensors that the robot has and decides a direction to
move by using data collected by sensors. The robot moves in
different directions by executing going forward and turning
commands. Since which sensor is used is adjusted at run-
time, transition probabilities to sensing states are represented
as variables x0, ..., x3.

A DTMC model can be represented as a matrix. For
example, the matrix illustrated in Figure 3 represents the

DTMC model of our cleaning robot example (Figure 2). An
absorbing DTMC that has r absorbing states and t transient
states is represented by the matrix P that is in the following
canonical form:

P =

(
Q R
O I

)
(1)

where I is an r by r identity matrix, O is an r by t zero matrix,
R is a t by r nonzero matrix and Q is a t by t matrix. The
element qi j of the matrix Q is the transition probability from
the transient state si to the transient state s j. The element rik of
the matrix R is the transition probability from the transient state
si to the absorbing state sk. An absorbing state has probability
1 from the absorbing state to itself. Therefore, the probabilities
of absorbing states to themselves are represented as the identity
matrix I. Since transition probability from an absorbing state
to a transient state is 0, O is a zero matrix.

The transition probability from the transient state si to the
transient state s j in two steps is calculated by

∑
sx∈S P(si, sx) ·

P(sx, s j) =
∑

sx∈S Q(si, sx) · Q(sx, s j). The k-step transition
probability, with which the state s j is reached from the state si

in k steps, is the element qk
i j of the matrix Qk. Since the element

q0
i j (of the matrix Q0) represents the transition probability from

the state si to the state s j in zero steps, this matrix Q0 is a t
by t identity matrix. Due to the fact that R must be a nonzero
matrix, Q has uniform-norm strictly less than 1, thus Qn → 0
when n → ∞, which implies that eventually the process will
be absorbed with probability 1.

C. Probabilistic Computational Tree Logic

The requirements are expressed in probabilistic computa-
tional tree logic (PCTL), which can be used to describe the
properties of the system. Filieri et al. proposed an efficient
approach to verify whether DTMC models satisfy requirements
expressed by PCTL. PCTL is an extension of Computational
Tree Logic (CTL) that allows probabilistic quantification of
described properties. The PCTL formula [11] is defined by
the following Φ:

Φ ::= true | a | Φ ∧ Φ | ¬ Φ | P▷◁p (φ) (2)
φ ::= X Φ | Φ U Φ | Φ U≤t Φ (3)

where a is an atomic proposition. Probabilistic operator
P▷◁p (φ) represents whether the expression φ satisfies the con-
straint ▷◁ p or not, where p ∈ [0, 1], ▷◁∈ {≤, <,≥, >}. Operators
X and U, which appear in path formulae φ, represent “next”
and “until”, respectively. For example, P<0.01(X s = 1) means
that the reachability probability from the current state to the
next state s1 is less than 0.01.

In Section IV, we conduct an experiment to evaluate our
approach by observing the computational time for the determi-
nation of reachability property. The reachability property states
that a target state is eventually reached from a given initial
state. Many safety properties can be checked by reachability
property verifications. In most cases, the state to be reached is
one of absorbing states. An example of a PCTL formula that
represents a reachability property is as follows:

P≤0.01(true U s = 6) (= P≤0.01(F s = 6)) (4)

Expression (4) states that the probability from an initial state
to the absorbing state s6 has to be less than 0.01. Since many

practical requirements can be specified as the reachability of
an absorbing state [15], we focus on the reachability properties
in this paper.

D. Expression Generation

As we described, the probability of moving from the
transient state si to the absorbing state sk in one step is
represented as the element pik of the matrix P. In the case of
more than 1 step, we have to compute the probability of the
transition from a transient state to another transient state and
the transition from the transient state to the destination state.
The transition probability in two steps is the element q2

i j of the
matrix Q2(= Q × Q), and the transition probability in k steps
is the element qk

i j (of the matrix Qk). Therefore, the expected
number of visits to the transient state s j before arriving at an
absorbing state, starting from the state si is the (i, j)-th element
of the matrix N = I + Q + Q2 + Q3 + · · · = ∑∞

k=0 Qk. The
probability from the transient state si to the absorbing state sk
in some steps is defined as the element bik of the matrix B:

B = N × R (5)

The computation for the matrix B requires the computation for
the matrix N. We can replace N as follows:

N = I + Q + Q2 + Q3 + · · ·

=

∞∑
k=0

Qk

= (I − Q)−1 (6)

Since the matrix N is the inverse of (I − Q), we calculate the
element ni j of the matrix N as follows:

ni j =
1

det(W)
· α ji(W) (7)

where W is I−Q, and αi j is the cofactor. Using Expression (5)
and (7), the element bi j of the matrix is calculated as follows:

bik =
∑

x∈0...t−1

nix · rx j

=
1

det(W)

∑
x∈0...t−1

αxi(W) · rx j (8)

Here, the computation of bik requires the computation
of determinants. Determinants are calculated by applying
Laplace expansion [16] and LU-decomposition [17] (Figure
4). Laplace expansion removes variables from a matrix; LU-
decomposition, on the other hand, computes determinants of
the matrix that contains no variables. The determinant |A| of
the n × n matrix A is the sum of the product of the element
ai j by each determinant of n sub-matrices of A with size
(n−1)×(n−1). The expression of |A| with the i-th row expanded
is as follows:

|A|(= det(A)) =
n∑

j=0

(−1)i+ jai j|A′|i j (9)

A′i j is the (n − 1) × (n − 1) sub-matrix generated by removing
the i-th row and the j-th column of the matrix A.

As we mentioned, the computation of reachability property
requires the determinant computation. The determinant com-
putation is executed by using LU-decomposition and Laplace

0 0.2 0.1 0.5

0.01 0 0.9

0 0.5 0

0.2 0.7 0.01 0.02

= 0.01

0.2 0.1 0.5

0.5 0

0.7 0.01 0.02

+

0 0.1 0.5

0 0.5 0

0.2 0.01 0.02

+ 0.9

0 0.2 0.1

0 0.5

0.2 0.7 0.01

= = 0.04503 0.05 + 0.01973

Laplace expansion

LU-decompositionLaplace expansion Laplace expansion

(a part of) Expression

Fig. 4. Laplace expansion and LU-decomposition.

At design time

model is changed at runtime

re-generate

expression

Generate

expression

System model

Requirements

Expression

(with variables)

Matrix Expression

M1 Exp1

M2 Exp2

… …

Cache

Efficient reuse

Monitor

environment

Verify

adaptation
Expression

Value assignment

to variables
Evaluation

Caching Store similar pairs

(Prediction)

with considering

state groups

(Reduction)

Fig. 5. Our expansion: efficient reuse of the pairs of matrix and expression
with three strategies, i.e., caching, prediction, and reduction.

expansion; while the former requires O(n3) computational cost,
the latter requires O(n!), that is, considerably larger computa-
tional cost. The rows that include variables representing un-
known parameters are expanded by using Laplace expansion.
The high number of times of Laplace expansions leads to a
huge computational cost. Models of systems that have to deal
with uncertain environments, such as self-adaptive systems,
usually have variables that are represented as unknown pa-
rameters in the matrices. The large number of variables leads
to the large number of times of Laplace expansions and large
computational time.

III. Our approach

The advantage of Filieri’s approach is that it can shift the
large computational cost from run-time to design time. This
process provides an efficient run-time verification mechanism
under the assumption that the structure of the system model,
i.e., the DTMC model, is not changed. On the other hand, if
the structure is changed, such as states and transitions addition,
the pre-computed expressions no longer correspond to the new
model.

1 1

1

0.2

0.8

1
1

1 *0.1

1 *0.9

1

1

1

Fig. 6. The DTMC model of our cleaning robot after adaptation. A new state
s11 for sensing another data from an environment and relevant transitions are
introduced.

For example, Figure 6 shows a model after an adaptation
that causes to add state and transitions to the model illustrated
in Figure 2. In such a case, the system has to re-execute
the pre-computation process at run-time. This re-execution
usually requires large computational time. Especially, Laplace
expansions in the pre-computation process require a large
amount of computational time.

The goal in this paper is to reduce the number of ex-
ecuting Laplace expansions at run-time. Figure 5 illustrates
the overview of our approach. In this paper, we propose the
following three strategies:

• Caching: To avoid the re-execution of Laplace ex-
pansion, we store pairs of sub-matrix and the cor-
responding expression for re-use into the memory
(cache). When the system needs to re-generate an
expression, it searches for the matrix from the cache.
If the system finds it, the matrix is replaced with the
stored expression with no calculation.

• Prediction: Since a DTMC model is changed by
adaptation, the cache hit ratio may be decreased when
we search for sub-matrices of the new DTMC model.
In order to increase hit ratio of caching, we store
additional pairs that are similar to the stored pairs
based on the caching strategy.

• Reduction: Caching and prediction strategies require
an additional memory space. We need to reduce the
increase of the required space. In this paper, we try to

0 0.2 0.1 0.5

0.01 0 0.9

0 0.5 0

0.2 0.7 0.01 0.02

= 0.01

0.2 0.1 0.5

0.5 0

0.7 0.01 0.02

+

0 0.1 0.5

0 0.5 0

0.2 0.01 0.02

+ 0.9

0 0.2 0.1

0 0.5

0.2 0.7 0.01

0 0.2 0.1 0.5

0.01 0 0.9 0

0 0.5 0 0

0.2 0.7 0.01 0.02 0

0 1 0 0

= 1

0 0.1 0.5

0.01 0 0.9 0

0 0.5 0 0

0.2 0.01 0.02 0

+

0 0.2 0.1 0.5

0.01 0 0.9

0 0.5 0

0.2 0.7 0.01 0.02

0 0 2

0 0 2 0 1

Fig. 7. Caching.

realize the reduction on the basis of grouping.

The following subsections briefly explain these strategies.

A. Caching

In many cases, self-adaptive systems change only a part
of their behaviors. Even though the systems requires re-
generation of expression for verification at run-time, the most
part of the system models are not changed in many cases.

Figure 7 illustrates the caching strategy. We store the
pairs of sub-matrix and the corresponding (sub-)expression
at design time. Since LU-decomposition does not require
the large computational cost, we store the sub-matrices that
require Laplace expansion. When the system needs to re-
generate expressions at run-time, it searches for the matrix
to be processed from the cache. If the system finds the same
matrix in the cache, the matrix is replaced with the paired
sub-expression.

B. Prediction

Effectiveness of caching depends on the size of matrix to
be replaced with an expression. Even though we can replace
a small size of sub-matrix with the corresponding expression,
the improvement of computational cost is limited. We should
find as large a size of matrix as possible.

In order to match a large size of matrix, we additionally
register matrices that are similar to the matrix representing the
system model before adaptation.

In this paper, we focus on the behavioral changes such that
new states and transitions are added. For example, the model
shown in Figure 6 is an example of such cases. Figure 8 is
the corresponding matrix. The prediction strategy makes such
matrices at design time by adding one state and one transition
from the existing matrix. These matrices can be constructed
as follows:

1) Insert a new row and column in the rear of Q. Let the
inserted row and column be the i-th row and the j-th
column. All elements in the added row and column
are 0.

2) Choose a non-zero value from the elements in Q. Let
the selected element be akl and its value be αkl.

3) Introduce a new variable xnew and put this variable at
ak j. Since the sum of transition probabilities in each
row should be 1, we change the value αkl at akl to
αkl − xnew. We regard this matrix as a matrix similar
to the existing matrix.

4) Repeat Steps 2 and 3 and generate matrices by
changing a non-zero element in Q at Step 2 until
all of the non-zero elements in Q are selected.

For example, our prediction strategy can make the matrix
illustrated in Figure 8 from the matrix illustrated in Figure
3, that is, the model before adaptation.

C. Reduction

Caching and prediction strategies are expected to require
a large amount of memory space. To restrain the increase of
memory usage, we try to reduce the candidate matrices on the
basis of grouping. The reduction strategy defines sets of states
in DTMC model as groups. This strategy removes the matrices
that the prediction strategy generated by injecting transitions
over different groups. This restriction saves certain degree of
matrix generation.

Considering the cleaning robot example illustrated in Fig-
ure 2, we can define groups for sensing (the set of states s0
to s3 and the state s6) and migration (the set of states s4,
s5, s7, and s8). When we prepare the similar matrix added a
new state into the sensing group, we consider new transitions
from the states within the sensing group, i.e., s0, s1, s2, s3,
and s6, to the new state and transitions from the new state to
these states. The reduction strategy prevents generating similar
matrices that have less possibility of re-use.

IV. Evaluation

In order to evaluate the effectiveness of our strategies,
we conducted preliminary experiments on randomly generated
DTMC models. We implemented three strategies in Java and
compared the computational time and memory size of four
methods of re-generation as follows:

• Method 1: baseline (no caching), denoted as none in
Figures 9 to 12;

• Method 2: caching, denoted as C in the figures;

• Method 3: caching and prediction, denoted as CP in
the figures;

• Method 4: caching, prediction, and reduction, denoted
as CPR in the figures.

As problem instances, we randomly generated DTMC models
with the size ranging from 20 to 40 states increased by
five, including two absorbing states. Some generated models
contain loops. In these DTMC models, the number of outgoing
transitions of each state follows a Gaussian distribution with
mean 10 and standard deviation 2. Initial DTMC models, that
is, the system models before adaptation, contain one or two
variables as transition probabilities, and adaptation causes to
introduce two variables into the models. We divided all states

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0.2 0.8 0 0 0 0

0 0 0 0 0 0.9 1 0 0 0.1 1

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

P =

Existing matrix Added column

Added

row

Fig. 8. The matrix of the DTMC model for the cleaning robot after adaptation. Our prediction strategy makes such a matrix from the existing matrix.

Fig. 9. Computational time when the model before adaptation has one variable
and the model after adaptation has three variables. X-axis represents the
number of states in the DTMC model, while Y-axis represents computational
time [ms].

Fig. 10. Computational time when the model before adaptation has two
variables and the model after adaptation has four variables.

into groups of size 10. We compared the averages of 10 runs
for each configuration.

Figures 9 and 10 show the computational time to re-
generate an expression. We can find that caching (Method 2)
speeds up expression re-generation (faster than Method 1) but

Fig. 11. Cache size when the model before adaptation has one variable and
the model after adaptation has three variables. X-axis represents the number
of states in the DTMC model, while Y-axis represents the number of the
stored expressions in logarithmic scale. Since Method 1, represented as None
in legend, does not use cache, it does not appear in this graph. (Cache size is
zero.)

sometimes it does not affect computational time. Prediction
(Method 3) and reduction (Method 4) further make the com-
putation faster.

As for the cache size illustrated in Figures 11 and 12, on the
other hand, prediction (Method 3) requires the largest memory
size. Reduction (Method 4) partly reduces the memory size for
caching.

The results of the experiments shows that the prediction
strategy, on the basis of caching, is effective to reduce the
computational time and the reduction strategy works to prevent
the increase of memory size for caching. These strategies
partially work; however, we also find that the effects of these
strategies are still limited.

The current design of prediction with reduction prepares
similar matrices for all elements in the same group in Q.
We could make more precise prediction using the semantic
of the system model. As for the memory size, our current
reduction strategy is effective when behavioral changes are
limited within the group. Since the effectiveness of reduction
strategy is different between the cases illustrated in Figures
11 and 12, we should improve the applicability of reduction
strategy. For further memory usage reduction, we could discard

Fig. 12. Cache size when the model before adaptation has two variables and
the model after adaptation has four variables. Since Method 1, represented as
None in legend, does not use cache, it does not appear in this graph. (Cache
size is zero.)

small matrices that do not substantially affect computational
time and redundant ones.

When using the proposed strategies, software developers
should estimate the benefits of the strategies because they
are still limited. The time required to generate expressions is
reduced in the range of 10 to 30%. Also memory consumption
should be taken into account. Even though prediction and
reduction strategies are effective for reducing computational
time, they consume a large amount of memory; this trade off
should be carefully considered.

V. RelatedWork

Runtime verification, such as one in [7], plays a key role
in dynamically adaptive software systems. Some work, in
particular, focuses on the efficiency of runtime verification.
Gerasimou et al. [18] evaluated the effectiveness of caching,
look-ahead, and nearly-optimal techniques on the continuous-
time Markov chain (CTMC) model. While this technique is
designed on the assumption that verifications are continuously
executed at run-time with using previous results, our approach,
on the other hand, is designed on the assumption that computa-
tional results to be re-used have been prepared at design time.

Kwiatkowska et al. [19] proposed an incremental quanti-
tative verification of probabilistic models. This method uses
the previous verification results that are acquired at run-
time to speed up run-time verification. This approach can
also deal with the structural changes of models. While this
approach requires the analysis of change impact on the model
before re-use of the previous verification results, our approach
determines where the re-use can be applied by only checking
cache hit, which can be implemented by a simpler mechanism.

VI. Conclusion and Direction for future work

We presented the current state of our approach that supports
run-time verification when the structure of the system model
is changed by adaptation. In order to reduce the computational
time for re-generating expressions, we proposed three strate-
gies, i.e., caching, prediction, and reduction. The preliminary
evaluation demonstrated the possibilities of our strategies.

From the experimental results, we identified the directions
for future work. First, we should address the reduction of cache
size. Some Markov model simplification techniques, such as
ones based on SCC (strongly connected components) reduction
[20], partial order reduction [21], and bisimulation [22], can be
beneficial to reduce cache size; however, excessive reduction
could prevent our strategies from reusing stored matrices for
regenerating expressions.

Second, we plan to improve the precision strategy of
the prediction strategy. The improvement of prediction helps
to keep the cache size from increasing. We also plan to
improve the applicability of reduction strategy. One direction
is discarding small size matrices and redundant ones. Third,
after the sufficient improvement of our strategies, we will take
into account different adaptation patterns, such as state removal
or larger changes in the system model. In order to evaluate
our approach on real world examples, we plan to embed the
verification mechanism in our programming framework [23]
for self-adaptive systems.

Acknowledgment

This work was supported by JSPS Grants-in-Aid for Sci-
entific Research (No. 15K00097). The Telecommunications
Advancement Foundation also supported this work.

References

[1] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, and et al.,
“Software engineering for self-adaptive systems: A research road map,”
in Dagstuhl Seminar Proceedings 08031, 2008, pp. 1 – 13.

[2] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, and et al., “Software
engineering for self-adaptive systems: A second research roadmap (draft
version of may 20, 2011),” in Dagstuhl Seminar 10431, 2011.

[3] J. Zhang and B. H. C. Cheng, “Model-based development of dy-
namically adaptive software,” in Proceedings of the 28th international
conference on Software engineering (ICSE ’06). ACM, 2006, pp. 371–
380.

[4] G. Blair, N. Bencomo, and R. B. France, “Models@ Run.Time,”
Computer, vol. 42, no. 10, pp. 22–27, Oct. 2009. [Online]. Available:
http://dx.doi.org/10.1109/MC.2009.326

[5] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola,
“Self-adaptive software needs quantitative verification at runtime,”
Communications of the ACM, vol. 55, no. 9, pp. 69–77, Sep. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2330667.2330686

[6] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic QoS management and optimization in service-based
systems,” IEEE Transactions on Software Engineering, vol. 37, no. 3,
pp. 387–409, May 2011.

[7] M. U. Iftikhar and D. Weyns, “ActivFORMS: Active Formal
Models for Self-adaptation,” in Proc. of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS’14). ACM, 2014, pp. 125–134. [Online]. Available:
http://doi.acm.org/10.1145/2593929.2593944

[8] A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting self-adaptation
via quantitative verification and sensitivity analysis at run time,” IEEE
Transactions on Software Engineering, vol. 42, no. 1, pp. 75–99, Jan
2016.

[9] K. Goševa-Popstojanova and K. S. Trivedi, “Architecture-based
approach to reliability assessment of software systems,” Perform.
Evaluation, vol. 45, no. 2-3, pp. 179–204, Jul. 2001. [Online].
Available: http://dx.doi.org/10.1016/S0166-5316(01)00034-7

[10] K. Ogawa, H. Nakagawa, and T. Tsuchiya, “An experimental evaluation
on runtime verification of self-adaptive systems in the presence of
uncertain transition probabilities,” in Proc. of Software Engineering and
Formal Methods - SEFM 2015 Workshops, ser. LNCS, vol. 9509, 2015,
pp. 253–265.

[11] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[12] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994. [Online]. Available: http://dx.doi.org/10.1007/BF01211866

[13] C. Daws, “Symbolic and parametric model checking of discrete-time
markov chains,” in Proc. of the First International Conference
on Theoretical Aspects of Computing (ICTAC’04), ser. ICTAC’04.
Springer-Verlag, 2005, pp. 280–294. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-31862-0 21

[14] H. E. Taylor and S. Karlin, An Introduction to Stochastic Modeling.
Academic Press, 1998.

[15] L. Grunske, “Specification patterns for probabilistic quality properties,”
in Proc. of the 30th International Conference on Software Engineering
(ICSE’08). ACM, 2008, pp. 31–40. [Online]. Available: http:
//doi.acm.org/10.1145/1368088.1368094

[16] H. Rose and H. Rose, Linear Algebra: A Pure Mathematical Approach.
Springer, 2002. [Online]. Available: https://books.google.co.jp/books?
id=mTdAj-Yn4L4C

[17] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[18] S. Gerasimou, R. Calinescu, and A. Banks, “Efficient runtime
quantitative verification using caching, lookahead, and nearly-optimal
reconfiguration,” in Proc. of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS’14). ACM, 2014, pp. 115–124. [Online]. Available:

http://doi.acm.org/10.1145/2593929.2593932

[19] M. Kwiatkowska, D. Parker, and H. Qu, “Incremental quantitative
verification for markov decision processes,” in Proc. of the
2011 IEEE/IFIP 41st International Conference on Dependable
Systems&Networks, ser. DSN ’11. IEEE Computer Society, 2011,
pp. 359–370. [Online]. Available: http://dx.doi.org/10.1109/DSN.2011.
5958249

[20] F. Ciesinski, C. Baier, M. Grosser, and J. Klein, “Reduction techniques
for model checking markov decision processes,” in Proc. of the Fifth
International Conference on Quantitative Evaluation of Systems (QEST
’08), 2008, pp. 45–54.

[21] H. Hansen, M. Kwiatkowska, and H. Qu, “Partial order reduction
for model checking markov decision processes under unconditional
fairness,” in Proc. of the 2011 Eighth International Conference on
Quantitative Evaluation of SysTems (QEST ’11). IEEE Computer
Society, 2011, pp. 203–212. [Online]. Available: http://dx.doi.org/10.
1109/QEST.2011.35

[22] J.-P. Katoen, T. Kemna, I. Zapreev, and D. N. Jansen, “Bisimulation
minimisation mostly speeds up probabilistic model checking,” in Proc.
of the 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’07), ser. TACAS’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 87–101. [Online].
Available: http://dl.acm.org/citation.cfm?id=1763507.1763519

[23] H. Nakagawa, A. Ohsuga, and S. Honiden, “Towards dynamic evolution
of self-adaptive systems based on dynamic updating of control loops,”
in Proc. of IEEE Sixth International Conference on Self-Adaptive and
Self-Organizing Systems (SASO’12). IEEE, sept. 2012, pp. 59 – 68.

