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Abstract—This paper describes approaches for dynamic 

software adaptation using runtime models of the software 
architecture.  Software adaptation patterns consist of 
interaction models and state machine models that are used 
during dynamic software adaptation. Software adaptation 
and recovery concerns are off-loaded from components by 
incorporating them into connectors, which are responsible 
for dynamically adapting and recovering components. Both 
centralized and decentralized approaches to adaptation and 
recovery are considered.  Two approaches to dynamic 
software product lines are described, a dynamic software 
adaptation approach for service-oriented product lines and 
the design of variable adaptation and recovery connectors. 

Keywords—dynamic software adaptation; autonomic 
computing; dynamic software product l ines; runtime 
models; recovery and adaptation connectors.   
 

I. INTRODUCTION 
A software architectural model describes the design of the 
software system in terms of components and connectors. 
Architectural models are frequently developed at design 
time before the implementation of the software system. 
However, architectural models can also be used at 
runtime to enable architecture recovery and architecture 
adaptation. Runtime architectural models are software 
models that coexist with the executing software system, 
such that runtime decisions about dynamic changes to the 
executing system are made by analyzing the architectural 
model and then applied to the executing system.   

This paper describes approaches for dynamic software 
adaptation using runtime models of the software 
architecture for both planned and unplanned adaptation. 
Planned adaptation is proactive in which manual or 
automated decisions are made to dynamically change the 
software system at runtime. Unplanned adaptation is 
triggered by unexpected events, such as node failure, 
which necessitate reactive decisions to dynamically 
recover the software system from failure.  

This paper describes and discusses the research conducted 
in dynamic software adaptation at George Mason 

University, in particular the research directions taken and 
why they were taken, the software engineering concepts 
and technology that the research is based on, the main 
results of the research, and directions for future research. 
Section II considers dynamic software adaptation from 
different perspectives before addressing adaption of 
software architectures in Section III, comparing in Section 
IV adaption without knowledge of the software 
application with adaptation in which the application’s 
software architectural patterns are known.  From these 
patterns, software adaptation patterns are developed 
consisting of interaction models and state machine models 
that are used during dynamic software adaptation, as 
described in Section V. 

Next, in Section VI, the paper describes how software 
adaptation concerns can be separated from component 
development concerns by incorporating adaptation 
concerns into adaptation connectors. The paper then 
describes in Sections VII and VIII how adaptation 
connectors can be extended to address recovery in a 
decentralized autonomic MAPE-K approach for self-
healing and self-adaptation.  

The paper goes on to describe in Section IX, two 
approaches to dynamic software product lines (SPL). The 
first approach is a dynamic software adaptation approach 
for service-oriented product lines. The second approach is 
the design of variable adaptation and recovery connectors 
used in the software adaptation of dynamic software 
product lines (DSPL).  In Section X, the paper discusses 
related work and future directions for dynamic software 
adaptation. 

II. DYNAMIC SOFTWARE ADAPTATION 

Software adaptation addresses software systems that need 
to change their behavior during execution. In self-
managed and self-healing systems, systems need to 
monitor the environment and adapt their behavior in 
response to changes in the environment [3].  Garlan and 
Schmerl [1] have proposed an adaptation framework for 
self-healing systems, which consists of monitoring, 
analysis/resolution, and adaptation. Kramer and Magee 



[2] have described how in an adaptive system, a 
component needs to transition from an active (operational 
state) to a quiescent (idle) state before it can be removed 
from a configuration. Kramer and Magee have also 
advocated an architectural approach to self-managed 
systems [5]. Autonomic systems address software 
adaptation by following the MAPE-K model that consists 
of four activities (monitoring, analysis, planning, and 
execution) that operate on a knowledge-base of the 
system [3].  

Software adaptation can take many forms. It is possible to 
have a self-managed system that adapts the algorithm it 
executes based on changes it detects in the external 
environment. If these algorithms are pre-defined, then the 
system is adaptive but the software structure and 
architecture is fixed. The situation is more complex if the 
adaptation necessitates changes to the software structure 
or architecture. In order to differentiate between these 
different types of adaptation, adaptations can be classified 
as follows within the context of distributed component-
based software architectures: 

a) Algorithmic adaptation. The system dynamically 
changes its behavior within its existing structure. There is 
no change to the system structure or architecture. 

b) Configuration adaptation. Dynamic adaptation involves 
dynamically relocating components of the architecture to 
different nodes of a distributed configuration, for example 
if a node fails. The dynamic replacement of a failed 
component with a replacement component has to be 
performed while the system is executing. 

c) Architectural adaptation.  The software architecture has 
to be modified as a result of the dynamic adaptation. Old 
component(s), which may not provide the same interface, 
must be dynamically replaced by new component(s) while 
the system is executing. In this situation, in addition to 
architectural changes, there are also likely to be 
configuration changes as old components are removed 
and new components are instantiated on new or existing 
nodes.  

III. MODEL-DRIVEN SOFTWARE ARCHITECTURE FOR 

DYNAMIC SOFTWARE ADAPTATION 

 
In model-driven software architecture, models of the 
software architecture are developed prior to 
implementation. An architecture model can be a platform-
independent model (PIM), which is a precise model of the 
software architecture before commitment to a given 
platform, or a platform-specific model (PSM), where the 
architecture is deployed to a distributed hardware 
configuration [4]. Both PIM and PSM models can be used 
in runtime adaptation of software systems. In dynamic 
architecture-based software adaptation, it is necessary to 
have runtime knowledge before and after adaptation of (a) 

the software architecture in terms of components and 
connectors, and (b) the mapping of the software 
components and connectors to the hardware 
configuration, in particular the computer nodes to which 
they are deployed. 

 
If the dynamic adaptation involves a change to the 
software architecture, then (a) the runtime PIM is used to 
determine what components need to be added, removed, 
or replaced in the architecture – this corresponds to 
architectural adaptation in section II (b) the runtime PSM 
is used to determine the nodes that are affected. If the 
adaptation does not involve a change in the software 
architecture but involves a change to the software 
configuration (e.g., after a node failure, one or more 
components need to be recovered and relocated to 
different nodes), then the runtime PSM is used to 
determine how to reconfigure the system. This 
corresponds to configuration adaptation in section II. 

IV. DYNAMIC CHANGE MANAGEMENT OF SOFTWARE 

ARCHITECTURES 

 
Kramer and Magee [2][5] investigated how dynamic 
adaptation (also called dynamic reconfiguration) could be 
carried out at the software architecture level. The software 
architecture consists of distributed components deployed 
to a distributed configuration. They described how a 
component must transition to a quiescent state before it 
can be removed or replaced in a dynamic software 
configuration.  However, each component of the software 
architecture is treated as a black box with no knowledge 
of the executing software application. 

 
A change management model [5] defines the precise steps 
involved in dynamic reconfiguration to transition from the 
current software run-time configuration to the new run-
time configuration. Thus, a component that needs to be 
replaced has to stop being active and become quiescent, 
the components that it communicates with need to stop 
communicating with it; the component then needs to be 
unlinked, removed, and potentially replaced by one or 
more new components, after which the configuration 
needs to be relinked and the affected components 
restarted. 
 
In order to drive a target component to quiescence, it is 
frequently necessary to also drive neighboring 
components to quiescence. However, if the application 
behavior of the neighboring components is known, it is 
possible to drive these components to partial quiescence 
so that they cease to communicate with the target 
component but continue communicating with other 
components, thereby providing less disruption to the 
runtime software system as described next. 

 



V. SOFTWARE ADAPTATION PATTERNS AND CONNECTORS 
 

The Kramer/Magee approach to software adaptation 
assumes no knowledge of the executing application. If the 
software application is known, then knowledge of the 
patterns of behavior in the software architecture can be 
taken advantage of during software adaptation. 

A software architecture is composed of distributed 
software architectural patterns, such as client/server, 
master/slave, and distributed control patterns, which 
describe the software components that constitute the 
pattern and their interconnections [4, 6]. For each of these 
architectural patterns, there is a corresponding software 
adaptation pattern, which models how the software 
components and interconnections can be changed under 
predefined circumstances, such as replacing one client 
with another in a client/server pattern, inserting a control 
component between two other control components in a 
distributed control pattern, etc. 

A software adaptation pattern defines how a set of 
components that make up an architectural pattern 
dynamically cooperate to change the software 
configuration to a new configuration [9]. A software 
adaptation pattern requires state- and scenario-based 
reconfiguration behavior models to provide for a 
systematic design approach. The adaptation patterns are 
described by adaptation interaction models (using 
communication or sequence diagrams) and adaptation 
state machine models [9]. Several adaptation patterns 
have been developed including the Master-Slave 
Adaptation Pattern, Centralized Control Adaptation 
Pattern, Decentralized Control Adaptation Pattern [8], and 
service-oriented architectural patterns [9]. 

A. Software Adaptation State Machines 
 

An adaptation state machine defines the sequence of 
states a component goes through from a normal 
operational state to a quiescent state [9]. A component is 
in the Active state when it is engaged in its normal 
application computations. A component is in the Passive 
state when it is not currently engaged in a transaction it 
initiated, and will not initiate new transactions. A 
component transitions to the Quiescent state when it is no 
longer operational and its neighboring components no 
longer communicate with it. Once quiescent, the 
component is idle and can be removed from the 
configuration, so that it can be replaced with a different 
version of the component. Fig. 1 shows the basic 
adaptation state machine model for a component as it 
transitions from Active state to Quiescent state. The 
adaptation framework sends a Passivate command to the 

component. If the component is idle, it transitions directly 
to the Quiescent state. However, if the component is busy 
participating in a transaction, it transitions to the Passive 
state. When the transaction is completed, it then 
transitions to the Quiescent state. 

Fig. 1. Basic adaptation state machine 

In early research on software adaptation patterns [8], the 
state machine for each component was modeled using two 
orthogonal state machines, an operational state machine 
(modeling normal component operation) and an 
adaptation (also referred to as reconfiguration) state 
machine (Fig. 1). However, for more complicated 
adaptation patterns, there is often some interaction 
between the two state machines, which complicates the 
adaptation process.  

In later research on service-oriented systems [9, 10], the 
operational state machine was separated from the 
adaptation state machine. This is done by moving the 
adaptation state machine from the component and 
encapsulating it in the connector. This separation of 
adaptation concerns from application concerns ensures 
that the adaptation patterns, as well as the corresponding 
code that realizes each pattern, are more reusable. 

VI. SOFTWARE ADAPTATION CONNECTORS 
 

Connectors in component-based software architectures 
(CBSA) are objects that interconnect components and 
encapsulate a communication protocol [4]. Connectors 
encapsulate frequently used communication patterns such 
as asynchronous communication and synchronous 
communication with reply. For software adaptation, a 
connector is enhanced to also address adaptation concerns 
of the component it is connected to. As long as the 
connector receives all incoming messages to the 
component and all responses from that component, it can 
track the behavior of the component in terms of messages 
received and responses sent, steer t h e  component to a 
quiescent state [6],  and thereby carry out the adaptation 
of the component. 
 

 



 
Fig. 2. SOA architectural pattern 

The SASSY framework [7, 9, 10, 17, 20] provides two 
different types of adaptation connector, coordinator 
connector and service connector, as shown in Fig. 2. A 
service adaptation connector behaves as a proxy for a 
service, such that its clients can interact with the 
connector as if it was the service. The goal of an 
adaptation connector is to separate the concerns of an 
individual service from dynamic adaptation, i.e., the 
adaptation connector implements the adaptation 
mechanism for its corresponding service, including the 
interaction with the change management service [9] and 
tracking the operational states of the service. The 
adaptation state machine for a given adaptation pattern is 
encapsulated in the corresponding adaptation connector. 

Each adaptation connector encapsulates a state machine 
that has the states depicted in Fig. 1. However, the events 
and actions of the state machine depend on the 
characteristics of the component that the connector 
communicates with. For example, in Fig. 2, a service 
connector that interacts with a service behaves differently 
from a connector that interacts with a coordinator.  

SASSY uses an adaptive Change Management Model [9] 
to establish a region of quiescence [2] that allows 
dynamic adaptation of the component(s) to take place. For 
each adaptation pattern, the change management model 
controls and sequences the steps in which the 
configuration of components in the pattern is changed 
from the old configuration to the new configuration. In 
Fig. 2, a service could be dynamically replaced by a 
newer version of the service. However, to dynamically 
add a new service to the SOA would also necessitate a 
dynamic change of the coordinator to a newer version that 
is capable of interacting with the new service.  

VII. RECOVERY AND ADAPTATION CONNECTORS 

As a sequel to the SASSY project, we started work on the 
Resilient Autonomic Software Systems (RASS) project. 
After the SASSY research demonstrated that software 
adaptation concerns could be separated from component 
application concerns, the runtime modeling problems 

investigated by the RASS project [15, 16] are to (a) 
dynamically discover a software architecture at run-time 
[14] (b) investigate connectors that address software 
recovery in addition to software adaptation and (c) to 
investigate a decentralized autonomic MAPE-K approach 
to self-healing and self-configuration.  

RASS [15] introduced the following concepts: 

A recovery pattern defines how components in an 
architectural pattern can be dynamically relocated and 
recovered to a consistent state after a component has 
failed. 

A Recovery and Adaptation Connector (RAC) that is used 
to separate adaptation and recovery concerns from 
component concerns so that a component can be 
dynamically adapted and recovered from failures. 

A RAC (fig. 2) behaves as a proxy for a component or 
service by receiving requests from clients and then 
forwarding these requests to the service. The RAC also 
receives responses from the service, which are then 
forwarded to requesting clients. To ensure safe adaptation 
at run-time and recoverability of service failures, the RAC 
must keep track of the transactions that the service is 
currently engaged in and must maintain messages (i.e., 
requests and responses) that pass through it so that these 
messages can be held during adaptation and can be 
recovered when the service fails. 
 
The reason why the RAC is able to address both planned 
adaptation and unplanned adaptation (i.e., recovery) is 
that in both cases, the messages that constitute each 
transaction need to be stored in the connector until the 
transaction has completed and manipulated during 
adaptation if required. However, the state machines and 
algorithms for planned and unplanned adaptation are 
different, as described next.  

VIII. DISTRIBUTED ADAPTATION AND FAILURE 

RECOVERY 



Based on the concept of RACs, we designed and 
implemented DARE (Distributed Adaptation and 
Recovery), a decentralized, integrated adaptation and 
recovery framework [16] for providing both self-healing 
and self-adaptation properties to complex and highly 
dynamic CBSAs. DARE is based on a decentralized 
version of the MAPE-K model. Every node in the 
system hosts an identical instance of the DARE 
middleware whose architecture is shown in Fig 3.  

 

 

Fig. 3.  The DARE architecture at each node 

The Configuration Maintenance Layer (CML) tracks 
mapping of components to nodes and provides services 
to higher layers for retrieving and modifying this 
map.  The Configuration Manager (CM) is responsible 
for maintaining the current configuration map of the 
software system, which is stored in a distributed hash 
table that supports replication of its entries [23] in order 
to tolerate failures and enable distribution of the map. The 
table contains entries that map the IP address of a 
node to the set of identifiers of components and RACs 
hosted by the node with this IP address. 

The recovery of a failed component must be handled by 
exactly one Recovery and Adaptation Manager at one 
node. To ensure consistent recovery, our approach 
involves electing the node with the lowest IP address 
to become the recovery coordination node for 
coordinating recovery of other failed nodes. The 
Failure Analysis Manager (FAM) in the recovery node 
is the only FAM that proceeds with the recovery by 
analyzing the failure.  

The Architecture Discovery Layer (ADL) consists of 
DeSARM [14], a decentralized architecture discovery 
mechanism, which is responsible for automatically 
discovering at runtime the current architecture of the 
software system, in particular components and connectors 
as well as synchronous and asynchronous communication 

patterns between components. DeSARM’s decentralized 
architecture discovery mechanism is based on selective 
gossiping techniques [21] and message tracing. 
DeSARM notifies the Configuration Maintenance Layer 
when it suspects a node failure due to absence of gossip 
messages from that node. 

The Application Recovery Layer (ARL) consists of the 
Recovery and Adaptation Manager (RAM) that is 
responsible for overseeing dynamic adaptation and 
recovery of the CBSA. When a node fails, the ARL 
ensures that the software system recovers to a consistent 
configuration in which every failed component is 
relocated and instantiated on a healthy node, and that 
the connections between a recovered component and its 
neighbor components are re-established. 

The RAM interacts with the appropriate RAC for each 
component to be adapted or recovered. The RAC ensures 
that (1) any transactions that were interrupted due to 
a run-time failure are recovered and restarted at the 
recovered component and (2) a component is only 
adapted after it has become quiescent [2].  

IX. DYNAMIC SPL RUN-TIME ARCHITECTURE  

Software product line (SPL) engineering [18] provides a 
means for systematic planning and design for dynamic 
software adaptation. With a conventional SPL approach, 
such as the PLUS method [19, 22], a family of software 
architectures, consisting of common and variant 
components, is built at design time in advance of 
deployment and is managed using a feature model. By 
means of application feature selection, a given member of 
the SPL is derived and then deployed. However, with 
dynamic software adaptation, a member of the SPL can, 
after deployment, be dynamically adapted at run-time to a 
different member of the SPL. 

Dynamic software product lines (DSPL) [24] are needed 
when SPL members need to adapt after deployment while 
the system is operational. Dynamic software adaptation 
for SPLs is the process of changing the SPL member at 
run-time to a different SPL member. In other words, 
dynamic software adaptation is concerned with changing 
the application configuration at runtime after it has been 
deployed and is needed for SPLs that have to dynamically 
adapt after original deployment. To address dynamic 
adaptation, the SPL life cycle for the PLUS method [19] 
is extended as shown in Fig. 4. PLUS consists of two 
phases: 1) Product Line (Domain) Engineering and 2) 
Application Engineering. For dynamic adaptation, a third 
phase is required: 3) Target System Reconfiguration. 
During this third phase, the executable target system is 
dynamically changed from the target system run-time 
configuration for one product line member to a new target 
system run-time configuration for a different SPL 
member [25]. 



 

Fig. 4. Software life cycle for dynamic SPL  

Using feature modeling, the SPL feature model has to 
capture all features of the SPL corresponding to the 
different application run-time architectures. The run-time 
feature model captures the features of the currently 
executing target system and is initially deployed at 
application derivation time. Furthermore, this feature 
model can change at run-time by deactivating those 
features no longer required and dynamically replacing 
them with new features (from the original SPL feature 
model) that are required. In order to dynamically adapt 
the software architecture in response to these feature 
changes, it is necessary to have a feature/component table 
that relates each feature to the components that realize the 
feature.  

Dynamic SPL concepts have been used in SASSY for 
dynamic software adaptation of service-oriented 
architectures [25]. RASS [26] investigated the design of 
variable adaptation and recovery connectors used in the 
software adaptation of dynamic software product lines. 
The approach integrates software product line and feature 
modelling concepts with autonomic properties of self-
healing and self-adaptation. 

X.  DISCUSSION 

Although there is a large body of literature in the area of 
autonomic and self-adaptive systems, most of them use 
a centralized approach [11]. The main challenge with 
decentralized approaches is carrying out dynamic 

adaptation and recovery using partial knowledge of the 
system [12]. Schneider et al. [13] concluded in their 
survey on self-healing frameworks that the systematic 
integration of the self-* properties is one of the main 
challenges in this area. This paper has described how the 
above challenges have been systematically addressed. The 
SASSY and DARE approaches have progressively 
addressed the issues of decentralizing approaches to 
dynamic adaptation and recovery; DARE has addressed 
the integration of self-healing and self-adaptation 
properties. 

Two other areas investigated by one of the authors are 
evolutionary software architectures [27] and designing 
reusable secure connectors [28]. The evolutionary 
software development approach uses SPL and feature 
modeling concepts for evolving multi-version systems. 
The multi-version systems constitute a family of systems 
with some common functionality and some variable 
functionality. The goal is to model all versions of the 
system, including previously deployed systems as a 
software product line. The addition of optional and 
alternative features necessitates the adaptation of the 
original software architecture by designing optional and 
variant components to realize these features.  

 
Secure connectors [28] are designed separately from 
application components by reusing the appropriate 
communication pattern between components as well as 



the security services required by these components. Each 
secure connector is designed as a composite component 
that encapsulates both security service components and 
communication pattern components. Integration of 
security services and communication patterns within a 
secure connector is provided by a security coordinator. 
The main advantage is that secure connectors can be 
reused in different secure applications. 

Dynamic SPL and dynamic software adaptation 
approaches could be enhanced by incorporating both the 
above approaches. Thus a dynamic adaptive SPL [25] 
could also evolve after initial deployment by allowing 
new features and components to be added to address 
evolving requirements. Dynamic and variable recovery 
and adaption connectors [26] could be further enhanced 
by incorporating security patterns. Thus variable 
connectors could be evolved and adapted at run-time to 
incorporate different recovery, adaptation, and/or security 
patterns. 

XI. CONCLUSIONS 

This paper has described and discussed the research 
conducted in dynamic software adaptation at George 
Mason University, including the research directions taken 
and why they were taken, the software engineering 
concepts and technology that the research is based on, the 
main results of the research and directions for future 
research. In particular, the research has been 
progressively addressing more challenging problems, 
building on dynamic software architecture models and 
software product line models, progressing from software 
architectural patterns to software adaptation and software 
recovery patterns, separating adaptation concerns from 
application concerns, decentralizing software adaptation 
planning and decision making, and addressing both 
planned and unplanned adaptation using a decentralized 
autonomic MAPE-K model. If a system failure occurs 
during adaptation planning, the planning needs to be 
aborted and restarted. However, if a system failure occurs 
during adaptation execution, both the adaptation planning 
and execution need to be aborted and restarted. 

This paper has described approaches for dynamic 
software adaptation using runtime models of the software 
architecture, comparing adaptation with no knowledge of 
the software application with adaptation in which the 
application’s software architectural patterns are known.  
From architectural patterns, software adaptation patterns 
were developed consisting of interaction models and state 
machine models that are used during dynamic software 
adaptation. 

The paper then described how software adaptation and 
recovery concerns could be off-loaded from components 
by separating these concerns and incorporating them into 
adaptation and recovery connectors, which are 
responsible for   dynamically adapting and recovering 

components from failure. The paper has considered both 
centralized and decentralized approaches to adaptation 
and recovery.  The paper also described two approaches 
to dynamic software product lines, a dynamic software 
adaptation approach for service-oriented product lines and 
design of variable adaptation and recovery connectors 
used in the software adaptation of dynamic SPL.  
 
For future work, the DSPL approach could be further 
enhanced by addressing software evolution and 
incorporating security patterns into recovery and 
adaptation connectors. 
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decentralized mechanism for discovering software architecture 
models at runtime in distributed systems,” in 11th Intl. 
Workshop on Models@run.time, 2016 

 [15]  E. Albassam, H. Gomaa, and D. Menascé, “Model-based 
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