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Abstract—Modeling the reasoning component of self-adapting
systems including its context is a challenging task. Context feature
models used in dynamic software product lines help to capture the
capabilities of a software as well as the monitored context values.
This enables the possibility to add constraints between the context
and system features. In this paper, we present an adaptation
logic architecture for specifying the knowledge for reasoning in
a model-based manner by means of dynamic software product
lines. The whole knowledge for reasoning is encapsulated inside
a component which enables the reuse of the adaptation logic
for various application scenarios. Thus, the system designer only
has to specify the adaptation logic’s knowledge and implement
the according interfaces in the managed resource. We evaluate
the adaptation logic using our architecture in a distributed
computing scenario.

I. INTRODUCTION

Despite the availability of frameworks and model-based
approaches: building context-aware self-adaptive systems is
still a challenging task ([1], [2]). With increasing mobility of
computing systems, the context of a system gets gradually
more important for reasoning about its state. However, in
most existing approaches a more explicit integration of the
context into the reasoning process is needed [2]. Additionally,
for building such a system, the system designer needs to
have expertise in self-adaptive systems development as well
as domain knowledge of the actual application.

A self-adaptive system ”modifies its own behavior in
response to changes in its operating environment” ([3], [4]).
It consists of an adaptation logic (AL) and the resources
managed by it. The AL follows the MAPE principle, hence,
monitors the environment and system and may modify
the resources’ parameters, structure, or both. Multiple so-
called self-* properties are the foundation of the adaptation
capabilities [3].

In order to model the adaptation decisions, the Software
Product Line (SPL) technique can be used. SPLs are used
to ”design and implement a products family from which
individual products can be systematically derived” [5]. The
SPL technique uses feature models to specify possible valid

product variants at design time that represent a configuration
consisting of a set of features. This creates a state space
of possible valid configurations. This state space usually is
much larger than the number of features [6]. Feature models
typically are represented by a tree structure with a hierarchy
of features as well as variation points of the whole SPL.
The Feature-Oriented Domain Analysis (FODA) approach was
the first feature modeling technique [7]. The approach was
extended multiple times with new (graphical) elements [8].
Dynamic SPLs (DSPLs) are an extension of the SPL approach
introducing the selection and deselection of features at runtime
rather than at design time. This enables the expression of
adaptation rules for software products at design time, e.g., by
adding a model of the software’s context ([5], [9]). By defining
constraints between context features and system features,
mappings between context situations and reconfigurations of
the system are specified. Thus, software created on the basis
of a DSPL context feature model is capable of changing itself
according to the context at runtime.

In this paper, we integrate a DSPL-based context feature
model into the knowledge component of an adaptation
logic for facilitating the analysis and the planning of
reconfigurations. This enables reasoning on the foundation of
context situations. The contribution of this paper is twofold:
(1) We define an adaptation logic architecture including a
knowledge component which is based on context feature
modeling. (2) We present a generic approach that uses this
architecture and explicitly the knowledge for providing a
solver-based adaptation logic without the need to make use
case specific changes to its components. Thus, developers only
have to define the monitored parameters as well as a context
feature model including priorities and costs as part of the
knowledge component in order to get a functioning adaptation
logic. We evaluate the adaptation logic based on our proposed
architecture by managing the Tasklet system for mobile code
offloading [10].

The remainder of this paper is structured as follows: Section
II presents related work in the domain of DSPLs for adaptive



systems. The subsequent section describes our approach for
context feature model-based reasoning. Following, Section
IV presents the implementation of our approach using the
FESAS framework ([11], [12]). Section V outlines the use
case evaluation and Section VI discusses the results of the
evaluation. Last, Section VII summarizes this paper and
describes future work.

II. RELATED WORK

Hallsteinsen et al. introduced the concept of DSPLs in [13].
The authors proposed to shift the concepts of SPLs from
design time to runtime for offering adaptation variability. Since
then, researchers addressed different aspects of DSPLs. Good
overviews over the literature are provided in [14] and [15]. In
the following, we focus on the most prominent approaches of
DSPLs.

Service-Oriented Dynamic Software Product Lines [16]:
The authors combine the Common Variability Language
(CVL) with the Business Process Execution Language (BPEL)
and aspect-oriented programming. The variability designer
uses CVL, e.g., using an existing Eclipse plugin to model
the changed configuration. This new configuration leads to
a change request. For the execution, the tool DyBPEL
augmenting the ActiveBPEL execution engine with aspect-
oriented variability. ActiveBPEL is an execution engine which
allows running business processes defined using BPEL. As
part of this DyBPEL engine, a coordination component
receives change requests from the variability designer. It
triggers a change of the execution inside the embedded
ActiveBPEL engine as well as a runtime modifier migrating
running processes.

Genie [17]: The approach supports the development and
modeling of reconfigurable component-based systems. Genie
uses two model structures for representing the system:
a context variability model and a structural variability
model. These dimensions are connected for representing
the reconfiguration behavior. The environment states are
represented as state diagram with transitions between the
states.

Applying Software Product Lines to Build Autonomic
Pervasive Systems [18]: Cetina et al. developed a DSPL
approach in the domain of pervasive computing. They use
a model-driven methodology for specifying the features and
the behavior. Features are modeled using the extended feature
modeling notation of [19]. The system structure, as well as
the configuration behavior, is described using the PervML
modeling language. They developed an additional mapping
between the features of the feature model and the PervML
elements which describes the adaptation behavior and provides
self-healing capabilities by specifying fallback mechanisms.

MADAM [20]: The system is represented as a component
model where components conforming to a matching interface
can be easily replaced. Additionally, MADAM supports
parametrization of the components. It works utility-based
which means that the main goal of the developed middleware
is the maximization of the utility. The utility depends on

the current context situation that gets evaluated continuously.
According to the context change, MADAM activates the
components with the highest expected utility.

REPFLC [21]: The approach integrates a three phases
lifecycle: product family engineering, target system config-
uration, and target system reconfiguration. Product family
engineering includes the creation of a product family
architecture consisting of components and connections as
well as the specification of variation points. Reconfiguration
patterns for the runtime adaptation specify possible transitions
between configurations. Additionally, a state model describes
the changes of an adaptation and a scenario model defines cer-
tain conditions when an adaptation should be triggered. During
the target system configuration, the system gets actually
deployed. Finally, the target reconfiguration phase uses the
models specified at design time to support runtime adaptations.

DiVA [22]: This approach is based on four metamodels.
They consist of (i) a DSPL model, (ii) a context model, (iii)
a reasoning model, and (iv) an architecture model. The DSPL
model represents a standard feature model. The context model
consists of single variables needed for monitoring at runtime.
Reasoning means to connect the two former models for
triggering adaptations, e.g., with ECA rules. The architecture
model can be any architecture model such as a standard UML
model. These models are used in a three layer architecture.
The bottom layer contains the AL while the top layer contains
the actual AL. The middle layer connects both of them. A
reasoner picks the best configuration based on the context
information. A consistency checker for the models used at
runtime concludes the approach.

Context awareness for dynamic service-oriented product
lines [23]: Parra et al. use the context-sensing middleware
COSMOS which provides so-called context nodes. A context
node has always the same interface to the application and
provides the context information of one sensor. This approach
abstracts the sensors from the application. A context model
is the basis for storing the current context. Each so-called
context-aware asset is, e.g., defined by some value that should
be observed as well as by the thresholds of the value and
the changes that should be implemented in each case. For
representing the system variability, a standard feature model is
used. Changes in the context-aware assets applied by a context
manager trigger changes in the architecture.

As the extended comparison in [24] shows, all meth-
ods work component-based and autonomously. Most of the
approaches apply static goal evolution and focus on self-
configuration. The majority of the approaches react on changes
in the context. Most approaches require that the developer has
to learn a new modeling technique which is not applied in
general. Also, some approaches target a specific application
domain which might make them not easily applicable in other
domains. In this paper, we propose a more generic DSPL
approach for adaptation planning. The approach integrates
a separated context model and uses cross-tree constraints
between the context and system features. In the following
section, we present the architecture of our approach.



III. SYSTEM MODEL

In this section, we present our context feature model-based
architecture for the AL. First, we introduce the modeling
approach and its representation for the planner component.
Second, we present our architectural design integrated into
the MAPE-K cycle.

A. Context-Aware Feature Modeling Approach

This work uses the feature modeling approach introduced
in [9]. They augmented generic feature model diagrams with a
context branch in addition to the system features. This explains
the name context feature model (CFM) of this model type.
Moreover, the approach uses feature attributes and feature
instance cardinalities as well as group type cardinalities for
specifying constraints in the model. Cross-tree constraints are
used between context features, feature attributes, and system
features for specifying the reconfiguration behavior. They can
either require or exclude a feature. At runtime, the selection
of context feature attributes represents the current state of the
running software.

For finding valid configurations at runtime, the context
feature model is converted to a representation interpretable
by a satisfiability problem (SAT) solver. Each feature repre-
sents a literal which can either have the value true or false.
Cardinalities and cross-tree constraints can also be translated
into a boolean representation. Since a SAT solver only works
with boolean problem representations, the context feature
attribute value ranges are modeled as enumerations either
being true or false. The complete context feature model is
translated into DIMACS conjunctive normal form (CNF) [25].
This is the de facto standard of representing SAT problems
for solvers. The solver itself is integrated into the planner
component as described in detail in the following section.

B. Architecture of the AL

As a starting point, the idea is to augment a MAPE-K cycle
based AL with a CFM inside the knowledge component. Fur-
thermore, the knowledge contains rules for relating raw sensor
data to context feature attributes. Also, there is a SAT mapping
which relates every feature and feature attribute to its literal
representation for the SAT solver as part of the knowledge.
This mapping is built directly by the knowledge component at
the start of the system. This enables the knowledge component
to return the corresponding literal given a feature or feature
attribute. Additionally, priorities and costs are used for conflict
resolution and the selection of one configuration when multiple
configurations are valid. All children of one feature form a
feature group. Priorities and costs are present for all system
features which are part of a feature group. A priority is
represented as a number stating the priority of a system feature
inside its feature group. The lower the number the higher the
priority. A cost value referring to a system feature states the
estimated cost to implement exactly this system feature in
comparison to other system features of the same feature group.
Typically, the value range of both values is between one and
the number of features in the group.

Figure 1. MAPE-K cycle extended by a DSPL context feature model (CFM)
and additional information for adaptation planning. Sys = System Features
Model, Ctx = Context Features.

Figure 1 shows an overview of the AL’s architecture.
As usual for a MAPE-K-based approach, the monitoring
element gets raw data from the managed resource. In this
case the data coming from the managed resource is context
information. This data consists of system data and external
context information related to the managed resource.

The monitoring component receives the data, prepares it and
passes it to the analyzer component. The preparation includes
interpretation of serialized input like an XML or JSON string
in order to create plain data objects for working with the sensor
data. The resulting data objects can be used more easily by
the analyzer component than a raw string. The AL is able
to receive and process partial sensor data until the managed
resource sends a message indicating the end of data. Thus,
the monitor gets sensor information not as one package but in
fragments.

The analyzer creates the average of all entries in order to
create one single sensor value representing the average system
state. Each average system value is used to map it’s value
to actual context feature attributes representing the context
state of the system. With minor customization, developers can
specify other aggregation functions rather than the average. In
this case, after the creation of the average values, the rules
representing the relationships of context information, their
names, and context feature attributes are used. Matching the
actual values to context feature attributes requires rules stating
the value range of each context feature attribute. Thus, it is
possible to match the average values to actual context feature
attributes. The approach supports partial knowledge, hence, not
for all context feature attributes data must be present. Even
without full knowledge, the system is capable of finding a
valid configuration. The resulting attributes which are selected
according to the context information are forwarded to the
planner component.

The workflow of the planner is shown in Figure 2. As
the planner mainly works with a SAT solver, the result of
the mapping process at the beginning is a logical repre-
sentation of the context information in conjunctive normal
form (CNF). As already stated, DIMACS CNF is used here



Figure 2. Workflow of the planner component. CFM = context feature model,
CNF = conjunctive normal form, A = Analyzer, F = Feature, K = Knowledge.

as logical representation (see [25]). The mapper uses the
SAT CNF mappings of the knowledge component. These
mappings state which feature or feature attribute is mapped to
which literal for representation inside the solver. Each context
feature attribute generated by the analyzer is mapped to its
literal representation resulting in logical clauses in CNF. The
result is a DIMACS CNF representation of the entire context
information. The planner then uses the knowledge component
to access additional system information. The CFM - which is
available in CNF representation as well - is used in conjunction
with the CNF representation of the context information as
input for a SAT solver. The solver’s task is to determine if valid
configurations exist and to output all possible configurations.
If there is only one valid configuration, the planner is finished
as there are no other configuration options it can choose from.
In case of multiple possible configurations, the additional cost
information residing in the knowledge component is used. The
costs contain a numeric cost value for each system feature
as part of a feature group inside the CFM. Using this, the
planner then selects the configuration with the lowest cost. In
case no valid configuration is found, the planner has to solve
the conflict somehow. A conflict occurs if unforeseen context
situations arise which were not anticipated at design time. Our
system can also handle unknown or conflicting context states at
runtime. If a conflict occurs, there may be two or more system
features in conflict. In this case, the priority information is
used. It determines the priority of system features in relation
to other system features in the same feature group. The planner
selects the feature with the highest priority for each conflicting
feature group. One example is a smart home system. One
context feature requires to turn on the air conditioning when it
is hot in the room. Another context feature requires the system
to stop the air conditioning as it is in the middle of the night
and someone sleeps in the same room. In this case, the user
may have specified the priorities in the first place resulting in
his desired behavior in this situation. Thus, if the user always
wants to sleep in a cold room, he could set a higher priority
to the feature turning on the air conditioning. The result of

the planner is a complete list of system features the managed
resource should activate. The selected configuration is sent to
the execution component which forwards the configuration to
the corresponding managed resource. This ends one complete
cycle through the AL. The next chapter shows implementation
details of the AL which is based on this architecture.

IV. IMPLEMENTATION

This section describes the implementation of a generic AL
which uses our method for planning reconfigurations based on
context feature models. The implementation is based on the
approach presented in the previous section. It is generic and
reusable as developers just have to define the corresponding
elements of the system knowledge without the need for
changes in any other AL component. We used Java and the
FESAS framework for implementing the AL as it abstracts
from issues as communication within the AL and, hence,
fastens development as developers may concentrate on the
logic of their SAS. For further information regarding the
FESAS framework, the interested reader is referred to [11]
and [12].

For illustration purposes, an entire run through the AL is
described using the data center use case presented in [11].
It describes a self-managing data center that starts servers
given a high workload. Accordingly, it should stop or keep
the number of servers in low workload situations. Also, it
is possible to redistribute virtual machines over all physical
servers for better resource utilization. Figure 3 shows the
big picture of the data flow through the MAPE components
including the context feature model of the example which
is part of the knowledge component. For illustration, the
monitor only observes the workload of the servers in this
simplified example. Furthermore, the system features consist
of a startup policy and a keep policy for the server manage-
ment. Additionally, the VM management possibilities include
a redistribution and a stay policy. In this example, one AL
manages three data center areas. The monitor receives sensor
information about the workload from each of the three data
center areas followed by a keyword for stating that the monitor
should stop monitoring and forward the average of the received
values to the analyzer. The analyzer selects the corresponding
feature attribute item (FAI) component. One FAI represents a
feature attribute in the implementation. Based on this input the
planner selects the startup policy and the redistribution policy.
The result is sent as a concatenated string to the executor
which forwards it to a corresponding effector interface. In
the following, implementation details with reference to the
example of all MAPE-K components are explained.

The knowledge contains all elements that are needed for
reasoning in the AL. The context feature model is only
one part of the knowledge besides the (feature attribute)
rules, the priorities, and the costs. Features can be either
system or context features. Each feature can have two types
of cardinalities: a feature instance cardinality and a group
type cardinality. The feature instance cardinality specifies how
many instances of a feature are allowed to be present in the



Figure 3. Complete data flow between the MAPE components.
The knowledge component only shows the CFM. FAI =
FeatureAttributeItem, WL = Workload. Feature instance cardinalities
are denoted with square brackets. Group type cardinalities are denoted with
angle brackets.

system at runtime. The group type cardinality states the type
for the feature group of the feature’s children. For example,
a feature group denoted with the cardinalities <1,1> means
exactly one child can be selected at the same time. According
to the extended feature model approach, features can also
have attributes. Feature attribute rules represent the rules for
matching context sensor values to actual feature attributes
and feature attribute items. For each feature attribute type,
a corresponding rule type is required. A rule specifies the
name for the sensor input matching it to an attribute. The
rules have to be specified by a developer at design time.
Additionally, it provides a matching method for determining
the attribute item that is represented by some context value.
For the example in Figure 3, the attribute workload would
have the rules: (1) (Workload<0.6) mapped to the ”<60%”
FAI and (2) (Workload>=0.6) mapped to the ”>=60%” FAI.
The complete metamodel of the knowledge component can be
found in [24].

The monitoring component gets multiple raw strings as
sensor input. It converts the raw JSON data to Java objects and
adds it to an array list. In the example in Figure 3, three JSON
strings are stored in a List<Map<String,Object>>
object. Each string represents the current status of the work-
load of one data center. Passing this array list to the analyzing
component triggers the analyzer.

The analyzing component analyzes the values and entries.
Referring to the example in Figure 3, the analyzer creates the
average workload. This is done for every variable over all

entries of the list. The resulting value is mapped to the actual
feature attributes items representing the context situation of
these averaged values. In the example, only the FAI >=60%
is selected. Then the analyzer sends the information about the
FAIs to the planning component.

In the previous section, we described the general planning
approach. For actually implementing the planner component,
we use Sat4J as SAT solver [26]. First, using the SAT
mapping, the planner maps context feature attributes to their
literal representation. Next, it checks if there is a model
using the given context information. At this point, the solver
already has loaded the CNF of the CFM. If there is no
model, the conflicting features are determined. The conflicting
features are passed to the PriorityConflictSolver
which identifies the system features responsible for the
conflict. For each feature group with conflicts, the feature
with the highest priority is selected. Adding the resolved
feature selection as well as the remaining conflict-free context
information to the solver ends the conflict resolution. If the
model is directly free of conflicts, the context information
is added to the solver. If multiple models are valid, the
CostConfigurationSelector uses the costs assigned
to the system features. For every feature group, the feature
with the lowest cost is selected. The planner sends a list with
all selected system features to the executor.

The execution only forwards the feature selection towards
the managed resource. As shown in Figure 3, the feature
selection is a string with the system feature names separated
by a comma. The managed resource maps the system feature
names to actual actions.

In our implementation, the connection between AL and
managed resource is implemented using socket connections.
The socket connections are encapsulated inside sensor and
effector components connected to the monitor and execution
component respectively. The message from the execution
component to the effector only contain the names of the se-
lected system features as strings. Hence, the managed resource
must interpret the result of the AL and start and stop policies
accordingly on its own. Using the other socket, the raw context
information is transported in the JSON format to the sensor
component. It is the responsibility of the managed resource to
provide the context information in the correct JSON format.

V. EVALUATION

This section outlines the evaluation of the system. First, we
present the use case of the evaluation. Second, we pose the
evaluation questions and describe the corresponding evaluation
scenarios. Third, we describe the results of the evaluation.

A. Use Case Description

Using our approach for planning based on CFM, we
implemented a system for managing the Tasklet system [10].
The idea of the Tasklet system is to provide a middleware
for distributed computing on heterogeneous devices. There-
fore, three entities are available: resource providers, re-
source consumers, and resource brokers. Providing resources



means to offer a Tasklet virtual machine (TVM). Resource
consumers send their code to providers for remote execution.
Additionally, local execution is possible. Each resource
provider registers at a broker while brokers themselves form
a peer-to-peer overlay network. Consumers send resource
requests to a broker, which then searches for a suitable
resource provider. A consumer may specify different levels
of non-functional requirements called Quality of Computation
for a Tasklet, e.g., reliability, speed, or security. This may
limit the set of possible providers. The broker returns the
information for connecting to a provider. The consumer uses
this knowledge to directly send a Tasklet to this provider. Each
entity in the network runs the Tasklet middleware that handles
the construction of Tasklets, their execution, and distribution.
An overview of an example overlay network topology is shown
in Figure 4. For more details on the Tasklet system, the
interested reader is referred to [10].

Figure 4. Schema of a Tasklet network topology. P = Provider, C = Consumer,
TVM = Tasklet Virtual Machine. [10]

We simulated the Tasklet system using the simulated system
presented in [27]. Additionally, we added a broker manager
entity. It stores a list of all brokers, monitors them and adapts
their behavior by changing their configurations according to
the results of the AL. Besides changing the configuration of
brokers, it can start and stop brokers, as well as redistribute
entities connected to them. As the simulator is discrete, we
synchronized the simulation with the AL through the broker
manager. Hence, the broker manager transmits all monitored
data at the end of a simulation step to the AL and pauses the
simulation. After each MAPE activity performed its task, the
broker manager adapts the simulated system in case of a new
system configuration. Afterward, it starts the next simulation
step. In case of a real system, adaptations would occur
continuously. Thus, the simulated system does not represent
this aspect of the real world. As mentioned in the previous
section, broker manager and AL are connected via sockets in
our approach. A more detailed description of the simulation
environment can be found in [24].

In order to adapt the settings of the brokers through the AL,
the first step is to identify system features for the management
system as well as context information that is needed to plan
the selection of the system features. One cross tree constraint
in it is concerned with the startup of new brokers if the load

of the brokers exceeds 60%. Accordingly, brokers are stopped
with a load below 60%. Additionally, a feature for latency
optimized placement of nodes to near brokers is selected
in case of an overall high latency between nodes and their
corresponding brokers. This should result in lower load per
broker as well as lower latencies. The complete CFM can be
found in [24]. No customizations on the MAPE components
including the sensor and effector components were necessary.
The managed resource simply had to support the specified
socket connections for data exchange.

B. Evaluation Settings

To evaluate the performance of our system, we define two
evaluation questions (EQ):

(EQ1) Does the AL improve the system performance and
how does the amount of participants in the network influ-
ence it?
(EQ2) How does the amount of system and context fea-
tures influence the performance of the adaptation planning
approach?

These questions result in two evaluation scenarios.
Scenario 1: For identifying improvements of the AL, we

compare multiple run configurations with and without the
AL. In the first setting 1 000 Providers, 500 consumers, and
two brokers are the start configuration. In the following
setting we use 5 000 providers, 2 500 consumers, and 10
brokers. Additionally, the system behavior with different ratios
between providers and consumers is evaluated. Thus, we also
evaluated the 1:1 and 1:2 ratios resulting in 5 000 providers
and consumers in setting 3, and 2 500 providers and 5 000
consumers in setting 4. The evaluation always stops after
25 000 finished Tasklets.

Scenario 2: As the CFM of the use case has 20 system
features and 5 context features only, for this scenario, we
implemented a KnowledgeFactory class for creating
random models. It creates random system features, context
features, feature attribute items, constraints between them,
costs, priorities, and feature attribute rules. Additionally, we
implemented a ModelTester class for testing the AL with
data generated by the KnowledgeFactory. Since the value
range of the context feature attributes is fixed, random values
fitting the value range are created for monitoring. We compare
the time from sending the random values to the monitor until
a feature selection is generated for evaluation. According to
the model size of the use case, for the baseline the setting 20/5
(system features/context features) is used for the first model
creation process. We did not use the use case model here
for having a comparison of randomized models only. Then
the multiples 100/25, 1 000/250 and 10 000/2 500 are used.
For each configuration, 10 knowledge input files are created.
This results in 40 models. Each model is executed in a test
environment 10 times resulting in 400 results. The complete
execution time per run is gathered.



C. Evaluation Results
This section presents the aggregated results of the

evaluation. An interpretation and a cross-setting discussion of
the results follows in the subsequent section.

Scenario 1: We measured two variables in the Tasklet
system: the average latency (in milliseconds) and the average
load of the brokers in the Tasklet system. For both values,
the AL triggers a system feature adaptation if they exceed a
threshold. We tested different distributions between providers
and consumers. As a result, the simulated system using the
AL has on average a 43% lower latency and the brokers
have on average 45% less load than the simulated system
without the AL. Table I shows the measured values per run.
The 2 500/5 000 setting was not able to finish without the
AL. Every run ended in an OutOfMemory exception. We also
tested it on an r4.2xlarge instance from Amazon EC2 with 61
GB of ram. Even on this machine, we were not able to finish a
single run in this configuration. One reason is that the overall
simulated load in the Tasklet system is very high. The ratio
between providers and consumers in this setting increases the
load even further. This results in a very high number of steps
for finishing the predefined 25 000 Tasklets. Thus, for finishing
one run the JVM has to have all simulation data present at
the whole simulation time. In any case, it shows that the AL
improves the performance also in this setting. The table shows
that the other results are very similar in all four settings. It also
indicates that the AL is able to fulfill the adaptation goals in
all settings.

Table I
AGGREGATED LATENCY AND LOAD ON THE BROKERS FOR THE FIRST

EVALUATION QUESTION. AV = AVERAGE.

Setting Av latency
no AL

Av latency
AL

Av load no
AL

Av load
AL

1 000/500 18.38 ms 10.67 ms 100 % 54.70 %

5 000/2 500 18.35 ms 10.52 ms 100 % 55.36 %

5 000/5 000 19.12 ms 11.65 ms 100 % 55.27 %

2 500/5 000 - 11.22 ms - 55.29 %

Scenario 2: For answering the second evaluation question,
we compared the number of FAIs and the execution time of
the AL in four settings. All results are aggregated and can be
seen in Table II. In the three smaller settings the AL found a
configuration in significantly less than a second. In the largest
setting, the AL was able to find a valid configuration in 8.7
seconds on average.

VI. DISCUSSION

This section discusses the evaluation presented in the pre-
vious section. Concerning the first EQ, the AL reduces the
average latency as well as the average load of the brokers
in all settings. In the first three settings, the latency could be
reduced on average by 41.3 %. Respectively the load could be
reduced by 44.89 % on average. The most interesting change
is the number of simulation steps needed by the simulated
systems in the four settings. Table III shows them including
the improvement between the aggregated values of the runs
without and with the AL. Again, there are no values for the last
setting. In the very small first setting, the overhead of the AL
including the policies inside the broker management system
results in a worse performance using the AL. The larger the
setting gets, the higher the improvement regarding the number
of saved simulation steps is. The third setting, which is the
largest setting regarding the number of the entities, even needs
50 % fewer simulation steps employing the AL.

Table III
AGGREGATED RESULTS OF THE AVERAGE STEPS NEEDED FOR THE FIRST

EVALUATION QUESTION.

Setting Steps no AL Steps AL Change

1 000/500 967,67 1 288,03 +33 %

5 000/2 500 1 599,87 1 244,70 -22 %

5 000/5 000 2 205,33 1 110,07 -50 %

2 500/5 000 - 1 301,57 -

The second evaluation question aims to determine if the
AL is capable in creating valid configurations quickly for
large models. Hence, it mainly focusses on measuring the
performance of the SAT solver. The model testing approach
showed that even with 10 000 system features, 2 500 context
features with up to 9 743 feature attribute items in the model,
our approach is able to create an adaptation result within 8.7
seconds on average. Systems with the requirement of low
reaction times may need to run the planning on a fast cloud
server rather than executing it locally. For comparison it may
be possible to integrate additional SAT solvers in future work.

One possibility for general improvement concerns the
decision to create an average of all context information. This
may lead to decreased system performance at certain entities
in the system as the averaged values could hide local problems.
Thus, one idea is to add entity-based planning instead of

Table II
MODEL TESTING RESULTS OF SECOND EVALUATION QUESTION: AGGREGATED NUMBER OF FEATURE ATTRIBUTE ITEMS (FAI) AND AGGREGATED

RUNTIME IN MS. ST D = STANDARD DEVIATION, AV = AVERAGE.

Features FAI Execution time ms
System Features Context Features Min FAI Max FAI St D FAI Av FAI Min Max St D Av

20 5 10 19 2,47 13,90 16 441 74,88 55,48
100 25 78 90 3,65 83 44 1 043 108,36 75,71
1 000 250 835 892 18,16 871,50 279 543 57,83 350,53
10 000 2 500 7 090 9 743 454,32 7 690,60 8 672 8 834 55,98 8 737,90



an overall system planning. This would result in different
configurations for each broker in our use case.

VII. CONCLUSION

This paper shows that our CFM AL approach is able to
fulfill goals stated in a context feature model. Additionally, it
enables the reuse of the complete AL without any changes
by only exchanging the knowledge inside the knowledge
component. For evaluation, we used an implementation in Java
using FESAS. The Tasklet distributed computing system is the
use case for the quantitative evaluation of our approach. The
evaluation shows multiple properties of the developed AL. It
shows that the overhead of the AL leads to bad results in small
Tasklet settings. The reason for this is that the improvements
in such a setting do not compensate for the performance
degradations of the overhead. However, the larger Tasklet
settings have finished significantly faster employing the AL.
Concerning the 2 500/5 000 setting, it was not even possible
to get any results without the AL.

For future work, other solvers, as well as entity-based
planning, may be added to our approach. Multi-core support
may also increase the performance significantly. At the
moment, the AL, as well as the simulated Tasklet system, are
not optimized for multiple CPU cores. Hence, only one core
was used when the evaluation was run. In the current stage, the
developer has to (1) define the CFM, (2) set priorities and costs
to system features of feature groups and (3) define mappings
from raw context information to context features. This has
to happen manually at the moment. It may be possible to
provide a developer toolset for easily specifying the complete
knowledge of the adaptation logic in an intuitive way in the
future. Thus, software engineers who are familiar with DSPL
context feature models would be able to specify the behavior
of the AL without changing the components of the AL itself.
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