

Nelly Bencomo, Sebastian Götz, Hui Song

Models@run.time: A Guided Tour of the State of the Art and Research Challenges*

14th October 2018

13th International Workshop on Models@run.time at MODELS'18, Copenhagen, Denmark

* Work, which is currently in revision for publication in a journal

Motivation: Problems and Objectives

Research Problems

- A plethora of approaches has been presented since the term "Models@run.time" was coined in 2006
- Work on Models@run.time is distributed among many venues
- By now, only one overview article from 2013 on the research topic exists

Research Objectives

- Thus, a new overview article is required, which
 - Guides researchers new to the field
 - Helps the researchers to position their work

Slide 2

Based on these objectives, our study offers the following contributions:

- 1. A novel taxonomy to classify work on models@run.time
- 2. A quantitative overview of the current state-of-the-art
- 3. A catalogue of open research challenges based on gaps in the state of the art

Slide 3

Research Method

Research Method

- An adjusted version of Kitchenham's Systematic Literature Review:
 - Venue-based search to get initital literature corpus
 - Initial taxonomy based on experience
 - In-/exclusion criteria-based filtering
 - Evolving the taxonomy while iterating the literature corpus
 - adding classes to dimensions
 - Splitting/merging dimensions
 - Classifying the literature alongside
 - Keword-based search to include papers from further venues
 - Cross-dimensional gap-analysis

Slide 5

In-/Exclusion Criteria

Inclusion Criteria

- The paper covers research where a model, which reflects the state of a system, should be causally connected with that system.
- The paper addresses runtime models or explicitly uses the term models@run.time.
- The paper uses self-representation, reflection or self-modelling.

Exclusion Criteria

- Approaches on *executable models* are not to be considered models@run.time approaches, if they lack the causal connection to the system, but are the actual system.
- The survey includes papers published until December 2017.

Slide 6

Overview of Literature Corpus

Name	Туре	#AllPapers	#Included
Models@run.time	Workshop	95	80
Requirements@run.time	Workshop	13	11
RAM-SE	Workshop	61	6
MRT Dagstuhl	Book	11	9
MODELS	Conference	545	23
SEAMS	Conference	182	29
ICAC	Conference	366	31
SASO	Conference	385	11
CompArch	Conference	330	7
ECSA/WICSA	Conference	334	8
RE	Conference	528	6
SPLC	Conference	120	2
ICSE	Conference	640	6
MRT Special Issues	Journal	25	9
SoSyM	Journal	n/a	3
JSS	Journal	n/a	2
TOSEM	Journal	n/a	1
TSE	Journal	n/a	4
TAAS	Journal	n/a	4
GoogleScholar Search	n/a	n/a	20
Total		3635	272

Overview of Included Papers

- Notably, most papers are published at conferences
- Since 2008 until 2017, every year at least 15 papers on models@run.time have been published

The Taxonomy

A Novel Taxonomy for Models@run.time

The Taxonomy – Modelled Artifacts

The Taxonomy – Types of Runtime Models

The Taxonomy – Purposes of Using Runtime Models

The Taxonomy – Applied Model-driven Techniques

Model-transformation 56 Analysis 44 Reflection 43 Reasoning 34 Monitoring 27 Variability Modelling 26 Machine Learning 13 **Requirements Engineering** 10 Model Comparison 7 Workflows 7 None 34

The Taxonomy – Fundamental Research Topics

The Taxonomy – Application Domains, Research Areas and Initiatives

Application Domains

- Most work (23) has been evaluated in an enterprise software context
- In total we found 25 different application domains used for evaluation

Intersecting Research Areas

- We found 25 intersecting research areas, confirming the hypothesis that models@run.time is highly interdisciplinary
- The most prominent research area is "self-adaptive systems" (78)

Initiatives

- We found a very large number of research projects (19 EU, 26 regional)
- But, only few projects directly focus on models@run.time

Slide 16

Analysis

Cross-dimensional Gap-Analysis

- To identify research gaps, we performed a cross-dimensional gap-analysis
- We compared the four dimensions of applied research on models@run.time

Analysis - Modelled Artifact vs. Type of Model

Analysis – Modelled Artifact vs. Purpose of Runtime Model

Analysis - Modelled Artifact vs. Applied Model-driven Technique

Analysis – Model Type vs. Purpose of Runtime Model

Analysis – Model Type vs. Applied Model-driven Technique

Analysis – Purpose of Runtime Model vs. Applied Model-driven Technique

Research Challenges

Future Research Challenges – Artifact-based

- The need to apply models@run.time **at lower levels** than architecture
 - Especially, on code-level (e.g., working with the AST) [OC1]
- The need to apply models@run.time **at higher levels** than architecture [oc2]
 - Systems-of-systems
 - Collective self-aware systems

Future Research Challenges – Model-Type-based

- Goal models at runtime to address uncertainty [OC3]
- Variability models at runtime (SPLC and DSPL workshop series) [0C4]
- Runtime feedback loop models [ocs]

Future Research Challenges – Based on Purposes

- Assurance, especially for safety-critical systems (i.e., certification) [OC6]
- **Development** (seamless integration with development-time models) [0C7]
- Self-aware computing systems (especially, collectives thereof) [OC8]

Future Research Challenges – Based on Techniques

- Machine Learning [0C9]
- Systematic Model Comparison [oc10]
- Runtime Workflow Models (trend stopped 5 years ago) [oc11]

Future Research Challenges – Fundamental Research

- Towards Managed Uncertainty at Runtime
- Runtime Model Inference
 - Inferring the runtime model from the running system
- Runtime Code Synthesis
 - Inferring the running system from the runtime model
- Distributed Models@run.time
- Transaction-safe Causal Connections
- Self-modelling systems

Overview of Future Directions

Runtime Model Inference	Managed Uncertainty	Distributed Runtime Models
Runtime Code Synthesis	Self-modelling Systems	Transaction-safe Causal Connections

Fundamental Research Topics

Slide 31

Tool Support

The Systematic Literature Review Toolkit

- To automate common manual tasks in our study, we developed an Eclipsebased RCP: the SLR Toolkit
- Tool Demo on Friday, 10:00, 2A56 (Aud 3)
- Tool paper in this years MODELS Proceedings

Thank you!

