
Mitigating the Inevitable Failure of Knowledge
Representation

DRAFT last changed 23:00 PDT, 05 April 2017 at nguyen

Christopher Landauer
Topcy House Consulting, Thousand Oaks, California

Email: topcycal@gmail.com

Abstract—This paper is a continuation of a previous paper on
self-modeling systems, concerning mitigation methods for the Get
Stuck Theorems, which are powerful theorems about the limits
of knowledge representation. The First Get Stuck Theorem says
that since there are only finitely many data structures of any given
size, it follows that as a system tries to save more and more data
/ information / knowledge, the structures necessarily get larger,
and eventually they are too large for effective computation.

The mitigations we described are Behavior Mining, which is
about building models of the system and environment behavior,
Model Deficiency Analysis, which is about assessing the efficacy of
those models and determining how to improve them, Knowledge
Refactoring, which is about restructuring the saved data for more
efficient access and smaller storage, and Constructive Forgetting,
which is about explicitly discarding some data that is deemed to
be less critical.

We argue that these classes of mitigations, and a couple
of new ones, can help a system retain effectively computable
knowledge structures in a dynamic environment at higher levels
of difficulty (of course, as the environment gets more dynamic,
all systems, including individual biological organisms and even
species, eventually fail).

Keywords: Self-Aware Systems, Self-Adaptive Systems, Self-
Modeling Systems, Get Stuck Theorems, Behavior Mining, Model
Deficiency Analysis, Knowledge Refactoring

I. INTRODUCTION

This paper is a continuation of a previous paper on Self-
Modeling Systems [55], concerning mitigation methods for
mitigating the effects of the Get Stuck Theorems [48] [51]
(see [55] for a more recent explanation). These theorems are
powerful theorems about the limits of knowledge represen-
tation, and are easily proved using the classic mathematical
technique of generating functions [77] [28]. The First Get
Stuck Theorem says that since there are only finitely many
data structures of any given size, it follows that as a system
tries to save more and more data / information / knowledge,
the structures necessarily get larger, and eventually they are
too large for effective computation.

The Second Get Stuck Theorem says that as knowledge
structures become richer, they become more interconnected,
and it becomes harder for new knowledge to be added consis-
tently, even when humans are doing the adding. This problem
has been noticed in every extensible programming language,
knowledge base, and ontology development project since the
Rapidly Extensible Language (REL) Project at Caltech in the
1970’s. It is wonderful at the beginning, gradually gets more

difficult, and unless there is a dedicated coordinating team
to keep things organized, it gets too hard to use and fades
out. There are some approaches to alleviating this problem
directly, with certain kind of knowledge refinement used to
incorporate more distinctions by expanding the reliance on
context, but discussing this further would go beyond the scope
of this paper. It will be treated in future papers.

A. Why Self-Modeling?

The question then naturally arises: why use Self-Modeling
Systems if they have these problems? Firstly, these theorems
apply to all systems that build models; it is only that Self-
Modeling Systems build a lot of them. We remember that
Self-Modeling, like Self-Awareness, is an approach to reach
a goal, not an end in itself. The goal is survivability in these
difficult environments, and as much operational competence
as possible, and we think that Self-Awareness is essentially
the only effective way to do that [9] [44] (and we particularly
want to achieve Self-Awareness via Self-Modeling [50]). The
construction methods we use are fairly complicated [49] [53]
[54], but we have repeatedly shown that this level of difficulty
is warranted in sufficiently hazardous environments.

We want to build systems that are capable of operating in
enormously difficult environments, such as search and rescue
robots for collapsed buildings, deep ocean exploratory vehi-
cles, remote astronomical probes, etc.. These environments
are dynamic, largely unpredictable, and almost completely
uncontrollable. Some of them are inherently harsh (e.g., due
to pressure, corrosive chemicals, radio interference, radiation,
vacuum and many other features), and some are so remote that
human operators have no effective way to handle emergencies.
The systems must do for themselves.

For these systems to be effective, they must have a large
degree of autonomy, and have excellent adaptation capabilities
to enable robust and resilient behavior. We think that run-time
models are a minimum necessity for significant self-awareness,
and our architecture makes significant use of models through-
out [50]. In fact, all knowledge in the system is contained in
models, some dynamic, some descriptive of dynamics, some
just descriptive of relationships.

Of course, we live and die by our models, and the extensive
use of models brings a few problems of its own [55], which
we have begun to address.



B. Mitigations

The mitigations we described before are Behavior Mining,
which is about building models of the system and environment
behavior, Model Deficiency Analysis, which is about assessing
the efficacy of those models and determining how to improve
them, Knowledge Refactoring, which is about restructuring the
saved data for more efficient access and smaller storage, and
Constructive Forgetting, which is about explicitly discarding
some data that is deemed to be less critical.

The new mitigation processes are Dynamic Knowledge
Management (which was mentioned in passing before), which
is about how to organize the saved data for more efficient
access, and Continual Contemplation, which is a process that
runs in the background all the time (except during emer-
gencies), that continually examines system and environment
behavior, looking for converging evidence of interesting phe-
nomena (of course, the definition of “interesting” depends on
the available data, goals, and resources).

We showed how these mitigations can help a system retain
effectively computable knowledge structures in a dynamic
environment at higher levels of difficulty (of course, as the
environment gets more dynamic, all systems, including indi-
vidual biological organisms and even species, eventually fail).

In this paper, we explore these topics more deeply. We
cannot prove that these methods are sufficient, so there may be
other mitigating methods that are useful for a system to retain
effectively computable knowledge structures in a dynamic
environment, but we believe that these ones go a long way
towards that goal.

C. Structure of Rest of Paper

The structure of the rest of this paper is as follows: in
the next Section II, we describe the behavioral architecture,
which defines what the system has to do. In the following
Section III, we introduce the various mitigations, expanded
from the previous paper [55], explain why we think that they
are important, and provide some indication of how they might
be implemented.

We do not discuss the system architecture we use, or the
Wrapping infrastructure that gives it its power. We have been
developing these for some time [6] [49] [52] [56] [47] [55],
but most of the details have to be left to these other references.

Suffice it to say that in contrast to most reference archi-
tectures [4] [12] [23] [35], a Wrapping-based system has
the meta-level processes in the same conceptual level as the
object-level processes (we have shown that this can work [52]
[8] [57], despite its seemingly intentional confusion, and there
is a famous example that show it is not even very hard [73]),
so any part of the system can be the subject of a reflection
process, including the parts performing the reflections.

The infrastructure also avoids the undecideability issues in a
typically pragmatic engineering way: if the system can’t figure
something out in a small enough amount of time, it moves on
to another, presumably easier, version of the problem, perhaps
giving up some enhanced performance or capability for lack

of ways to show it will work in the current context and under
the current time constraints (both for showing and for doing).

And finally, in Section IV, we present our conclusions and
prospects for further advances.

II. BEHAVIORAL ARCHITECTURE

The Behavioral Architecture of a Self-Modeling System has
several fundamental activities that we believe must be present
at some level of detail. These functions generally relate to a
practical compromise among goals requested by the operators
or imposed by the designers, current capabilities of the system,
and exigent conditions in the system environment. Where the
designers place that compromise is an engineering decision.
We strongly support the notion that design time models are
(the initial) run time models [74], since design time does not
end with deployment.

These systems should recognize their own failures (to a cer-
tain extent), change their own behavior via model adjustment
(when possible), use Knowledge Refactoring and Constructive
Forgetting for efficiency, and report on their operational and
maintenance activities (this is system telemetry, generally
lower priority than mission data, but essential nonetheless for
longer term system improvement).

In this Section, we introduce the functions, compare them
to some recent reference architectures [4] [23] [33] [34], and
then in the next Section III, we explain how the mitigation
methods address those functions.

A. Situation Awareness

The system has to be able to
“know” what is going on (situation awareness).

That knowledge includes possible system actions and environ-
mental effects, which requires predictive models of behaviors
and simulations to examine them. This is the Self-Awareness
(“introspection” in [17], which also includes reasoning) of
Self-Modeling Systems. We believe that it is important to have
these models exist at multiple levels of resolution in time and
scope [1] [63], so that reasoning can take place at the lowest
adequate level of detail.

These models will also include historical knowledge at
multiple granularities. The relevant reasoning processes will
need to smoothly move from one level of detail to another,
and to relate them by generalization, simplification, analogy
and metaphor, abstraction and reification. These reasoning pro-
cesses and knowledge representations, and how they interact
with uncertainties and inconsistencies, are beyond the scope
of this paper (they are an entire research area by themselves).

This is where the almost all of the model creation occurs.
There are many ways to create models of behavior, but all

of them rely on being able to observer behavior “from the
inside”, so to speak. That is, it is far simpler to have internal
instrumentation that shows what the behavior is intended to be
than to try to infer it from external observations of effects. On
the other hand, the difference between the intentions and the
actions is an important reality check (see Section II-C below).



These systems need methods for generating some kind of
execution traces, whether by infrastructure adjustment [3] or
inherently as in Wrappings [49].

The context models of [4] fulfill some of this function, but
we did not see very much about the creation of new models
(see [5] for one example approach). The internal and external
sensors of [23], together with learning processes that are not
described, fulfill this function. There is essentially no model-
building in [33] [35], only modules that have certain control
responsibilities. The description of Descartes in [34] explicitly
mentions the adjustment of models, and addresses the initial
creation via extraction.

B. System Expectations

The system has to be able to
“know” what should or should not be going on
(behavior expectations).

These are expressed as specification and/or expectation mod-
els, which are mapped to the current symbol system or they
cannot be interpreted, They are generally computed from the
purposes and goals of the system, and mapped into these
models at design or construction time. In the most interesting
cases, the provided goals are sufficiently high level that the
system must do some of these mappings at run time, since the
goal interpretation cannot always be completed outside the
current situation (this author’s paraphrase):

No plan ... extends with any certainty beyond the
first contact with ... [reality], reference [64], p.92

This topic represents a difficult issue for designers, since in
some cases, direct contravention of one goal is the only viable
solution for another (especially in emergencies, the goals will
be different, and this contingency should be part of the design).
It means that effective goal specifications are more difficult
than they seem, and some kind of preference mechanism needs
to be included.

We have described a system engineering process that takes
into account stakeholder expectations, defined via scenarios
and corresponding system behavior expectations, and produces
the components used in a Wrapping-based system [46], though
clearly other processes could be used [7] [53] [54]. It should
now be combined with the appropriate assurance methods [25]
or other behavior controlling methods [65] to allow designers
to show that the system’s run time changes are not going to
cause trouble.

The Goal Management Layer of [4] addresses this function.
There is very little about the source of goals in [23]. There is
no discussion of the source of the goals in [33] The description
of Descartes in [34] does not mention the source of the goals.

C. Error and Anomaly Detection

The system has to be able to
figure out whether, what and why anything went
wrong (anomaly detection and diagnosis).

This process uses self-monitoring to gather the original data,
and compare it to expectations. Problems that occur in the

execution of the system can be due to incorrect assump-
tions about environment behavior or incorrect implementa-
tion or interpretation of the system specification. Failures
of environmental expectation models can only be corrected
at run time. Incorrect implementations can be examined by
serious system verification at system construction time, and
a continuing examination of specifications and operations
in any newly modified processes. Incorrect interpretation of
the system specification can be examined by serious system
validation at design time, incorporating an effective number of
scenarios defining expected and expectable situations and the
stakeholder expectations for corresponding system behavior.
These are much harder to correct at run time because they are
errors of expectation, not errors of behavior.

Even if we now assume that the right system expectations
were provided (and validated), and that the system was imple-
mented flawlessly (and verified), and that the hardware has not
failed or degraded, there are still anomalies and other potential
problems to be considered. For our purposes, the term anomaly
means some peculiarity of behavior that might be an error, but
might not, and usually only domain expertise can determine
which. Our systems may have a lot of domain knowledge, as
provided by domain experts, but they will generally not have
domain expertise.

A different kind of problem can occur when there is not
enough knowledge to reason about system behavior. These
gaps in the knowledge are difficult to detect; we are only
beginning to address methods for the system to find out that
something is missing.

Certain kinds of performance issues can be considered
to be failures also, and the system itself can only go so
far to help (optimizing expressions, remembering common
combinations of actions, etc.). These issues are more properly
considered at design time, because they are difficult, and our
recommendation is to have multiple approaches to some of
the more time-consuming analyses, with varying levels of
accuracy and resolution, so that at run time, the system can
decide how much time it has and act accordingly.

For our Wrapping-based systems, the context specification
in a Wrapping may be incorrect, which can cause resources
to be used inappropriately (conditions too weak), or the right
ones to be missed (conditions too strong). Here we can only be
very careful about the conditions under which each resource is
applied. In addition, the behavior descriptions can be incorrect,
for which we can only be very careful about what the resources
do. This care can seem to be a burden at design time, but it
is known to be extremely valuable at run time.

The analyzer of the Configuration Management Layer of [4]
addresses this function. There is little mention of this function
in [23]. There are analyze and reason modules in [33], but no
discussion of error detection and diagnosis. The description of
Descartes in [34] explicitly mentions detecting problems.

D. Model Change Design and Test

The system has to be able to
design and test changes to its models accordingly.



This is the Self-Adaptation (“intercession” in [17]) of Self-
Modeling Systems. This is one of the hardest areas, because it
seems to be the most “creative”, finding solutions to problems
by designing models.

The reasoner of the Configuration Management Layer of [4]
partially addresses this function, and the Capability and Plan
Models of the Base Layer are also involved in the modification
of models, but we did not see much about creation of models.
There is little mention of this function in [23], except to refer
to learning methods. There is essentially no mention of this
function in [33]. The description of Descartes in [34] explicitly
mentions the construction of adaptation plans, but does not
explain how the models have to be changed.

This function is an essential part of self-adaptation, but none
of the mitigations is about model change design and test, since
we do not have very good approaches yet. For example, this is
where we might use evolutionary programming or some other
search technique to find a suitable model [18] [40], but we
have seen no truly successful examples.

Other methods for detecting the need for changes include
the short term model deficiencies described in Section III-B
below, and the longer term system evolution. If the self-aware
system retains models as databases, then there are methods
for detecting and making changes [36] (this is also related
to Knowledge Refactoring), though there seems to be an
expectation that the impetus for changes is external to the
system.

Changing the nature of a system at run time is not restricted
to self-aware systems [21], and the more general versions can
also be applied. In fact, it can be argued that having an explicit
design model can help a reflective system decide on some of
its own changes by reflecting on the design [20]. This process
includes comparing behavior to intentions specified with the
design, and deciding what needs to change and how to change
it. The latter steps are both fairly difficult.

Of course, some changes are predictable; we know that the
system will want to re-organize its priorities in the light of
environmental behavior, and we know that some of the clever
code we have inserted will never be used (we typically just
don’t know which parts). We can assist the systems we build
with a set of adaptation plans that it can use when the occasion
warrants, and make them also adaptable [61].

E. Get Stuck Theorem Mitigation

The system has to be able to
mitigate the Get Stuck theorems.

This is one of the newest functions, not mentioned in the other
Reference Architectures. We believe that it must be part of
managing all of these many models, generally using some
process for Constructive Forgetting (along with others). We
call the other processes described in this Section mitigations
also because they set up the knowledge structures in a way
that facilitates Constructive Forgetting.

III. MITIGATIONS

There are six basic mitigation strategies:

• Behavior Mining
• Model Deficiency Analysis
• Knowledge Refactoring
• Dynamic Knowledge Management
• Constructive Forgetting
• Continual Contemplation

In this Section, we describe each in turn, and provide some
indication of how they might be implemented. It will be clear
that each of these has many different kinds of implementation,
at differing levels of effort and capability.

In the simplest terms, Behavior Mining makes models (mod-
els are represented knowledge), Model Deficiency Analysis
detects deficiencies and changes models, Dynamic Knowledge
Management organizes the knowledge for efficient access,
Knowledge Refactoring detects infelicities and changes the
represented knowledge, Constructive Forgetting simplifies the
represented knowledge, and Continual Contemplation watches
all the processes looking for improvements or anomalies.

A. Behavior Mining

Behavior Mining is the process of creating models of the
behavior of the system (and its environment), based on ob-
servations from external sensors and internal instrumentation.
These models can be used for process improvement and error
correction, and for prediction of likely environment behavior
and likely effects of system decisions. These models are the
knowledge that the system has about itself, its environment,
the interaction between them, and the goals / constraints it has
been given. In a strong sense, the desire for these capabilities
underlies all Models@Run.Time approaches.

Behavior Mining is where the various methods and algo-
rithms for model construction are used, to build prediction
and expectation models at multiple time and subject scale and
scope. These methods include grammatical inference [39] and
much more sophisticated mathematical methods.

We expect that the exigencies of system development mean
that we cannot expect the system to be capable of building all
of its own models, so whatever mechanisms we choose must
allow some models to be provided by the designers: typically
goals, anti-goals (things not to do), and starter models for
the system, the expected environment and their interaction.
We also must allow some models to be fixed by the designers
(not spontaneously changeable), but then mounting evidence of
problems can be used to request changes (fundamental system
goals are likely to be in this category).

These models can come from many sources: the simplest are
the performance models used to find bottlenecks [71], which
have been widely used for a long time. Models can be elicited
from users or extracted from running software [78] [5].

The general process of building and refining knowledge is
akin to concept formation: the system distinguishes contexts
that have different implications (via environment behavior
changes or differing responses), splits concepts according to
differing context and usage (classic knowledge elaboration
methods), and uses whatever learning processes are available



to refine them [40] (and many other learning methods, which
are beyond the scope of this paper).

There is a strong sense in which Behavior Mining is not
new; every self-aware system has to be doing some of these
processes already, and we are just emphasizing it as a major
function, according to our emphasis on the models.

For the simpler arena of sequence identification, methods
of grammatical inference [39] have been known to be useful,
in combination with parsing methods for testing inferred
models in a simulated environment during a training phase at
construction time [29]. We can also use formal languages and
power series as a reality check on generated grammars [26]
[13] [70] (there is a simple eigenvalue test for finite expected
length of strings generated by a context-free grammar; it can
be used to bound the expected length of strings generated by
a context-sensitive grammar).

A powerful way of creating models of observations is
inductive inference [2], which goes beyond sequence pattern
identification to look at other commonalities, such as sequence
identification and next term prediction, function definition
from examples, etc..

Other dynamic models are also interesting [78]. Tempo-
ral logic allows us to build models that have notions of
“eventually” and “always” [69] [79] [80], which are useful
to discover or verify system invariants (properties that are
always true or always false, such as the low-level “this variable
is an integer between 0 and 63”, or the higher-level “these
two processes are never operating concurrently”), and semi-
invariants (properties that can sometimes be allowed to be true,
but the system always eventually makes them false again, such
as the low-level “the task queue is always in a consistent state”
or the higher-level “the knowledge base has no unreachable
elements”).

When the sequences are intended to have embedded timing
information, the process is a little harder (because the time
intervals and the observations thereof may not be precisely
the same for every observation).

And, as always, whatever logics and other reasoning pro-
cesses are used need to deal with inconsistency [14] [15]
[19] and uncertainty [45] [32] in a coherent way. This is
especially important in our case, when the system is creating
and adjusting many models at the same time.

The simplest argument for models of internal behavior is
performance modeling to find bottlenecks [71].

A permanent problem in all of these approaches is bad data
[62]. We need processes to recognize it (not just outliers),
ignore it when it should be ignored, and process it when we
are trying to understand it.

B. Model Deficiency Analysis

Model Deficiency Analysis is the process of analyzing
model behavior, detecting anomalies, mistakes and other de-
ficiencies, ascribing them to particular model structures or
interactions when possible, inventing adjustments to structures
or interaction protocols that fix the problem, or at least reduce
it, and changing the models accordingly.

It includes comparison of behavior models with intention
models, deciding what component or interaction failed and
why, creating potential changes. and internal simulations to
assess effects of potential changes.

We think that parts of this process are very hard in general,
but nonetheless essential. For example, in many complex
systems, the components are distributed, heterogeneous, not
particularly well-specified, and none of them was designed to
work with others. A common important problem is what we
call emergent failure: no one component or interaction is to
blame; something else happens. Correcting emergent failure is
extremely difficult, since we need to examine a much larger
space of timed interactions than is necessary for any one of
the component systems or for any of the component pair
interactions.

In CARS (Computational Architecture for Reflective Sys-
tems), [8] [57], we have a set of reflective processes comparing
sensor readings with the effector commands issued (more
precisely, the expected effect on the sensor readings due to
the command), to detect inconsistencies and initiate a fault-
management process.

This fault-detection via sensor prediction is also nicely
treated in [41]. Another method is presented in [82]. While
model mismatch is a source of problems [32] it is not exactly
a source of uncertainty (uncertainty is more like measurement
precision; model mismatch is usually an error).

In addition to the model change need detection mechanisms
described above in Section II-D, model deficiencies are an
important reason to want to change them.

For example, we can use run-time probabilistic model
checking [66] to get a notion of the likelihood of a model
failure, or we can perform a “root cause analysis” [72] to
determine what caused a failure and sometimes how to fix it
(since most errors seem to be simple ones). Even when the
model under consideration is a reasoner [24] [67], we can
examine reasoning failures to improve it [22], by separating
reasoning problems from lack of information.

C. Dynamic Knowledge Management

Dynamic Knowledge Management is the process of organiz-
ing the data structures that represent knowledge in the system
for efficient access. The intention is to make frequent (or
important) accesses quick, and allowing rare and less impor-
tant accesses to take longer. The notion of which accesses
are more important is also dynamic, as it depends on the
operational context at the time. That means that the knowl-
edge is undergoing continual assessment and rearrangement,
tempered by notions of “it is good enough for now”; there is
no optimization in this process.

One approach to organizing this knowledge is to use a multi-
level archive, separated by immediacy, much like all modern
computing storage, within the CPU (caches) and not (memory,
disks, etc.). These levels might be selected as

• direct and indexed (cache);
• direct and less indexed (main storage);
• indirect and less indexed (hard drives);



• easy compressed (less compression, quicker access);
• hard compressed (more compression, slower access);
• gone;

Of course, experiments are needed to determine how much of
this organization is warranted for any particular application.

This is not the same as organizing by generality, with more
specificity intended for more efficiency? then choices and
distinctions are retained, and only the most specific things
are archived / discarded, but that can be used as part of the
criteria. Other re-ordering criteria can include popularity or
assessed importance (use in many reasoning arguments), the
utility of information, or the utility of distinctions (e.g., is it
important that these two labels remain distinct?). It is also
essential to note the trade-off between compressing the data
and the length and kind of indexes [27]; the indexing should
move up in abstraction levels as the data gets more remote,
(which can mean old, unreferenced, superseded, or any other
component of the re-ordering criteria.

Another intriguing idea is to consider small world graphs
[75] [76] as an organizing principle, because ordinary asso-
ciation graphs are not like this. The main question to be
considered here is how to make these graphs, and what criteria
to use. Then the system can use difficulty to infer the existence
of new nodes. This is another little-studied research topic.

D. Knowledge Refactoring

This approach is part of Dynamic Knowledge Management,
but we separated it because it is more specific, and because
there is other work in a related area, refactoring of program
source code [30] [42].

Knowledge Refactoring is the process of re-arranging
knowledge structures and their interconnections for better ac-
cess properties (better can mean faster, but also flexibility and
abstraction are important). This process includes determining
that a refactoring is necessary (or just useful; a relevant
criterion is how busy the system is at the moment, and how
much disruption it can tolerate just now).

This is the point of Knowledge Refactoring: how to decide
what to fix and how. The first question, how and why to dislike
a knowledge structure, is about deciding what features are
so bad about a structure that it warrants refactoring. Since
our purpose for the knowledge structure is to be quickly
informative, our criteria are mainly about ease and speed of
access.

The simplest way to treat this problem is as a graph re-
arrangement problem, where we imagine each relationship
among knowledge elements as an edge (of course, what the
actual knowledge elements are, especially their granularity,
remains to be decided). Then we can weight edges by how
often they were traversed during normal (and anomalous)
operation, and try to make heavily weighted paths shorter (by
collecting the knowledge elements near each other). Similarly,
lightly weighted edges can be allowed to be longer, so some
can be saved farther away. Here, near and far refer both to
direct pointers and to different levels of immediacy in the

Knowledge Archive Structure described above. Clearly, there
is much experimentation to be done here.

This function includes testing the effects of proposed model
changes to validate the changes in multiple situations. For
example, there will be internal simulation of hypotheticals
with observation of results, to evaluate the effectiveness of a
proposed change. The system will maintain a small collection
of canonical problems that it can use for any such speculative
reconfiguration.

E. Constructive Forgetting

Constructive Forgetting is the process of throwing out
knowledge that has become obsolete, overly burdensome, or
just not important enough to keep right now. The importance
measures are a balance between frequency of use (frequently
used reasoning processes get higher importance) and danger
of damage (extremely damaging possibilities get higher im-
portance, even if unlikely).

This process competes / cooperates with Behavior Mining
and Knowledge Refactoring for access to the knowledge struc-
tures. It shares the notion of importance assessment assigned
by Knowledge Management, and moves elements from nearer
to farther in the access hierarchy.

In fact, we can treat the various Knowledge management
functions as separate agents, and use distributed system models
to help them coordinate [68].

F. Continual Contemplation

Continual Contemplation is the background process of
examining all available knowledge or previously unknown
relationships, with the intent of discovering properties that are
present in the system, but not yet properly correlated with
others. Such a process should run at a low priority, so it
does not interfere with the operational behavior of the system,
especially in emergencies.

This is an inherently n2 problem if n is the size of
the knowledge base, so there must be some content-based
partitioning to make it feasible. It will create hypotheses, run
simulations to evaluate them, possibly using some version of
evolutionary programming or simulated annealing to improve
them, definitely including certain kinds of time series analysis
and may other advanced mathematical methods. This is a
classic set of very hard problems, not considered further for
this paper.

An even harder problem is to decide that something cannot
be concluded from the available data. This problem may
arise in coordinating multiple actions and planning complex
actions, when a certain goal is actually not reachable using
the available methods and data. As before, we will avoid any
decideability issues using resource and time bounds (i.e., if the
system cannot draw the conclusion in a useful amount of time,
it abandons it without assuming that it is false; it is recorded
as merely being too hard to decide).

IV. CONCLUSIONS AND PROSPECTS

,



We have shown earlier that any self-aware system in a com-
plex environment will run afoul of the Get Stuck Theorems. In
this paper, we have described several processes and algorithms
that mitigate the effects of the theorems, though, of course,
they do not prevent the effects, only delay them.

We have argued that many of these processes are necessary
for self-aware systems to survive for long periods of time,
and acknowledged that each application will have a different
trade-off for how much of this machinery is needed.

Many mathematical methods are useful in these modeling
analyses, but many of them are likely to be too slow. We
want to examine them to determine which ones would be more
useful if they could be made faster (even if only approximate).
Our recommendation for multiple levels of resolution helps in
this regard, since the system can compute only to its available
time, and then incrementally increase the resolution as needed
when it is not so busy.

These issues and others (e.g., collective awareness) will be
studied in the context of our CARS application.

For the future, we have only a little to add to the outlook
in [16] [60], mainly in the area of much more complicated
information and knowledge processing, and not so much in
infrastructure organization, since we already start with an
infrastructure based on Wrappings that is capable of managing
all this flexibility.

REFERENCES

[1] James S. Albus, Alexander M. Meystel, Engineering of Mind: An
Introduction to the Science of Intelligent Systems, Wiley (2001)

[2] Dana Angluin, Carl H. Smith, “Inductive Inference: Theory and Meth-
ods”, Computing Surveys, vol.15, no.3, pp.237-269 (Sep 1983)

[3] Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina, “An
Infrastructure for Generating Run-time Model Traces for Maintenance
Tasks”, in [38]

[4] Uwe Aßmann, Sebastian Götz, Jean-Marc Jézéquel, Brice Morin and
Mario Trapp, “A Reference Architecture and Roadmap for Mod-
els@run.time Systems”, p.1-18 in [11]

[5] Marco Autili, Davide De Ruscio, Paola Inverardi, Patrizio Pelliccione,
and Massimo Tivoli, “ModelLAND: Where Do Models Come from?”,
p.162-187 in [11]

[6] Kirstie L. Bellman, “An Approach to Integrating and Creating Flexible
Software Environments Supporting the Design of Complex Systems”,
pp. 1101-1105 in Proceedings of WSC’91: The 1991 Winter Simulation
Conference, 08-11 December 1991, Phoenix, Arizona (1991)

[7] Kirstie L. Bellman, Christopher Landauer, Phyllis R. Nelson, “Systems
Engineering for Organic Computing: The Challenge of Shared Design
and Control between OC Systems and their Human Engineers”, Chapter
3, p.25-80 in [81]

[8] Dr. Kirstie L. Bellman, Dr. Christopher Landauer, Dr. Phyllis R.
Nelson, “Managing Variable and Cooperative Time Behavior”, Pro-
ceedings SORT 2010: The First IEEE Workshop on Self-Organizing
Real-Time Systems, 05 May 2010, Carmona, Spain (2010)

[9] Kirstie L. Bellman, Christopher Landauer, Phyllis Nelson, Nelly Ben-
como, Sebastian Götz, Peter Lewis and Lukas Esterle, “Self-modeling
and Self-awareness”, Chapter 9, pp. 279-304 in [43]

[10] Nelly Bencomo, Robert France, Sebastian Götz, Bernhard Rumpe
(eds.), Proceedings of the 8th Workshop on Models @ Run.time, 29
September 2013, co-located with MODELS 2013: the 16th ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, 29 September - 04 October 2013, Miami, Florida, USA (2013)

[11] Nelly Bencomo, Robert France, Betty H. C. Cheng, Uwe Aßmann
(eds.), Models@run.time, SLNCS 8378, Springer (2014)

[12] Amel Bennaceur, Robert France, Giordano Tamburrelli, Thomas Vogel,
Pieter J. Masterman, Walter Cazzola, Fabio Costa, Alfonso Pieranto-
nio, Matthias Tichy, Mehmet Akşit, Pär Emmanuelson, Huang Gang,
Nikolaus Georgantas, and David Redlich, “Mechanisms for Leveraging
Models at Runtime in Self-adaptive Software”, p.19-46 in [11]

[13] J. Berstel, L. Boasson, “Context-Free Languages”, Chapter 2, pp.59-
102 in [58]

[14] Leopoldo E. Bertossi, Anthony Hunter, Torsten Schaub (eds.), Inconsis-
tency Tolerance, Springer Lecture Notes in Computer Science, Volume
3300, Springer Verlag (2004)

[15] Jean-Yves Beziau, Walter Carnielli and Dov Gabbay (eds.), Handbook
of Paraconsistency, King’s College (2007)

[16] Robert Birke, Javier Cámara, Lydia Y. Chen, Lukas Esterle, Kurt
Geihs, Erol Gelenbe, Holger Giese, Anders Robertsson and Xiaoyun
Zhu, “Self-aware Computing Systems: Open Challenges and Future
Research Directions”, Chapter 26, pp. 709-722 in [43]

[17] D.G. Bobrow, R.G. Gabriel, J.L. White, “CLOS in Context - the Shape
of the Design Space”, p.29-61 in OOP: the CLOS Perspective, MIT
(1993)

[18] Jürgen Branke, Hartmut Schmeck, “Evolutionary Design of Emergent
Behavior”, Chapter 6, p.123-140 in [81]

[19] Walter A. Carnielli, M.E. Coniglio and J. Marcos, “Logics of Formal
Inconsistency”, pp. 15-107 in [31]

[20] Walter Cazzola, “Evolution as łReflections on the Design”, p.259-278
in [11]

[21] Walter Cazzola, Nicole Alicia Rossini, Phillippa Bennett, Sai Pradeep
Mandalaparty, and Robert France, “Fine-Grained Semi-automated Run-
time Evolution”, p.237-258 in [11]

[22] Hans Chalupsky and Tom Russ, “WhyNot: Debugging Failed Queries
in Large Knowledge Bases”, pp. 870-877 in Proceedings IAAI-02: the
14th Innovative Applications of Artificial Intelligence Conference, 28
July - 01 August 2002, Edmonton, Alberta, Canada (2002)

[23] Arjun Chandra, Peter R. Lewis, Kyrre Glette, and Stephan C. Stilkerich,
“Reference Architecture for Self-aware and Self-expressive Computing
Systems”, Chapter 4, pp. 37-49 in [59]

[24] Franck Chauvel, Nicolas Ferry, Brice Morin, Alessandro Rossini and
Arnor Solberg, “Models@Runtime to Support the Iterative and Con-
tinuous Design of Autonomic Reasoners”, in [10]

[25] Betty H. C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Mar-
tin Litoiu, Hausi A. Müller, Patrizio Pelliccione, Anna Perini, Nauman
A. Qureshi, Bernhard Rumpe, Daniel Schneider, Frank Trollmann, and
Norha M. Villegas, “Using Models at Runtime to Address Assurance
for Self-Adaptive Systems”, p.101-136 in [11]

[26] Noam Chomsky, Marcel-Paul Schützenberger, “The Algebraic The-
ory of Context-Free Languages”, pp. 118-161 in P. Braffort and D.
Hirschberg (eds.), Computer Programming and Formal Systems, North-
Holland (1963)

[27] Hal Draper, “Ms Fnd in a Lbry”, The magazine of Fantasy and Science
Fiction (Dec 1961); reprinted in Groff Conklin (ed.), 17 × Infinity, Dell
(1963)

[28] Philippe Flajolet, Robert Sedgewick, Analytic Combinatorics, Cam-
bridge University Press (2009)

[29] J. M. Foster, Automatic Syntactic Analysis, American Elsevier (1970)
[30] Martin Fowler, Refactoring: Improving the Design of Existing Code,

Addison-Wesley (1999)
[31] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol.

14, Reidel (2007)
[32] Holger Giese, Nelly Bencomo, Liliana Pasquale, Andres J. Ramirez,

Paola Inverardi, Sebastian Wätzoldt, and Siobhán Clarke, “Living with
Uncertainty in the Age of Runtime Models”, p.47-100 in [11]

[33] Holger Giese, Thomas Vogel, Ada Diaconescu, Sebastian Götz and
Kirstie L. Bellman, “Generic Architectures for Individual Self-aware
Computing Systems”, Chapter 6, pp. 149-189 in [43]

[34] Holger Giese, Thomas Vogel, Ada Diaconescu, Sebastian Götz, Nelly
Bencomo, Kurt Geihs, Samuel Kounev and Kirstie L. Bellman, “State
of the Art in Architectures for Self-aware Computing Systems”, Chap-
ter 8, pp. 237-275 in [43]

[35] Holger Giese, Thomas Vogel, Ada Diaconescu, Sebastian Götz and
Samuel Kounev, “Architectural Concepts for Self-aware Computing
Systems”, Chapter 5, pp. 109-147 in [43]

[36] Sebastian Götz and Thomas Kühn, “Models@run.time for Object-
Relational Mapping Supporting Schema Evolution”, in [37]

[37] Sebastian Götz, Nelly Bencomo, Gordon Blair, Hui Song (eds.), Pro-
ceedings of the 10th International Workshop on Models@run.time, 29



September 2015, co-located with MoDELS 2015: the 18th ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, 27 September - 02 October 2015, Ottawa, Canada (2015)

[38] Sebastian Götz, Nelly Bencomo, Kirstie Bellman, Gordon Blair, Pro-
ceedings of the 11th International Workshop on Models@run.time, 04
October 2016, co-located with MODELS 2016: the 19th ACM/IEEE
International Conference on Model Driven Engineering Languages
and Systems, 02-07 October 2016, Palais du Grand Large, Saint Malo,
Brittany, France (2016)

[39] Colin de la Higuera, Grammatical Inference: Learning Automata and
Grammars, Cambridge U. Press (2010)

[40] Christian Igel, Bernhard Sendhoff, “Genesis of Organic Computing
Systems: Coupling Evolution and Learning”, Chapter 7. p.141-166 in
[81]

[41] Christophe Jacquet, Ahmed Mohamed, Frédéric Boulanger, Cécile
Hardebolle, and Yacine Bellik, “Building Heterogeneous Models at
Runtime to Detect Faults in Ambient-Intelligent Environments”, in [10]

[42] Joshua Kerievsky, Refactoring to Patterns, Pearson (2004)
[43] Samuel Kounev, Jeffrey O. Kephart, Aleksandar Milenkoski, Xiaoyun

Zhu (eds.), Self-Aware Computing Systems, Springer (2017)
[44] Samuel Kounev, Peter Lewis, Kirstie L. Bellman, Nelly Bencomo,

Javier Cámara, Ada Diaconescu, Lukas Esterle, Kurt Geihs, Holger
Giese, Sebastian Götz, Paola Inverardi, Jeffrey O. Kephart and Andrea
Zisman, “The Notion of Self-aware Computing”, Chapter 1, pp. 3-16
in [43]

[45] Christopher Landauer, “Non-Deterministic Distributions”, Paper
mtlmd05 in Proceedings of HICSS’99: The 32nd Hawaii Conference on
System Sciences (CD), Track VI: Modeling Technologies and Intelligent
Systems, Logic Modeling Mini-Track, 5-8 January 1999, Maui, Hawaii
(1999)

[46] Dr. Christopher Landauer, “Problem Posing as a System Engineering
Paradigm”, Proc. ICSEng 2011: The 21st International Conference on
Systems Engineering, 16-18 August 2011, Las Vegas, Nevada (2011)

[47] Christopher Landauer, “Infrastructure for Studying Infrastructure”,
Proc. ESOS 2013: Workshop on Embedded Self-Organizing Systems,
25 June 2013, San Jose, California (2013)

[48] Christopher Landauer, Kirstie L. Bellman, “Situation Assessment via
Computational Semiotics”, pp.712-717 in Proc. ISAS’98: The 1998
International MultiDisciplinary Conference on Intelligent Systems and
Semiotics, 14-17 Sep 1998, NIST, Gaithersburg, Maryland (1998)

[49] Christopher Landauer, Kirstie L. Bellman, “Generic Programming,
Partial Evaluation, and a New Programming Paradigm”, Chapter 8,
pp.108-154 in Gene McGuire (ed.), Software Process Improvement,
Idea Group Publishing (1999)

[50] Christopher Landauer, Kirstie L. Bellman, “Self-Modeling Systems”,
pp.238-256 in R. Laddaga, H. Shrobe (eds.), “Self-Adaptive Software”,
Springer Lecture Notes in Computer Science, vol.2614 (2002)

[51] Christopher Landauer, Kirstie L. Bellman, “Semiotic Processing in
Constructed Complex Systems”, Proc. CSIS2002: The 4th International
Workshop on Computational Semiotics for Intelligent Systems, 08-13
Mar 2002, Research Triangle Park, NC (2002)

[52] Christopher Landauer, Kirstie L. Bellman, “Managing Self-Modeling
Systems”, in R. Laddaga, H. Shrobe (eds.), Proc. Third International
Workshop on Self-Adaptive Software, 09-11 Jun 2003, Arlington,
Virginia (2003)

[53] Dr. Christopher Landauer, Dr. Kirstie L. Bellman, “Programming
Paradigms for Real-Time Systems”, Proceedings SORT 2014: The Fifth
IEEE Workshop on Self-Organizing Real-Time Systems, 09 June 2014,
Reno, Nevada (2014)

[54] Christopher Landauer, Kirstie L. Bellman, “Model-Based Cooperative
System Engineering and Integration”, Proceedings SiSSy: 3rd Work-
shop on Self-Improving System Integration, 19 July; part of ICAC2016:
13th IEEE International Conference on Autonomic Computing, 19-22
July 2016, Wuerzburg, Germany (2016)

[55] Christopher Landauer, Kirstie L. Bellman, “Self-Modeling Systems
Need Models at Run Time”, in [38]

[56] Dr. Christopher Landauer, Dr. Kirstie L. Bellman, Dr. Phyllis R.
Nelson, “Wrapping Tutorial: How to Build Self-Modeling Systems”,
Proc. SASO 2012: The 6th IEEE Intern. Conf. on Self-Adaptive and
Self-Organizing Systems, 10-14 Sep 2012, Lyon, France (2012)

[57] Dr. Christopher Landauer, Dr. Kirstie L. Bellman, Dr. Phyllis R.
Nelson, “Modeling Spaces for Real-Time Embedded Systems”, Pro-
ceedings SORT 2013: The Fourth IEEE Workshop on Self-Organizing
Real-Time Systems, 20 June 2013, Paderborn, Germany (2013)

[58] Jan van Leeuwen (Managing Editor), Handbook of Theoretical Com-
puter Science, Volume B: Formal Methods and Semantics, MIT Press
(1990)

[59] Peter R. Lewis, Marco Platzner, Bernhard Rinner, Jim Tørreson, Xin
Yao (eds.), Self-Aware Computing Systems: An Engineering Approach,
Springer (2016)

[60] Peter R. Lewis, Marco Platzner, Bernhard Rinner, Jim Tørreson, Xin
Yao, “Conclusions and Outlook”, Chapter 15, pp. 297-300 in [59]

[61] Maksym Lushpenko, Nicolas Ferry, Hui Song, Franck Chauvel, Arnor
Solberg, “Using Adaptation Plans to Control the Behavior of Mod-
els@runtime”, in [37]

[62] Q. Ethan McCallum, Bad Data Handbook, O’Reilly (2012)
[63] Alexander M. Meystel, James S. Albus, Intelligent Systems: Architec-

ture, Design, and Control, Wiley (2002)
[64] Helmuth Karl Bernhard Graf von Moltke, On Strategy (in German),

translated in Daniel J. Hughes and Harry Bell, Moltke on the Art of
War: Selected Writings, Presidio Press (1993); paperback Presidio Press
(1995)

[65] Christian Müller-Schloer, Bernhard Sick, “Controlled Emergence and
Self-Organization”, Chapter 4, p.81-104 in [81]

[66] Hiroyuki Nakagawa, Kento Ogawa, Tatsuhiro Tsuchiya, “Caching
Strategies for Run-time Probabilistic Model Checking”, in [38]

[67] Luis H. Garcia Paucar, Nelly Bencomo, Kevin Kam Fung Yuen,
“Runtime Models Based on Dynamic Decision Networks: Enhancing
the Decision-making in the Domain of Ambient Assisted Living
Applications”, in [38]

[68] Christian Piechnick, Maria Piechnick, Sebastian Götz, Georg Püschel
and Uwe Aßmann, “Managing Distributed Context Models Requires
Adaptivity too”, in [37]

[69] Nicholas Rescher, Alasdair Urquhart, Temporal Logic, Springer-Verlag
(1971)

[70] A. Salomaa, “Formal Languages and Power Series”, Chapter 3, pp.
103-132 in [58]

[71] Simon Spinner, Samuel Kounev, Xiaoyun Zhu, and Mustafa Uysal,
“Towards Online Performance Model Extraction in Virtualized Envi-
ronments”, in [10]

[72] Michael Szvetits and Uwe Zdun, “Enhancing Root Cause Analysis with
Runtime Models and Interactive Visualizations”, in [10]

[73] Ken Thompson, “Reflections on Trusting Trust”, Comm. of the ACM,
vol.27, no.8, pp.761-763 (Aug 1984), http://dl.acm.org/citation.cfm?id=
358210 (availability last checked 03 Apr 2017); see also the “back
door” entry of “The Jargon File”, widely available on the Web, and
other comments findable by searching for “back door Ken Thompson
moby hack” (availability last checked 03 Apr 2017)

[74] Thomas Vogel and Holger Giese, “On Unifying Development Models
and Runtime Models (Position Paper)”, in Sebastian Götz, Nelly
Bencomo, Robert France (eds.), Proceedings of the 9th Workshop
on Models@run.time, 30 September 2014, co-located with MODELS
2014: the 17th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, 28 September - 03 October 2013,
Valencia, Spain (2014)

[75] Duncan J. Watts, Steven H. Strogatz, “Collective dynamics of ’small-
world’ networks”. Nature, vol.393, pp.440-442 (1998)

[76] Duncan J. Watts, Small Worlds: The Dynamics of Networks between
Order and Randomness, Princeton U. Press (2003)

[77] Herbert S. Wilf, generatingfunctionology, Academic Press (1990)
[78] James R. Williams, Simon Poulding, Richard F. Paige, Fiona A. C.

Polack, “Exploring the Use of Metaheuristic Search to Infer Models
of Dynamic System Behaviour”, in [10]

[79] Pierre Wolper, “Temporal Logic can be More Expressive”, pp. 340-348
in Proceedings of FoCS 1981: The 22nd Annual IEEE Symposium on
the Foundations of Computer Science, 28-30 October 1981, Nashville,
Tennessee, IEEE (1981)

[80] Pierre Wolper, “Specification and Synthesis of Communicating Pro-
cesses using an Extended Temporal Logic”, pp. 20-33 in Proceedings
of PoPL 82: The Ninth Annual ACM Symposium on Principles of
Programming Languages, January 1982, Albuquerque, New Mexico,
ACM (1982)

[81] Rolf P. Würtz (ed.), Organic Computing, Springer (2008)
[82] Yijun Yu, Thein Than Tun, Arosha K Bandara, Tian Zhang, and Bashar

Nuseibah, “From Model-Driven Software Development Processes to
Problem Diagnoses at Runtime”, p.188-207 in [11]


