
17/09/2019

1

Modeling: From CASE Tools to
Models@runtime & Machine Learning

Prof. Jean-Marc Jézéquel
Director of IRISA

jezequel@irisa.fr
http://people.irisa.fr/Jean-Marc.Jezequel

@jmjezequel

2
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Caveat: nothing new here,
just (hopefully) different

perspective on existing stuff

2

17/09/2019

2

3
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Writing Software Models
vs.

Creating a Scientific Theory

3

4
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Scientific Theories & Models
• A scientific theory is an explanation of an aspect of the natural

world that can be repeatedly tested, in accordance with the
scientific method, using a predefined protocol of observation
and experiment

• "The Structure of Scientific Theories" in The Stanford Encyclopedia of Philosophy
• The scientific method involves

 the proposal and testing of hypotheses,
• by deriving predictions from the hypotheses about the results of future experiments

 then performing those experiments to see whether the predictions are valid
• A Model is an abstraction of an aspect of the world for a

specific purpose. Therefore a Scientific Theory is a Model.
 But a Model is not always a Scientific Theory

4

17/09/2019

3

5
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Mathematics used to be the language of science...
… when science was simple enough
 Newton’s gravity

• 2 bodies problem has an analytical solution (Maths)
• 3+ bodies problem?

 Solution: model it into software and run it on a computer
• aka Simulation
• Idem for nuclear reactions, QCD, meteo, climate …

Informatics is the language of science of the 21th
 Of course Math still has a role to play

Creating a Scientific Theory is (evermore)
Writing Software

6
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

A Machine is made of
 A computer C
 Model M
 Function f

Does it do what I want?
 Test it w.r.t. the World!

Conversely writing (usefull) Software is
like Creating a Scientific Theory

} Software

World

Machine
C (M x f)

17/09/2019

4

7
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

 A Machine is made of
 A computer C
 Model M
 Function f

Typical evolution
1. Model the world
2. Monitor the world
3. Control the world
4. Sometimes becomes the world (but that’s not the point of this talk)

• Bank accounts, Expedia…

The World and the Machine [Jackson]

World

Machine
C (M x f)

Sensors Actuators
} Software

8
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

 A Machine is made of
 A computer C

• Nobody knows any longer how
modern processors work

 Model M
• Abstraction of an aspect of the world
• it is incomplete, partial and thus wrong

 Function f
• Users do not really know what they want
• Many bugs traced to bad requirements
• Variability management!

Caveat

Machine
C (M x f)

Sensors Actuators

Are you serious?
Do you really want

to board this plane?

World

17/09/2019

5

9
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Of course [Dijkstra]!
 Abstraction on hardware (ie i86 instruction set)
 Models are SoC + abstraction of the world
 Function variability must be understood =>

abstracted
Are all these abstractions consistent?
 Do the thing right [Brooks]: applied maths, eg. Proofs

Are they close enough to reality for the purpose?
 Do the right thing [Brooks]: Test!

Solution: Abstraction + Separation of Concerns

Beware of bugs in the above code;
I have only proved it correct, not tried it

Don Knuth

10
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

The historical approach (50’s->80’s)
 Machine = C (M x f) : M x f is « compiled »

• Typical in Fortran, C, control automation, …
• Most efficient, but no SoC thus brittle wrt f->f’

The object oriented revolution (70’s -> 2000’s)
 Machine = C(M) x C(f) : M x f is « interpreted » (M still there)

• Then it makes it easy to have Machine’ = C(M) x C(f’)
 Still hard to keep model separated from technical concerns

• persistency, security, FT, speed…
One Model per concern (90’s -> ?)

 Machine = C(M1) x C(M2) x C(M3) x C(f1) x C(f2) …

Evolution towards better abstractions

17/09/2019

6

11
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Revisiting the history of MDE:what kind of SoC were we trying to achieve?

1

=> prepare software for the unkown

12
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

born in the 80's, featuring:
 consistency checking, validation, code generation
 starting to be used in some industries

• E.g. telecommunications, with so-called Formal
Description Techniques, from SDL (Specification and
Description Language) to Estelle or Lotos (Logic of
Temporal ordering of events)

– Late 80’s : distributed code generation from Estelle
• Many other approaches

1st generation: CASE tools
(Computer Assisted Software Engineering)

17/09/2019

7

13
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Program very complex distributed computers
 at a high level of abstraction,
 with a high level of confidence

• because of simulation/validation/model-checking could
be performed on the exact same source code

Clear separation of
 essential complexity (the specification of a protocol)
 from the accidental complexity of the implementation

• thus making it easier to interoperate & evolve the
specification to meet new requirements.

CASE tools: The Good

14
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Highly abstract & somehow mathematical
nature of formalisms
 difficult to train large numbers of telecom

engineers to use these formalisms
• Savings not always worth the trouble

Black box nature of code generators
 Not able to handle some engineering constraints

• speed, code compacity, memory footprint, memory
usage, interface with legacy software or firmware…

 Ok let’s hack the generated code to handle them!
• Roadmap to catastrophes…

CASE tools: The Bad and the Ugly

17/09/2019

8

15
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

2nd generation: MDA
"OMG is in the ideal position to provide the model-based
standards that are necessary to extend integration beyond the
middleware approach… Now is the time to put this plan
into effect. Now is the time for the Model Driven
Architecture."

Richard Soley & OMG staff,
MDA Whitepaper Draft 3.2

November 27, 2000

16
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

MDA: The Good

COM+DCOM
CORBA C#.Net XMLSOAP

JavaEJB HTTPHTML

Organization assets
expressed as models,
clear separation from
platforms

Model transformations
to map to technology
specific platforms
(QVT)

Platform neutral models based
on UML & MOF

17/09/2019

9

17
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

MDA: The Bad and the Ugly
• MDA models
 PIM: Platform Independent Model : an Oxymore

• Business Model of a system abstracting away the deployment details of a system
 PSM: Platform Specific Model
 PDM: Platform Description Model

– Nobody had ever actually seen them
» Utterly naïve Y-shaped approach

– So the platform know-how is encoded into the transformation
» Hard to write, evolve, maintain…

18
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

3rd generation: SoC with MDE, AOSD
and SPL

Design
Model

Use Case
Model

Security
Model

QoS
Model Reliability

Model

Data
Model

Test
Model

UI
Model

Platform
Model

Code
Model

tester

Challenges:
-Product Families

-Reuse of
Weaving Process

-Automatic Weaving

Challenges:
-Product Families

-Reuse of
Weaving Process

-Automatic Weaving

17/09/2019

10

19
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Excellent Separation of Concerns
 Multiple viewpoints & stakeholders
 Multiple concerns (technicals…)
 Multiple domains of expertise
 UML, AspectJ, etc. to modularize concerns

• In a meaningful way for experts
• With tool support (analysis, code gen., V&V..)

MDE, AOSD and SPL: The Good

20
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

At some point, all these concerns must be integrated
Where are the Composition operators?

• Eg in Aspects, non commutative, non associative
Tool support (analysis, code gen., V&V..)

• Very costly to build

MDE, AOSD and SPL: The Bad & the Ugly

17/09/2019

11

21
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

4th generation: DSL & SLE
Domain Specific Languages, Software Language Engineering

• DSL
 Targeted to a particular kind of problem

• Long history of DSL, with dedicated notations (textual or
graphical), support (editor, checkers, etc.)

 Promises: more « efficient » languages for resolving
a set of specific problems in a domain

 Each concern described in its own language =>
reduce abstraction gap

• SLE:
 Raise composition issues at Language Level

21

22
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

DSL: The Good
• A DSL program is a 3D abstraction
 from the domain (cf Newton vs Relativity),
 from the function (requirements)
 from the platform

• Embrace uncertainty
 Smaller abstractions than with GPL

• We better know and control the unknown
 Apply rigorous methods to uncertain systems so that

we get known uncertainties
22

17/09/2019

12

23
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

From supporting a single DSL…
 Concrete syntax, abstract syntax, semantics, pragmatics

• Editors, Parsers, Simulators, Compilers…
• But also: Checkers, Refactoring tools, Converters…

…To supporting Multiple DSLs
 Interacting altogether (cf. Gemoc initiative http://gemoc.org)
 Each DSL with several flavors(variants)
 And evolving over time (versions)

Product Lines of DSLs!
 Safe reuse of the tool chains?
 Backward compatibility, Migration of artifacts?

DSL: The Bad and the Ugly

24
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Melange*: a Meta-language for Modular
and Reusable Development of DSLs

• Ease the definition of tool-supported DSL families
 How to ease and validate the definition of new DSLs/tools?
 How to correctly reuse existing tools?
Bring external DSL design abilities to the masses
⇒Use abstractions that are familiar to the OO Programmer to

define languages
⇒ set of DSL to build DSLs

⇒ Leverage static typing to foster safe reuse
⇒With a appropriate definition of type

* Joint work with Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais

17/09/2019

13

25
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Approach Overview

7

26
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Approach Overview

7

17/09/2019

14

27
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Approach Overview

7
Inspired by eg. Erdweg et al., Language Composition Untangled, LDTA, 2012Inspired by eg. Erdweg et al., Language Composition Untangled, LDTA, 2012

28
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

MELANGE
• An open-source (EPL) language workbench
• or… a language-based, model-oriented language for DSL engineering
• An implementation of the algebra
• Supported by a model-oriented type sytem
• Based on Xtext
• Seamlessly integrated with the EMF ecosystem
• Bundled as a set of Eclipse plug-ins

15

17/09/2019

15

29
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

The model is no longer fully known a priori
 Example of bus network

• getSpeed(Date pastDate)
– Engineering Model: access to DB to yield result

• getSpeed(Date now)
– Model@runtime: access to sensors to yield result

• getSpeed(Date futureDate)
– How to predict the future?

5th generation: Models & Data

30
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

Model with some mathematical approximation
 Aka Scientific Model
 Calibrate it with data

Learn it from data
 Inductive reasoning principle, i.e., generalization

from specific cases.
• implies some uncertainty: do specific cases sufficiently

represent the rules and principles?
 Continue to learn over ongoing collected data

• Still need models at runtime!

Predicting the future: getSpeed(Date futureDate)

17/09/2019

16

31
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

How to cleanly separate and compose
 Engineering Models
 Scientific models
 Models obtained through Machine Learning

Continuous update
 Online training

• Confidence level in the prediction
 Link with models@runtime

Models & Data: Challenges

32
17/09/2019

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES

All these ideas have been
developed with my
colleagues of the DiverSE
team at IRISA/Inria

Formely known as Triskell

Acknowledgement

@jmjezequel

