
1

Soft-Goal Approximation Context Awareness of

Goal-driven Self-Adaptive Systems

Aurélien Vialon

National Institute of Informatics/Sokendai

Tokyo, Japan

aurelien-vialon@nii.ac.jp

Kenji Tei - Samir Aknine

National Institute of Informatics - Université Lyon1/CNRS

Tokyo, Japan – Lyon, France

tei@nii.ac.jp –samir.aknine@univ-lyon1.fr

Abstract—In goal-driven self-adaptive systems, a goal model is

used as a requirement model and is held by the system even at

runtime. At this moment, the self-adaptive system, which can

change its behaviour at runtime, will be able to reason over the

variability within the goal model. It will then be able to find the

best behaviour to deal with environment evolutions. However, the

uncertain nature of the requirements engineering concepts in a

real dynamic world is not always rightfully defined. In particular,

quality requirements runtime changes are almost never consid-

ered in the literacy. Specifically, a problem we highlight here is the

lack of context consideration in quality constraint approximation.

Our purpose is to clearly define this problem and to propose a first

solution. In this paper, we introduce a flexible version of the qual-

ity constraints. This new kind of quality constraints can be rewrit-

ten at runtime to tackle the context change induced by the envi-

ronment change. To stick the constraint definition to the context

change, we developed a new algorithm which modifies the specifi-

cation of the quality constraints at runtime.

Index Terms—Self-Adaptive systems, Requirements

Engineering, Goal-driven self-adaptive systems, Quality

Constraint, Soft-Goal, Context Awareness.

I. INTRODUCTION

Self-adaptive systems are very useful systems to deal with

the runtime environment evolution [1]. Such systems are indeed

able to adapt their behaviour regarding environment evolution.

Nonetheless, self-adaptive systems need to get the adaptation

process at design time. A field addressing this problem is the

“Goal-driven adaptation” [2]. During development process, the

engineers elicit all the requirements of a system-to-be. These re-

quirements are represented in a goal model as shown in Fig 1.

This goal model shall respect an ontology [3]. Briefly, it is nec-

essary to bear in mind that a goal model contains several com-

ponents: the goals (represent functional objectives of the system-

to-be), the tasks (fixe how the goals will be fulfilled), the domain

assumptions about the environment (to ensure the fulfilment of

the goals), and finally the soft-goals. These latter ones are prime

importance in our method. According to the requirements engi-

neering ontology, soft-goals represent the quality expectations,

or quality requirements, of a system-to-be. They are called “soft-

goals” because we do not exactly know at development phase

what we should expect in terms of quality [3]. There are several

reasons for that. The most obvious one is because a goal model

contains, most of the time, more than one quality requirement. If

several quality requirements are present, their definition will de-

pend on the others quality requirements. They are indeed related

across the goal model. The basic connection between them could

be “if we take care of one quality, then we do not take care of

another one”.

In goal-driven adaptation approach, adaptation will be de-

cided according to an expected soft-goals global satisfaction. On

the basis of this satisfaction, a self-adaptive system will thus find

the best goal model configuration regarding the current environ-

ment [4] [5]. In these systems, soft-goals are approximated into

quality constraints to give a stronger version of the quality, a

measurable version, which will be usable at runtime by the self-

adaptive system [3].

What we aim to highlight here is that it is widely accepted

that quality requirements cannot be clearly defined at design

time [3] [4] [6] [7]. This point creates an uncertainty about the

definition of such kind of requirements and about how they can

be fulfilled. The unclear concept of “soft-goal” is the represen-

tation of the difficulty to well-define the quality requirements

[3]. The question is why this uncertainty is not kept when we

approximate soft-goals into quality constraints? One part of this

uncertainty is the context uncertainty, related to the context

within these quality requirements are defined [7]. By reducing

soft-goals into approximated quality constraints, this uncertainty

disappears and, then, a possible source of adaptation for the self-

adaptive system-to-be disappears too. This is the problem we

wish to expose in this paper, the loss of adaptation capability

induced by the non-consideration of context uncertainty during

the quality constraints approximation.

Our contribution through this paper is the introduction of

context awareness concept in the quality constraints approxima-

tion process [8]. Researchers have already recognised the con-

text top citizen role in the adaptation [7] [9]. Nevertheless, this

context is never treated from the point of view of quality con-

straints of goal-driven self-adaptive systems. We claim that a

soft-goal approximation, as any other requirements, can only be

pertinent in a particular context. We link the uncertainty related

to the quality constraint definition to a context uncertainty [7].

Consequently, context uncertainty should be considered at

runtime by the self-adaptive process to redefine the quality con-

straint approximations. These dynamic contextual approxima-

tions represent an alternative to reinforce the adaptation of a self-

adaptive system. We then define a Quality Constraint Template

2

to allow a better flexibility about the quality constraints in order

to authorise their rewriting at runtime. This rewriting will be per-

formed depending on the context evolution.

This article is split into six main parts. In section 2, we intro-

duce some relevant preliminaries about the soft-goals and about

the context variant problem in requirements engineering. These

preliminaries are essential to understand our method. In section

3, we illustrate the problem with an E-commerce example. Sec-

tion 4 sets out our solution, through the use of a constraint tem-

plate and an algorithm. Both allow to rewrite the definition of

quality constraints at runtime. Section 5 shows a panel of exist-

ing related proposals to compare them with our. Section 6 pre-

sents our conclusion and further developments we expect for our

work.

II. PRELIMINARIES

 Preliminary Definition of the Soft-Goals

It is necessary to return to what "soft-goals" mean to well

understand the problem. We already explained the difficulty to

define them with precision at development phase. This is why

they need to be approximated to be used in a proper way by the

self-adaptive systems. This can be carried out in different ways.

We chose to favour the approach of an approximation in terms

of quality constraints. The latter is more relevant in the case of

self-adaptive systems, practical systems, we are adressing. This

form of quality requirements indeed allows to be used in the case

of runtime process [3]. The use of a strict and measurable

definition of soft-goals allows that.

The existence of quality constraints perfectly shows that the

concept pointed by soft-goals cannot be well defined. To deal

with this problem, it is necessary to approximate soft-goals into

quality constraints. However, as for all approximations, some

information are lost during the process. What we aim to prove in

this paper is that the information lost in the course of the

approximation could become relevant at runtime. Some changes

in the environment could indeed lead to reconsider the way we

approximate a soft-goal.

 Context Variant Problem

Salifu, Yu and Nuseibeh [7] defined some important asser-

tions which are at first importance for the purpose of this paper.

The first one is the definition of the requirement satisfaction:

𝑊, 𝑆 ├ 𝑅

where 𝑅 is the requirements, 𝑊 is the context that 𝑅 is concerned

with and 𝑆 is the specifications needed to achieve 𝑅. Require-

ment satisfaction is thus related with the context. A change in

the context does not lead to the dissatisfaction of the require-

ments. It leads to their modification. This is stated in the next

assertions:

𝑊;𝑊𝑉 , 𝑆; 𝑆∆ ├ 𝑅 (1)

where 𝑊;𝑊𝑉 denotes a contextual change which invalidates 𝑅

requirements (semi-colon represents this change). 𝑆; 𝑆∆ is then

the change in the specification to restore 𝑅.

However, it is sometimes impossible to restore the require-

ments because the context changed in a too important way. In

such case, we have the last statement of the context variant prob-

lem:

𝑊;𝑊𝑉 , 𝑆𝑉 ├ 𝑅𝑉 (2)

where 𝑅𝑉 denotes the requirements which changed their defini-

tion because of the contextual changes 𝑊;𝑊𝑉 which invalidates

𝑅. Finally, the specification has to change too in order to stick to

requirements variation.

 Context Variant Problem With Quality Constraints

It is important to remind that quality constraints are also

requirements (for the unique reason they approximate quality

requirements). Thus, quality constraints are concerned by the

context variant problem as any requirements. Especially because

quality requirements are at the origin of three of the four

dimensions of the context-awareness variability as Salifu et al.

expressed them [7]:

1. Quality requirements that may induce variation in their

satisfaction in different contexts.

2. Physical phenomena whose variations determine the

satisfaction of the quality requirements.

3. Variation in applying a decision-making process to the

quality requirements.

The problem we want to raise here is that soft-goal

approximations can only exist in a well-defined quality space

[3]. This restriction is acceptable insofar the definition of the

expected context remains stable enough as the assertion 1

showed it. But what if it is not ? What would happen if a

variation in the environment would change the quality space of

the quality constraints ? We know this variation could have at

least three dimensions related to the quality requirements. Is the

defined quality constraints would remain relevant regarding the

new context ? In assertion 2, the context variant problem claims

that the requirements are modified when the context changes.

We will now show that in the next example.

III. E-COMMERCE EXAMPLE

The e-commerce example is particularly pertinent in our

case. It proposes a short goal model which presents the kind of

situation we want to address. The main purpose of the e-com-

merce system is to allow its users to order products sold by the

website. As shown in Fig 1, some requirements are refined at

development phase in order to allow the realisation of the top

goal “Product be Purchased”.

At the goal-tree leaves level, we find the tasks which allow

the system to act. Thus, the system can realise the various goals

it has to fulfil until it can reach the top goal fulfilment. Some

3

alternatives are available about these tasks. For instance, to fulfil

the sub-goal “Products be Searched”, the system has two possi-

bilities at runtime. It can use the task “Search in Brief” or the

task “Search in Rich”.

As it appears within the goal model, the different tasks of the

system are linked to some clouds. These ones represent the soft-

goals, the quality requirements, we have mentioned earlier. Soft-

goals are linked to the system tasks thanks to some “contribution

links”. It means the realisation of one task will contribute, nega-

tively or positively, to the satisfaction of the linked soft-goal

[10]. These contribution links do not only contribute to the real-

isation of the quality requirements of the system. They are also

the basis of the goal reasoning process launched in case of a de-

tected failure.

System failures occur when a requirement violation is de-

tected. In particular when some quality constraints are violated

[10]. For this example, the four soft-goals are approximated into

two different quality constraints. One of these is approximated

from the “Good Performance” soft-goal and another from the

four soft-goals. For this latter quality constraint, a combined util-

ity value is calculated by doing the weighted sum of the current

metrics of “Good Usability”, “High Malicious Order Checkout

Rate” and “High Notification Success Rate” soft-goals (with a

respective weight of 0.4, 0.4 and 0.2). The different metrics (all

between 0 and 1) are calculated in different ways depending on

the soft-goal. “Good Usability” represent the user satisfaction

through a user feedback process. “High Malicious Order Check-

out Rate” has for metric the rate of malicious orders (fake orders)

checkout in the total number of malicious orders. The “High No-

tification Success Rate” metric represents the rate of success-

fully notified orders to the logistic part of the e-commerce web-

site. Finally, the system will launch an adaptation procedure

when at least one of the two following quality constraints is vi-

olated:

 Response time is larger than 1000ms

 Combined utility is smaller than 0.45 and the response
time is smaller than 600ms

In such case, the system will adapt its behaviour by changing

the different variables representing the variability of the goal

model. This variability has, here, two representations. First, the

system can change its path in the goal model by switching the

used branch of OR disjunctions (Variation Points) present in the

goal model. This possibility is the most obvious but it is not the

only one. Another variability presents in Fig 1 is the variability

within each requirement. Here, two examples of such variability

is present across the control variables “MAO” and “NR”. The

first control variable “MAO” represents the value (in dollars) of

the orders that should be checked. If MAO is set at 500 dollars,

only the orders with a value over 500 dollars will be checked if

they are malicious or not. If for instance MAO is set at 250 dol-

lars, much more orders should be checked. The other control var-

iable, NR, sets the maximum number of times that the system

can retry to send a notification to the logistic before consider a

failure in that.

The switch of OR branches and the modification of the con-

trol variables are two possibilities for the self-adaptive system to

perform an adaptation at runtime. Thanks to that, it can perform

a reconfiguration of its goal model to adapt its behaviour to the

environment changes. However, it may happens that the as-

sumption which has been done to trigger the adaptation, through

the definition of some quality constraints, is no longer relevant

regarding to a change in the context. This is the meaning of the

assertion 2 of the context variant problem [7]. In such case, the

requirements vary too much to restore it with a specification

change. When the requirements vary, it means the previous def-

inition of the requirement is now invalid. In our example, we can

glimpse this inconsistency. For instance, let’s imagine that the

task “Search in Rich” is no longer usable. For an unknown rea-

son, the sub-system which was allowing the system to launch the

task of the recommendation engine of the e-commerce website

is ineffective. Then, by considering that the system is able to

monitor such kinds of requirements states, it will launch an ad-

aptation. This will lead it to switch the OR branch of the “Prod-

uct be Searched” to the remaining task “Search in Brief”. How-

ever, because the system can no longer use the task “Search in

Rich”, the soft-goal “Good Usability” will lose the positive con-

tribution that was given by this task. On another hand, the quality

constraint related to this soft-goal checks if the Global Utility

(calculated by considering the satisfaction of “Good Usability”)

is always over 0.45. Hence, a new adaptation process will be

launched to catch up the Global Utility decrease induced by the

disappearance of the “Search in Rich” task.

The point we would like to arise with the development of this

example is the following: is an adaptation really necessary here?

Indeed, this question is very relevant in our example because the

situation of the system is quite interesting. As we said, with the

demise of the task “Search in Rich”, the contribution given by

this task disappears too. For the soft-goal “Good Utility”, the

contribution from the task “Search in Rich” represents more than

50% of its total positive contribution. If the system can no longer

count on this contribution, some requirements definition previ-

ously relevant become irrelevant in this new context. For in-

stance, the minimum Global Utility in the quality constraint re-

lated to “Good Usability”. If we understand the meaning of the

assertion 2 of the Context Variant problem, this requirement be-

comes irrelevant regarding the current context. How could we

still expect this value when the calculation of Global Utility is

now distorted? When we chose at development phase the value

of this quality constraint, we chose it regarding some domain as-

Fig 1 E-commerce goal model

Products be
Purchased

Login
Account

Products be
Browsed

Place Order
Order be

Processed

Add to Cart
Details be

Viewed
Products be

Searched

Order be
Checked

Pay Order
Notify

Logistics

Search in
Brief

Search in
Rich

View in Text View in MM
Simple
Check

Complex
Check

AND

AND AND

OR OR OR

Good Usability
Good

Performance

High Malicious
Order

Checkout Rate

High
Notification
Success Rate

TRMAO

-0.4

+0.3

+0.5

-0.4 -0.4

+0.3
+0.4

-0.2 +0.2
-0.5 -0.1+0.4

-

+

4

sumptions we made. And one of these assumptions was the pos-

sibility to improve this value with the help of “Search in Rich”

contribution link. For what we see of this situation, it is not rea-

sonable to consider in the requirements definition this contribu-

tion link anymore. If we would do that, the system would pro-

ceed to irrelevant adaptations. With the violation of the quality

constraints, it would try to catch up a value which is not match-

ing the current context. For instance by decreasing the MAO

control variable value in order to increase the TR control varia-

ble value. That will increase the Global Utility rate by increasing

the satisfaction of the “High Notification Success Rate” metric.

However, we showed that such adaptation, on the based on false

assumptions induced by the context change, is not necessary. For

this reason, the system should grasp that the context has

changed. It should be aware of that to prevent irrelevant adapta-

tions. This can be possible by dynamically changing the defini-

tion of the conditions under which adaptation is necessary. Such

kind of behaviour would also be an adaptive behaviour.

IV. CONTEXT AWARENESS WITH THE QUALITY CONSTRAINTS

We will now explain our solution to deal with the context

changes and their implications on the quality constraints approx-

imation. The first part of our solution will be the definition of a

flexible template for the quality constraints. And the second part

will be concerned with the runtime algorithm which uses this

quality constraint template to dynamically deal with the context

changes.

 Requirements engineering phase

We assume that the user has already obtained a well-formed

goal model. So, all the necessary requirements for the runtime

process are present within this goal model. In particular, the

quality constraints are already defined. The method to get a well-

defined goal model may vary. We assume that the user uses a

relevant method of goal-driven self-adaptive systems engineer-

ing. This method includes the refinement of the system-to-be

main goal into sub-goals, themselves operationalised into tasks

or domain assumptions [11].

 Constraint Template at Design Time

Once each soft-goal has an approximated quality constraint

after the requirements engineering phase, we need to transform

these quality constraints into a more flexible version. However,

we want to keep the quality constraints which have been defined

for the system start. These quality constraints will actually rep-

resent the basic of the constraint template we want to build in

order to make more flexible the quality constraint at runtime.

Quality constraints templates will be built by the definition

of some flexible template variables. Template variables can only

be numeric or set types. Each template variable has a unit change

(how much this variable can change at each step) and a direction

change (+/-, even for the set type). We will find the following

template variables inheritance types: invariants and shift. The in-

variants are the template parts that will give the frame of the con-

straint rewriting. In Fig 2, “Global Utility” has been set as an

invariant, because it is the only term in the quality constraint

which implies a more global judgement (we want to improve its

value, but a change of 0.1 is temporary acceptable). Shift varia-

bles are variables which can be exchanged with other ones at

runtime. For instance in our example, “Response time” can be

exchanged with “Latency”.

 Algorithm at runtime

We can use the quality constraint templates at runtime to re-

write one or several constraints affected by a context change.

The process describing this is divided into two procedures. The

first one, shown in the Algorithm 1, draws the build of context

induced by a modification in the system goal model. The second

procedure, explains the dynamic rewriting process of a quality

constraint.

Algorithm 1 Context Builder
 1: procedure ContextBuilder(ContextVariable Cvar)

 2: for each c in Situation do

 3: if c.ID == Cvar.ID then

 4: c.value = Cvar.value

 5: for each clink in c.links do

 6: clink.switch()

 7: end for

 8: for each cst in c.cst do

 9: rewrite(cst, c.valueLink)

10: end for

11: break

12: end if

13: end for

14: end procedure

In the Algorithm 1, we change the context value of a context

variable received in the parameters of the procedure. This varia-

ble represents a change in the goal model (for instance one task

is no longer available). By considering a more global variable

containing all the context variables (which is named “Situa-

tion”), we find the corresponding variable and update its value.

For instance, if we still consider the same example where the

task “Search in Rich” is no longer available, the related context

value will switch from “true” to “false”. In the case of a numeric

or set context values, we assume that the context variable in pro-

cedure parameters contains the new value of the variable. In or-

der to consider the vanishing of the contribution links related to

some requirements, Algorithm 1 switches the value of the corre-

sponding links to zero.

Afterwards, the algorithm launches all the necessary proce-

dures to rewrite the definition of the quality constraints con-

cerned by this context change. The link between the context var-

iables and the quality constraints is done at development phase.

Fig 2 Quality Constraint Template Building

5

Algorithm 2 QC Rewriting
 1: procedure rewrite(QCst c, Int lostCLink)

 2: c.lastVar.weight.update(c.change)

 3: if c.invValue > c.invLimit then

 4: tempv = maxWeight(c.template.v)

 5: else

 6: tempv = minWeight(c.template.v)

 7: end if

 8: if lostCLink<0||c.invValue>c.invLimit then

 9: tempv.increase()

10: else

11: tempsv.decrease()

12: end if

13: end procedure

To perform the quality constraint rewriting in Algorithm 2,

the system first considers the total invariant change which allows

to keep an anteriority of the quality constraints rewriting. This

value is calculated by adding all the changes (in template varia-

ble unit) between the current value and the former one for all the

template invariants. That will give the invariant changes. Then,

the system modifies the weight of previous unit choice that it

did. For example, let’s imagine that in a first step, the system

changed the X value in Fig 2 by one unit. When it will return to

the Algorithm 2 the system will notice that the Invariant Change

is 3 units. Then, the new value of the X unit weight will be (1 +

3) / 2 = 2. We do not directly replace the unit weight value by

invariant changes value, because an uncertainty exists about the

latter one.

After this update process, our system will have two choices.

Either its current invariant value not exceed its limit or it is the

case. In the second situation, the system will try to immediately

return to an acceptable value by using its best positive change

choice. In the other situation, the system will find the template

variable which has the less weight value. The procedure which

performs this task is not shown here. It considers all the template

variables of the constraints (excluding the invariants of course)

and chooses the ones which have the less weight. If there was

only one template variable which has the less weight, then the

system returns to the Algorithm 2. On the other hand, if the num-

ber of template variables kept from the previous step is more

than one, the system will perform a random choice to define

which template variable it will keep.

Once the system has got the template variable (with the big-

gest weight or the less), it will update its value by one unit as it

has been defined at design time when the developers built the

constraint template. The decision of the update direction will be

done by the system on the base of the integer value it received

as procedure parameter. In the case this value is positive, it

means that the contribution link which has been lost was positive

for the respect of the constraint (it’s mandatory to build the qual-

ity constraints in that way to ensure the good working of the sys-

tem). So, in this case, the system has to decrease the value of the

template variable it selected.

Then, by changing the values of the different template varia-

bles, the system will be able, slowly, to modify the quality con-

straints definition. That will dynamically redefine them in order

to connect them to the new context. After one of the template

variable has been modified thanks to the Algorithm 2, then the

process related to this quality constraint rewriting is paused. The

goal-reasoning adaptation process receives the new constraint

and run with this modified requirement. In the next cycle, the

quality constraint rewriting is reactivated and change again one

template variable.

The rewriting process is stopped when the system considers

the modified quality constraint is near enough from the new con-

text. That happens when some predefined conditions are ful-

filled: if the success rate of the quality constraint is high enough,

if the global satisfaction of the system is at its higher value (re-

garding the results of the performed cycles) and finally if Invar-

iant Change value is stable since a certain number of cycles.

V. RELATED WORKS

The literacy about the context awareness problem for the re-

quirements is largely considered. However, the context is not of-

ten considered as a first-class citizen in requirements engineer-

ing and even less in the self-adaptive systems area. The research-

ers simply neglect it. Most of the time this is due to the difficulty

to grasp the real meaning of the context or to understand the var-

iables that will be implied in the definition of these contexts. Ex-

isting works tackle the same problem than us by avoiding the

context concept in the soft-goal approximation into quality con-

straints. They only address this context question from the contri-

bution links point of view [6]. There is thus a lack about this

particular point.

Works using relaxation processes for adaptation do not con-

sider the context as first-class citizen. They try to catch the con-

text consequence evolution by some tricks. It’s for instance the

case of the RELAX language [4]. RELAX addresses to the un-

certainty that a system could meet at runtime. This language uses

some relaxation keywords (SHALL, SHOULD…) which allow,

depending on what we specify at design time, the relaxation of

some constraints definition. For instance, by keeping in mind a

global satisfaction rate which has to be the highest possible, RE-

LAX will make possible the relaxation of some constraints to

allow the system to continue to work even if the context has

changed. Zanshin framework works in a very similar relaxation

way [5]. Zanshin uses the variation points and the control varia-

bles in its adaptation process, but this is not its particularity. Ac-

tually, Zanshin proposes two new kinds of requirements: the

awareness requirements and the evolution requirements. The

awareness requirements basically allow the relaxation of the suc-

cess rate of the other system requirements. For instance, if one

quality constraint fails, it’s not necessarily a problem as long as

the failure rate of this constraint remains in the accepted failure

space defined by the awareness requirements. On their side, evo-

lution requirements permit the modification of some require-

ments depending on some pre-defined conditions. Whatever we

consider RELAX language or Zanshin framework, the context is

never made explicit like in our proposal and they basically deal

more with the Assertion 1 of the context variant problem.

On another hand, there are some proposals which explicitly

consider the context in their process. It’s the case of the

TROPOS4AS Framework. From the first TROPOS version,

context was understandable by an actor distinction during the re-

quirements engineering phase. This distinction allows the con-

sideration of several values of contribution links to the same

6

soft-goal, depending on which actor was contributing. In the fol-

lowing iterations of TROPOS, the context was even made ex-

plicit and is conditioning the values of the contribution links

[12]. A very similar point of view also exists in the works of

Lapouchnian and Mylopoulos [13]. In both cases, some condi-

tions which express the various possible contexts lead to the con-

sideration or not of these contributions links. A related kind of

work addresses the same contextual contribution link question

by proposing to dynamically change at runtime the values of the

contribution links. For instance, a case-based reasoning solution

is used in such proposal [6]. Our work does not allow for the

moment to modify the contribution links values when a contex-

tual inconsistency is detected (except the ones directly related to

the contextual change). Nonetheless, it allows the rewriting of

the quality constraints which are impacted by this change in the

quality satisfaction possibility. We then propose to adapt the

“when” an adaptation is necessary, whereas the works about

contribution links contextual update deal with “how” an adapta-

tion will be perform.

VI. CONCLUSION AND FUTURE WORK

We have briefly introduced the necessity to consider the con-

text in a dynamic vision of the soft-goal approximation into qual-

ity constraints. Our solution is composed of two parts, the quality

constraint template definition and the runtime algorithm, which

address the two situations of a goal-directed requirements self-

adaptive system: the development phase and the runtime. Now,

we need to implement our runtime algorithm in order to prove

our vision compared to what our proposal allow in terms of over-

all adaptation quality. Our first track to evaluate the success of

our method is to measure the overall satisfaction of the system

quality with our solution and without. Another track could also

be to consider in the same time the total number of required ad-

aptations. If we reach a better, or a quite similar, overall satis-

faction of the system quality by launching far less adaptation

processes, it would be a significant improvement.

Regarding the contributions links, we know that there is an

uncertainty about the impact of the disappearance of one contri-

bution link on the others. The value of this impact is impossible

to know because it is depending on various parameters. For ex-

ample, the current values of the related variable have a repercus-

sion on the new value of the contribution links. However, we

finally believe that all these contributions links are related

through the soft-goal satisfaction process. We will then need to

define a system compatible with our rewriting of quality con-

straints in order to recalibrate the remaining contribution links

of the system.

About the definition of the context, we are currently using

the same definition than the context variant problem. However,

we are aware that we will need to develop our own definition of

context, regarding the very particular context point we aim to

address with the quality constraints.

We also need to improve our runtime process in order to al-

low more context cases that we used here. Our current idea about

that is to implement a genetic algorithm which will run among

the adaptive process to simulate the various possibilities of con-

text evolution regarding all the monitoring values of the system.

VII. REFERENCES

[1] Rogerio de Lemos et al, "Software Engineering for Self-

Adaptive Systems: A Second Research Roadmap" in Self-

Adaptive Systems, LNCS, pp. 1-32, 2013.

[2] Mirko Morandini , Loris Penserini, and Anna Perini, "Towards

Goal-Oriented Development of Self-Adaptive Systems" in

SEAMS'03, Leipzig, Germany, 2008.

[3] Ivan J. Jureta, John Mylopoulos, and Stéphane Faulkner,

"Revisiting the Core Ontology and Problem in Requirements

Engineering" in 16th IEEE International Requirements

Engineering Conference (RE'08), 2008.

[4] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty H. C. Cheng,

and Jean-Michel Bruel, "RELAX : a language to address

uncertainty in self-adaptive systems requirement" in RE, 2010,

pp. 177-196.

[5] Vitor Estêvao Silva Souza, "Requirement-Based Software

System Adaptation", Thesis 2012.

[6] Wenyi Qian et al., "Rationalism with a Dose of Empiricism:

Case-Based Reasoning for Requirements-Driven Self-

Adaptation" in RE, Karlskrona, Sweden, 2014.

[7] Mohammed Salifu, Yijun Yu, and Bashar Nuseibeh, "Specifying

Monitoring and Switching Problems in Context" in RE, 2007.

[8] Joëlle Coutaz, James L Crowley, Simon Dobson, and David

Garlan, "Context is key" in Communications of the ACM, pp. 49-

53, March 2005.

[9] Alistaire Sutcliffe, Stephen Fickas, and McKay Moore Sohlberg,

"Personal and Contextual Requirements Engineering" in RE,

2005.

[10] Sotirios Liaskos, Rina Jalman, and Jorge Aranda, "On Eliciting

Contribution Measures in Goal Models" in RE, 2012.

[11] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas,

"Goal-directed requirements acquisition" in Science of

Computer Programming, vol. 20, pp. 3-50, 1993.

[12] Fabiano Dalpiaz, Paolo Giorgini Raian Ali, "A goal-based

framework for contextual requirements modeling and analysis"

in RE, 2010, pp. 439-458.

[13] Alexei Lapouchnian and John Mylopoulos, "Modeling Domain

Variability in Requirements Engineering with Contexts" in

International Conference on Conceptual Modeling, 2009.

