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Abstract—The validity of run-time monitoring of system goals
and requirements depends on both the completeness of the
requirements, as well as the correctness of the environmental
assumptions. Often specifications are built with an idealized view
of the environment that leads to incomplete and inconsistent
requirements related to non-idealized behavior. Worse yet, re-
quirements may be measured as satisfied at run time despite an
incomplete or inconsistent decomposition of requirements due
to violated environmental assumptions. While methods exist to
detect incomplete requirements at design time, environmental
assumptions may be invalidated in unexpected run-time environ-
ments causing undetected incomplete decompositions. This paper
introduces Lykus, an approach for using models at run time to
detect incomplete and inconsistent requirements decompositions
at run time. We illustrate our approach by applying Lykus
to a requirements model of an adaptive cruise control system
from our industrial collaborators. Lykus is able to automatically
detect instances of incomplete and inconsistent requirements
decompositions at run time.

I. INTRODUCTION

While run-time requirement monitors are intended to mea-
sure and report the satisfaction of the requirements in a
software system, they are only effective if the requirements
are complete and consistent. Problematically, unexpected en-
vironmental scenarios that may lead to incomplete or inconsis-
tent requirements in cyber-physical systems (CPS) may also
allow run-time monitors to erroneously assess requirements
satisfaction. For example, if a requirements decomposition
is incomplete, then the decomposed requirement would be
satisfied even if the missing requirement(s) were unsatisfied.
This paper presents Lykus,1 an approach to automatically
detect incomplete requirements coverage at run time.

Detecting incomplete requirements is still an active re-
search area [1], [2], [3], [4], [5], [6], which becomes more
complicated when design-time environmental assumptions are
found to be invalid at run time. For example, a requirement
for a vehicle may be to accelerate. In an idealized system,
applying the throttle (e.g., pressing the gas pedal) would be
sufficient. However, the assumption that spinning the wheels
faster due to an increased throttle affects vehicle speed may
be found to be invalid. Given an environmental scenario with
low traction (e.g., ice) or where the vehicle’s wheels do not

1Lykus is the mortal son of Ares, who sacrificed strangers to his father.

touch the ground (e.g., the vehicle is flipped over) would
invalidate the earlier assumption when the vehicle did not
accelerate. Formal design-time methods to decompose goals
and requirements with guaranteed completeness exist [7],
though they are limited to only specific formal decomposition
rules. Design-time methods exist that are not limited to formal
decomposition patterns [6], [8], but make assumptions about
the environment that may be shown to be invalid at run
time. Problematically, run-time monitoring of incompletely
decomposed requirements may indicate satisfaction when the
missing requirement(s) would be unsatisfied (e.g., the throttle
is increased indicating satisfaction, but the vehicle does not
accelerate). Currently, no methods exist to detect incomplete
and inconsistent requirements decompositions at run time in
order to ensure relevant requirement satisfaction assessment.

This paper describes Lykus, the extension of a design
time model-driven technique [6] to detect incomplete and
inconsistent requirements decompositions at run time. Lykus
adapts run-time monitors to ensure relevant assessment in
the context of the physical environment and requirements
model. While requirements in a hierarchical decomposition
may be assessed directly or based on the satisfaction of the
decomposed child requirements, neither method is sufficient to
assess satisfaction alone in the presence of an incomplete or
inconsistent decomposition. However, by using a combination
of both assessments, it is possible to detect an incomplete or
inconsistent decomposition and calculate the correct require-
ment satisfaction. For example, given a parent requirement
to accelerate a vehicle, it may appear that the requirement is
satisfied when all of the decomposed child requirements (e.g.,
increase throttle) are satisfied. If the vehicle does not acceler-
ate, then there is an incomplete requirement decomposition and
additional requirements that are unrepresented are unsatisfied.
Similarly, if the vehicle does accelerate but the decomposed
requirements are not satisfied, then the parent requirement to
accelerate is not being satisfied in the manner specified by
the child requirements. Instead, it could be that the vehicle
is rolling down a hill rather than accelerating via throttle. In
both cases, the intent of the acceleration requirement is not
met, therefore the requirement is unsatisfied. Lykus identifies
incomplete and inconsistent decompositions at run time to dy-
namically modify requirement satisfaction monitors in order to



provide accurate assessments of the requirements unsatisfied.
Lykus also identifies violated environmental assumptions when
incomplete or inconsistent decompositions are identified at run
time.

Lykus uses utility functions [9] to analyze individual re-
quirements within the system specification. Rather than return
the raw assessment values generated by the utility functions,
Lykus identifies incomplete requirements (i.e., additional re-
quirements are necessary but not specified) and inconsistent
requirements (i.e., the system is not constrained in the manner
defined by the requirements) at run time by comparing the
utility function values for parent and child requirements. In
the case of incomplete requirements, the parent utility function
value is modified to be ‘unsatisfied,’ as there exists at least one
requirement that should have been decomposed (but was not)
that is ‘unsatisfied.’ Similarly, in the case of an inconsistent
satisfied requirement, the parent utility function value is also
modified to be unsatisfied since the satisfaction did not take
place according to the constraints imposed by the decomposed
requirements. Lykus explicitly uses the decompositions from
within a hierarchically decomposed goal model, typically a
design-time model, to analyze the decomposition completeness
and consistency at run time.

The contributions of this paper are as follows:
• We introduce a run-time approach to automatically detect

incomplete and inconsistent requirement decompositions
in hierarchical requirements models.

• We adapt the utility function results in the case of
incomplete and inconsistent decompositions to correctly
assess satisfaction in relation to the physical environment,
as opposed to an environmental model.

• We identify the environmental assumptions that are
shown to be invalid and are the contributing factor to
the incomplete or inconsistent decomposition.

• We present a prototype implementation of the Lykus run-
time analysis and requirement assessment approach.

• We demonstrate the applicability of Lykus on an adaptive
cruise control (ACC) system implemented on a rover
vehicle.

The remainder of this paper is organized into the following
sections. Section II provides an overview of background infor-
mation. Section III details the approach. Section IV describes
an example application, and Section V details related work.
Finally, Section VI discusses the conclusions and avenues of
future work.

II. BACKGROUND

This section covers background information on hierarchical
requirements modeling, utility functions, and the Adaptive
Cruise Control (ACC) system used in this paper.

A. Hierarchical Requirements Modeling

Hierarchical requirements are applicable to multiple require-
ment frameworks including i* [10], KAOS goal modeling [11],
and hierarchical requirements modeling [12]. Intrinsic to all

hierarchical requirements modeling approaches, high-level re-
quirements are defined by a collection of decomposed lower-
level requirements that are necessary for the satisfaction of
the high-level requirement. Decomposition may occur over
numerous levels, and it terminates when a set criteria is met.

The portions of KAOS goal modeling we employ realizes
Goal-Oriented Requirements Engineering (GORE) by defining
the decomposition of parent goals as a graph. Either AND- or
OR-decompositions may be employed, where a parent require-
ment is satisfied if all of its AND-decomposed requirements
are satisfied or if any of its OR-decomposed requirements are
satisfied [11]. KAOS goal model decomposition terminates
when a decomposed goal can be satisfied by an agent. In cases
where the agent measures the environment, the decomposed
goal is an environmental expectation. In cases where the agent
performs an action as part of the system-to-be, the decomposed
goal is a system requirement.

The models defined in this paper for use in the examples
apply portions of the KAOS goal modeling notation, but
we do not use the KAOS formal decomposition patterns or
other formal KAOS modeling methods. As Lykus is generally
applicable to any hierarchical goal and requirement model-
ing framework, we use the terms goals and requirements
interchangeably throughout this paper. Practically, the role of
goals, requirements, and expectations are generally differen-
tiated, however we treat them identically during analysis. In
this paper, goal and requirement model labels are in bold
courier font, while variable names, goal and requirement
text, and emphasis are indicated by italics.

1) Complete Decomposition: Parent requirements are com-
pletely decomposed if the satisfaction of the aggregate decom-
posed child requirements ensures that the parent requirement
is satisfied. That is, a requirement is incompletely decom-
posed if the decomposed requirements are satisfied yet the
parent requirement remains unsatisfied. In that case, at least
an additional requirement is necessary to satisfy the parent
requirement. More formally, the satisfaction of the decom-
posed requirements (i.e., R1, R2, R3, R..., Rn), along with any
domain properties and assumptions (i.e., Dom) ensure that
the parent requirement (i.e., R) is satisfied as illustrated in
Equation (1) [11].

{R1, R2, R3, R..., Rn, Dom} � R. (1)

2) Consistent Decomposition: Decomposed requirements
are one method of constraining the parent requirement to a
single desirable solution, amongst potentially numerous other
possible decompositions. For example, if a parent requirement
is to stop a vehicle, then two alternative solutions would
be to apply the brakes or remove the engine. Clearly one
solution is undesirable. Consistent decomposition implies that
the parent requirement satisfaction is only achieved when
the desired solution is achieved. That is, the solution (i.e.,
decomposed requirements, R1, R2, R3, R..., Rn, and domain
properties, Dom) also prevent undesired solutions of the par-



ent requirement (i.e., R). Formally this is defined in Equation
(2).

R � {R1, R2, R3, R..., Rn, Dom}. (2)

B. Utility Functions

The satisfaction of requirements has been assessed by run-
time monitors [13], [14] implemented as utility functions [15].
While typically a Boolean expression, satisficement may be
used to represent a degree of satisfaction [16], similar to the
concept of satisficing [17] but without the assumption of suf-
ficiency (i.e., the amount of satisfaction may not be sufficient
for the system). The utility functions used in this paper are
generated from three sources used to capture environmental
properties (ENV, MON, REL) by Athena [9], and are defined
as follows:

• ENV defines environmental properties related to the
satisfaction of the goal that may or may not be directly
observable (e.g., the expected speed of a vehicle at a
future time),

• MON defines monitors (e.g., agents and sensors) in the
system that are able to monitor specific values (e.g., a
speed sensor that measures the speed of a vehicle at the
current time), and

• REL represents relationships between the monitors and
environmental properties that relate to the satisfaction
or satisficement of goals (e.g., relating expected future
vehicle speed and current vehicle speed to measure the
satisficement of a requirement to increase speed).

The REL properties are used by Athena to compute the
degree of satisfaction (i.e., satisficement) of a requirement,
and returns the value as either state-, metric-, or fuzzy-logic
based values. Domain properties (e.g., a throttle increase will
spin the wheels faster causing acceleration) used by Athena [9]
to generate utility functions are present in the environmental
properties (ENV, MON, and REL) specified by the system
designer [18] based on their knowledge of the environment
and domain.

For example, the utility function created for Goal C.1,
where the speed in the future (Speedt+1) must be greater
than the current speed (Speedt) in order to achieve a faster
speed, results in the utility function shown in Figure 1.

boo l s a t _ o f _ c 1 ( ) {
/ / As se s s REL s a t i s f a c t i o n
i f ( s p e e d _ t < s p e e d _ t _ p l u s _ 1 ) {

/ / Re tu r n s a t i s f i e d
r e t u r n 1 . 0 ;

} e l s e {
/ / Re tu r n u n s a t i s f i e d
r e t u r n 0 . 0 ;

}
}

Fig. 1: Utility Function Listing of C.1

C. Adaptive Cruise Control Systems

Figure 2 details a hierarchical goal and requirements model
of an Adaptive Cruise Control (ACC) system that uses distance
sensors to ensure a safe following distance from the car ahead
by adjusting vehicle speed while simultaneously maintaining
as close to the desired speed as possible. Abbreviations M and
A are used for Maintain and Achieve, respectively. Leaf nodes
(i.e., agents) that are numbered in the requirements model
are provided in TABLE I. The ACC model defined here has
been previously shown to be complete [6], given the assumed
environmental conditions.

TABLE I: Agents used in Goal Model

# Agent (Sensor / Actuator)
1 Cruise Switch Sensor
2 Cruise Active Sensor
3 Cruise Active Switch
4 Throttle Pedal Sensor
5 Throttle Actuator
6 Brake Pedal Sensor
7 Brake Actuator
8 Speed Sensor 1
9 Speed Sensor 2

10 Distance Sensor 1
11 Distance Sensor 2

The ACC model in Figure 2 is defined by four primary
components: cruise control modes (i.e., goals with a prefix
of ‘A.’), speed increase (i.e., goals decomposed from C.1),
speed decrease (i.e., goals decomposed from B.2), and main-
tain speed (i.e., goals decomposed from D.1). The speed is
increased or decreased to maximize speed up to the desired
speed while maintaining a safe distance from the target car
(i.e., the car immediately in front). In cases where the safe
distance is violated, the speed is decreased regardless of the
desired speed. In cases that both the desired speed and safe
distance are met, the speed is maintained.

Goal C.1, which is used throughout as an example, is de-
composed into three children: C.2, C.3, and C.12. The Goal
C.1 (‘Achieve(Faster Speed)’) increases the speed by increas-
ing the throttle via Goal C.3 (‘Achieve(Increase Throttle)’).
The throttle is increased while ensuring braking is minimized
via Expectation C.12 when the Speed is less than the
Desired Speed (Expectation C.4) and the Distance measured
is greater than the defined Safe Distance (Expectation C.9).

The utility functions for the requirements in Figure 2 are de-
rived from the ENV, MON, and REL properties in TABLE II,
where, for brevity, only values related to the ongoing example
presented in this paper are presented. TABLE III defines the
variable value ranges and units.

III. APPROACH

An overview of Lykus is presented in a Data Flow Diagram
(DFD) in Figure 3. Processing elements are represented by
circles. Persistent data is represented by parallel horizontal
bars. The labeled arrows indicate data flows, and boxes
represent external entities. Lykus makes use of Athena [9]
to generate the utility functions that are used as run-time
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Fig. 2: Adaptive Cruise Control Goal Model

TABLE II: ENV, MON, and REL Properties

ENV MON REL
C.1 Speedt, Speedt+1 Speedt < Speedt+1

C.2 Speedt,Distance Desired Speed, Safe Distance Speedt < Desired Speed ∧ Distance > Safe Distance
C.3 Throttle Actuator, Throttle Pedal Sensor Throttle Actuator > Throttle Pedal Sensor
C.12 Brake Actuator Brake Actuator == MIN
Speedt Speed Sensor 1, Speed Sensor 2 Speed Sensor 1 ∨ Speed Sensor 2
Speedt Throttle Pedal Sensor,Brake Pedal Sensor max(MIN, Throttle Pedal Sensor − Brake Pedal Sensor)

Speedt+1 Throttle Actuator,Brake Actuator max(MIN, Throttle Actuator − Brake Actuator)
Distance Distance Sensor 1,Distance Sensor 2 Distance Sensor 1 ∨ Distance Sensor 2

monitors to detect incomplete and inconsistent decompositions
of parent requirements in the goal model (e.g., Figure 2) using
the properties in TABLE II. Optionally, Ares can be used to
detect incomplete requirements decompositions that can be
identified at design-time [6]. The utility functions and goal
model are then used by Lykus to generate logical expressions
that represent the decompositions within the hierarchically
decomposed goal model to detect both incomplete and in-
consistent decompositions. These logical expressions are used
by Lykus to generate executable monitoring code that detects
incomplete and inconsistent decompositions and accurately
report parent satisfaction. The executable monitoring code

generated by Lykus is used at run time to monitor the system
to detect counterexamples and accurately report satisfaction
throughout the system’s execution.

Lykus is applicable to systems that interact with their
environment, where the environment is anything that is outside
of the system-to-be. The environment may be other systems,
rather than a physical environment. Additionally, the system
must be able to sense its expected impact on the environment
to allow utility functions to measure the satisfaction of individ-
ual requirements directly, or indirectly using relationships be-
tween multiple sensors. Finally, requirements must be defined
hierarchically to detect decompositional counterexamples.



TABLE III: Units and Scaling for Variables in TABLE II

Variable Min Max Unit
Speedt 0.0 100.0 MPH
Speedt+1 0.0 100.0 MPH
Distance 0.0 50.0 Inches
Desired Speed 0.0 100.0 MPH
Safe Distance 0.0 50.0 Inches
Throttle Actuator 0.0 100.0 %
Throttle Pedal Sensor 0.0 100.0 %
Brake Actuator 0.0 100.0 %
Brake Pedal Sensor 0.0 100.0 %
Distance Sensor 1 0.0 50.0 Inches
Distance Sensor 2 0.0 50.0 Inches
Speed Sensor 1 0.0 100.0 MPH
Speed Sensor 2 0.0 100.0 MPH
Cruise Switch Sensor Off On Boolean
Cruise Active Sensor Off On Boolean
Cruise Active Switch Off On Boolean
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Code
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Goals &

Utility Functions

Goal Model

(1)
Generate Logical

Expressions
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Monitoring
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Flow
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External I/O
File

(Optional)
AresAthena Goals &

Utility Functions

Fig. 3: Lykus Data Flow Diagram

A. DFD Step 1: Generate Logical Expression

The input to Step 1 is a goal model that may be analyzed at
design-time for incomplete requirement decompositions using
Ares [6] and utility functions generated by Athena [9]. Lykus
outputs a set of requirements monitors and additional logic
that detects incomplete and inconsistent requirements decom-
position and provides the status of the parent requirement
satisfaction.

Unlike design-time solutions that use utility functions for
analysis across an entire range of possible scenarios [6], Lykus
applies the utility value functions at run time for a single
scenario that the system is currently experiencing. Based on
the results of the comparisons of the realized utility value
functions, analysis is performed each time the utility functions
are calculated at run time. Counterexamples are identified, and
subsequently adapted immediately as needed on the run-time
requirement assessments.

TABLE IV lists the satisfaction of both the parent require-
ment and the set of decomposed child requirements along with
the updated parent requirement satisfaction status to reflect
the run-time evaluation of the parent in actual environmental
conditions. For each decomposed requirement, two additional
checks are performed, one for incomplete decomposition and
one for inconsistent composition. If the requirement is neither
incomplete nor inconsistent, then the requirement’s utility
function is unmodified. The possible parent and decomposed

TABLE IV: Satisfaction Cases

Utility Function Updated
Parent

RequirementRow Parent
Requirement

Child
Requirements

1 Unsatisfied Unsatisfied Unsatisfied
2 Unsatisfied Satisfied Unsatisfied
3 Satisfied Unsatisfied Unsatisfied
4 Satisfied Satisfied Satisfied

child requirement satisfaction results listed in TABLE IV are
discussed in the following subsections. If the parent’s and
decomposed child requirements’ satisfactions do not match,
then the parent must be unsatisfied due to either incomplete or
inconsistent decomposition. TABLE IV identifies the possible
combinations of parent and decomposed child requirements
satisfaction, along with the updated parent satisfaction based
on run-time satisfaction measures.

1) Standard Unsatisfied Requirements: In the case where
both the parent and the child requirements are unsatisfied
(i.e., Row 1 in TABLE IV), the satisfaction of the parent does
not change and the parent requirement remains unsatisfied
at run time. Since both the utility function representing the
satisfaction of the parent requirement and the combined sat-
isfaction of child requirements are both unsatisfied, then the
result is neither incomplete nor inconsistent. That is, there is
not a known missing requirement due to an unsatisfied parent
requirement nor is there an inappropriately satisfied parent
requirement due to a solution not specified by the decomposed
child requirements. When a parent requirement is unsatisfied,
we would normally expect the decomposed child requirements
to be unsatisfied.

2) Unsatisfied Due to Incompleteness: In the case where
the parent is unsatisfied, yet the decomposed child require-
ments are satisfied (i.e., Row 2 in TABLE IV), the parent
requirement should remain unsatisfied due to an incomplete
decomposition. While the aggregate child requirements indi-
cate that the parent requirement should be satisfied, they only
indicate satisfaction due to a missing requirement that would
alter the satisfaction of the aggregate set.

3) Unsatisfied Due to Method Used: In the case where
the parent requirement is satisfied, yet the decomposed child
requirements are unsatisfied (i.e., Row 3 in TABLE IV), the
parent status must be modified to indicate that it is unsatisfied.
While the parent requirement utility function indicates that the
parent requirement is satisfied, the method of satisfaction is
not constrained to the solution provided by the decomposed
requirements.

4) Standard Satisfied Requirement: In the case where the
parent requirement and the decomposed child requirements are
both satisfied (i.e., Row 4 in TABLE IV), then the decomposi-
tion is neither incomplete nor inconsistent. Regardless of the
method of assessing the requirement (i.e., directly or via the
requirement’s decomposed child requirements) the assessment
results in satisfaction for both the parent and children.

B. DFD Step 2: Generate Monitoring Code

The logic for comparing parent requirement and aggregate
child requirements satisfactions is generated for each decom-



posed parent requirement. Neither direct measurement of each
requirement (e.g., measuring parent requirements for satisfac-
tion) nor measuring a requirement’s aggregate decomposed
requirements (e.g., measuring the set of child requirements for
satisfaction) is sufficient to assess the satisfaction of the parent
requirement in all cases. An implementation of TABLE IV
to calculate the updated satisfaction of requirement C.1 at
run time is given in Figure 4. This approach differs from the
Ares approach, since here we detect at run time if a single
specific environmental and system scenario related to the
current state of the system includes incomplete or inconsistent
requirements decomposition. The requirements, contents of the

boo l u p d a t e d _ s a t _ o f _ c 1 ( ) {
/ / As se s s P a r e n t S a t i s f a c t i o n
boo l p a r e n t _ s a t = s a t _ o f _ c 1 ( ) ;
/ / As se s s Aggrega t e C h i l d S a t i s f a c t i o n
boo l c h i l d _ s a t = s a t _ o f _ c 2 ( ) &&

s a t _ o f _ c 3 ( ) && s a t _ o f _ c 1 2 ( ) ;

i f ( p a r e n t _ s a t == c h i l d _ s a t )
r e t u r n p a r e n t _ s a t ;

e l s e {
/ / Save v a r i a b l e s and r e q u i r e m e n t
r e c o r d _ c o u n t e r e x a m p l e ( ‘ ‘C . 1 ’ ’ ) ;

/ / Unsa t i f i n c o m p l e t e / i n c o r r e c t
r e t u r n f a l s e ;

}
}

Fig. 4: Updated Utility Function Listing of C.1

variables, and (when included) environmental assumptions are
recorded upon the detection of an incomplete or inconsistent
requirements decomposition. Similar functions that update
parent requirement status, as measured from the original utility
functions, are provided for each of the parent requirements in
the goal model in order to detect incomplete and inconsistent
decompositions and the associated variables at run time.

C. Execution Time & Deployment

For each requirements decomposition, the computational
effort of Lykus grows linearly with respect to the number of
decomposed requirements, assuming a constant maximum size
of each utility function. Instead of calculating if a requirements
decomposition is incomplete or inconsistent in any scenario,
Lykus calculates if a requirement decomposition is incomplete
or inconsistent in only the current scenario (e.g., the agents
periodically read from sensors to support the calculation of
the utility functions). This is similar to checking a known NP
problem, SAT, for a single set of true or false assignments
rather than solving which true or false assignments satisfy the
Boolean expression.

More formally, identifying incomplete or inconsistent re-
quirements decompositions exists in NP-Complete. That is,

identifying an incomplete or inconsistent requirements decom-
positions is computationally expensive but verifying a specific
incomplete or inconsistent requirements decomposition can
be done very quickly. Lykus leverages the latter property
and verifies the decompositional completeness and consistency
with respect to only the current environmental scenario.

Given that utility functions are widely used as run-time
monitors [9] (e.g., “sat_of_ ∗()” in Fig 3), the additional cost
Lykus incurs is used to calculate a single Boolean expression
based on the concrete satisfaction of the utility functions (e.g.,
calculation of “ parent_sat == child_sat ” in Fig. 3) for each
decomposition.

Lykus calculates if each decomposition is incomplete or
inconsistent for the current scenario as measured by the utility
functions and their respective monitor properties (i.e., agents
and sensors). The utility functions are updated as new sensor
results are available (as often as 20 times a second). When
the utility function values are updated, the decompositions that
include the requirements with updated utility function values
are checked for incompleteness. That is, the decompositions of
the requirements specification are evaluated and re-evaluated
for incompleteness throughout the execution of the system the
generated run-time monitoring code is deployed in.

D. Limitations

The accuracy of Lykus is only as good as the accuracy of
the ENV, MON, and REL properties used to define the utility
functions. Additionally, counterexamples may be present in a
scenario that occurs only between sensor readings. In such
cases, the values calculated by the utility functions never
represent an incompleteness or inconsistency and, therefore,
no counterexample is detected.

IV. EXAMPLES

This section covers examples of an incomplete requirement
decomposition and an inconsistent requirement decomposition.

A. Experimental Setup

The updated utility functions and detection logic are ex-
ecuted during the operation of a small autonomous car. The
car comprises a 16 MHz ATmega328 microcontroller, and two
speed controllers driving 4 motors turning 4 wheels. Distance
measurements are provided by an ultrasonic sensor, speed
measurements are provided by a cumulative accelerometer,
and user input is provided by infrared remote control.

The small autonomous car was placed into two different
environmental scenarios intended to elicit the detection of both
incomplete and inconsistent decompositions.

B. Incomplete Requirement Decomposition

In order to demonstrate an incomplete requirement de-
composition for a parent requirement, the aggregate child
requirements must be satisfied while the parent requirement
itself is unsatisfied. Using goal C.1 as an example, the car
must be placed in a position where the utility function is
invalid. Specifically, the speed cannot increase over some



TABLE V: Incomplete Decomposition Values

Row Variable or Goal Value
1 Brake Actuator MIN
2 Brake Pedal Sensor MIN
3 Desired Speed MAX
4 Distance MAX
5 Distance Sensor 1 MAX
6 Distance Sensor 2 MAX
7 Safe Distance 6 Inches
8 Speed Sensor 1 MIN
9 Speed Sensor 2 MIN
10 Speedt MIN
11 Speedt+1 MIN
12 Throttle Actuator 80%
13 Throttle Pedal Sensor 70%
14 Goal C.1 Unsatisfied
15 Goal C.2 Satisfied
16 Goal C.3 Satisfied
17 Goal C.12 Satisfied

given time despite an increase in throttle with no braking. An
environmental scenario outside of the idealized environmental
model (i.e., as defined in TABLE II for rows Speedt, Speedt+1,
and Distance) may elicit previously undetected incomplete
requirement decompositions.

In this example, we physically flip the vehicle onto its back,
allowing none of the wheels to touch the ground. Since our
idealized environmental model never considered the possibility
of rolling the vehicle over, the standard method of accelerating
does not apply. The updated utility function code generated by
Lykus detects an incomplete decomposition from C.1 at run
time and records the incomplete decomposition, the system
and environmental variables, and violated environmental as-
sumptions.

Importantly, in order to maintain the set speed, the cruise
control system attempts to accelerate by increasing the throttle
(via goal C.3) while the brake is not applied (via goal C.12);
there is a safe distance to any upcoming obstacle and the
current speed is less than the desired speed (via expectation
C.2). Despite these decomposed child goals being satisfied,
the speed (both at the current time and in the future) are 0.
Due to the detected incomplete decomposition, parent goal
C.1 is reported as unsatisfied based on run-time monitored
conditions. The variables recorded for the incompleteness are
shown in TABLE V and are limited to a resolution of 10% for
percentage based values and one tenth (i.e., 0.1) for all other
values due to the truncation of sensor and actuator resolution
to minimize oscillation and measurement error.

Given the list of environmental assumptions defined in
TABLE II, the values of the counterexample variables can be
used to identify violated environmental assumptions at run
time. TABLE VI includes the list of environmental assumptions
and indicates if they are valid or not. It is important to
note that if the optional design-time completeness detection
was not performed by Ares, there may be no environmental
assumptions documented. In this case, TABLE VI shows that
rows 2 and 3 both include violated environmental assumptions
related to the calculation of speed from only the brake and
throttle, ignoring the possibility of outside influences (e.g.,

TABLE VI: Environmental Assumptions: Incompleteness

Row Environmental Assumption Valid
1 Speedt = Speed Sensor 1 ∨ Speedt = Speed Sensor 2 True

2 Speedt = max(MIN,
Throttle Pedal Sensor − Brake Pedal Sensor) False

3
Speedt+1 = max(MIN,
Throttle Actuator − Brake Actuator) False

4 Distance = Distance Sensor 1∨
Distance = Distance Sensor 2 True

TABLE VII: Inconsistent Decomposition Values

Row Variable or Goal Value
1 Brake Actuator MIN
2 Brake Pedal Sensor MIN
3 Desired Speed 2 MPH
4 Distance MAX
5 Distance Sensor 1 MAX
6 Distance Sensor 2 MAX
7 Safe Distance 6 Inches
8 Speed Sensor 1 1.2 MPH
9 Speed Sensor 2 1.2 MPH
10 Speedt 1.2 MPH
11 Speedt+1 2 MPH
12 Throttle Actuator 20%
13 Throttle Pedal Sensor 20%
14 Goal C.1 Satisfied
15 Goal C.2 Unsatisfied
16 Goal C.3 Unsatisfied
17 Goal C.12 Satisfied

rollovers).
Lykus is able to generate code to use utility functions to

detect incomplete requirements decompositions at run time to
ensure run-time relevant requirements assessment.

C. Inconsistent Requirement Decomposition

In order to demonstrate an inconsistent requirements de-
composition, the speed must increase despite not increasing
the throttle. We achieve this case by allowing the vehicle to
drive off a ‘cliff,’ represented by the edge of a desk. The car
accelerates through its fall despite not increasing the throttle.
Just as with the incomplete requirements decomposition, the
updated utility function code generated by Lykus detects an
inconsistent decomposition from C.1 and records the incon-
sistent decomposition, the system and environmental variables,
and violated environmental assumptions.

In this case, the ACC system accelerates without increasing
the throttle (via goal C.3) while the brake is not applied (via
goal C.12). While there is a safe distance to any upcoming
obstacle the current speed is not less than the desired speed
(via expectation C.2). Despite not satisfying these decom-
posed child goals, the speed increases due to the precipitous
drop. Due to the detected inconsistent decomposition, goal
C.1 is reported as unsatisfied, as it is not satisfied in the
method required by the decomposed child requirements. The
variables recorded for the inconsistency are shown in TA-
BLE VII and are limited to a resolution of 10% for percentage
based values and one tenth (i.e., 0.1) for all other values due
to the truncation of sensor and actuator resolution to minimize
oscillation and measurement error.



Given the list of environmental assumptions previously
identified in TABLE II, TABLE VIII lists the environmental
assumptions and indicates their run-time validity. Similar to
the incompleteness counterexample, rows 2 and 3 both include
violated environmental assumptions related to the calculation
of speed from only the brake and throttle, ignoring the possi-
bility of outside influences (e.g., drastic changes in terrain).

TABLE VIII: Environmental Assumptions: Inconsistency

Row Environmental Assumption Valid
1 Speedt = Speed Sensor 1 ∨ Speedt = Speed Sensor 2 True

2 Speedt = max(MIN,
Throttle Pedal Sensor − Brake Pedal Sensor) False

3
Speedt+1 = max(MIN,
Throttle Actuator − Brake Actuator) False

4 Distance = Distance Sensor 1∨
Distance = Distance Sensor 2 True

Lykus is able to generate code to use utility functions to
detect inconsistent requirements decompositions at run time
to ensure run-time relevant requirements assessment.

D. Threats to Validity

Since Lykus is most realistically validated at run time, rather
than using a simulation or static analysis, the validation is
limited to the finite set of scenarios that occur. We have
ensured that both inconsistent and incomplete requirements
decompositions can be identified, however additional incon-
sistent and incomplete requirements decompositions may exist
within the requirements model. The validation of the detection
classification, however, is done by specific cases (i.e., TA-
BLE IV) within the description of the approach. Additionally,
methods that could manage sensor uncertainty (e.g., RELAXed
goals and requirements [19]) are not included in the examples
of incomplete and inconsistent requirements.

V. RELATED WORK

This section overviews related work, including requirements
completeness and run-time monitoring of requirements. Unlike
proposals to use run-time specific models to support run-time
analysis [20], we use goal models intended for design time
use for run-time analysis.

A. Requirements Completeness

Multiple methods have been developed to identify incom-
plete requirements decomposition. We overview these strate-
gies and compare them to Lykus. Obstacles to requirements
completeness have been generated using search-based tech-
niques [1], however the counterexamples must be manually
reviewed for applicability. Formal methods of guaranteeing
complete requirements exist for behavioral state-based sys-
tems [21], formally described requirements using theorem
provers [11], and low-level functional details [21]. Addi-
tionally, decomposition with formally-proven completeness
properties also exist, where a system defined by repeated
application of the formal decomposition patterns guarantees
completeness. Problematically, formal methods are intrinsi-
cally heavyweight solutions that often require expertise with

theorem proving [11] or limit possible solutions to the formally
defined patterns.

Tools also exists that identify single [6] or multiple [8]
counterexamples in hierarchical requirements decompositions
at design time without restrictions on decomposition patterns
or heavyweight formal descriptions and analysis.

Lykus differs by acknowledging that invalid environmen-
tal assumptions made at design time may leave incomplete
decompositions intact until they occur at run time. Lykus
detects these incomplete decompositions at run time rather
than at design-time and provides more accurate utility function
assessment in the presence of incomplete decompositions.

B. Run-Time Monitors
Several frameworks exist to monitor requirements at run

time [13], [14], [22] that are intended to support instrumen-
tation, diagnosis, and reconfiguration operations within the
system. The utility functions whose values we adapt in Lykus,
as generated by Athena [9], provide the same support with the
benefit of automatic generation from a set of environmental
properties. Lykus differs from existing run-time monitors by
detecting incomplete and inconsistent requirements at run time
and adapting the results of existing run-time monitors [9] to
provide more accurate results.

VI. CONCLUSIONS

In this paper, we have presented Lykus, a run-time approach
for detecting incomplete and inconsistent requirements decom-
position and using that information to identify invalid envi-
ronmental assumptions and unsatisfied requirements. Lykus
reports the issues detected with requirements, as well as
the invalid environmental assumptions, while automatically
updating the results of requirements monitoring.

We demonstrate Lykus on an adaptive cruise control system
implemented on a robotic vehicle and developed in collabora-
tion with our industrial collaborators. We show that Lykus is
able to detect incomplete and inconsistent requirements at run
time due to invalid environmental assumptions. Specifically,
we show that while existing tools identify no incomplete
requirements, incomplete decompositions may still exist due
to incorrect assumptions that are detectable using run-time
monitors.

In the future, we plan to apply Lykus to additional ex-
amples, including requirements models with RELAXed re-
quirements [19] that make use of fuzzy logic in specifying
requirements. Additionally, we plan to investigate how Lykus
can be used to trigger additional mitigations at run time due to
unsatisfied requirements that would not be detected with other
methods.
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