
The role of models@run.time in
self-explanation in the era of
Machine Learning

Antonio Garcia, Juan Marcelo Parra-Ullauri and Nelly Bencomo

14th International Workshop on Models@run.time
September 17th, 2019

Introduction

Machine learning is everywhere!

Annotating 100+ years of photos at the New York Times (GCP)

1

https://cloud.google.com/blog/products/ai-machine-learning/how-the-new-york-times-is-using-google-cloud-to-find-untold-stories-in-millions-of-archived-photos

Machine learning is everywhere!

Running an automated ride-hailing service in Metro Phoenix (Waymo)

1

https://waymo.com

Machine learning is everywhere!

Beating world-level experts at Go and Starcraft (AlphaGo → AlphaZero)

1

https://deepmind.com/research/case-studies/alphago-the-story-so-far

Machine learning is everywhere!

Machine learning is going to take over the world!

1

Machine learning can automate existing biases (I)

Source — ProPublica

Crime risk scores

• ProPublica study on 7000
automated risk assessments in
Broward County (Florida) with
Northpointe tool

• 2x rate blacks wrongly
mislabelled “high risk”

• 2x rate whites wrongly
mislabelled “low risk”

• Training data may have
questions correlated with race

2

Machine learning can automate existing biases (I)

Source — ProPublica

Crime risk scores

• ProPublica study on 7000
automated risk assessments in
Broward County (Florida) with
Northpointe tool

• 2x rate blacks wrongly
mislabelled “high risk”

• 2x rate whites wrongly
mislabelled “low risk”

• Training data may have
questions correlated with race

2

Machine learning can automate existing biases (II)

Recruiting automation

• Reuters reported Amazon had worked on and later scrapped a
machine learning-based CV screening system

• Most CVs sent to Amazon are from males (tech industry after all...)

• Algorithm learned to ignore common IT skills (e.g. programming)

• Algorithm favored aggressive language (“executed”, “captured”)

3

Machine learning can be inscrutable (I)

Debbie Maizels/Springer Nature

Nature Medicine guidelines for reinforcement learning

• Guidelines for RL when assist patient treatment decisions

• Concerns about available information, the real sample size for a
specific scenario, and “Will the AI behave prospectively as intended?”

• Concludes that “it is essential to interrogate RL-learned policies to
assess whether they will behave prospectively as intended”

4

Machine learning can be inscrutable (II)

Google Cloud whitepaper on TensorFlow
at AXA Insurance

• Assesses clients at risk of “large-loss”
car accidents (w/payouts of $10k+)

• Built neural net with 70 inputs (age
range of car/driver, region, premium...)

• 78% accuracy vs 38% (random forest)

Interesting note
“AXA is still at the early stages
with this approach — architecting
neural nets to make them trans-
parent and easy to debug will take
further development — but it’s a
great demonstration of the promise
of leveraging these breakthroughs.” 5

How can runtime models help?

Types of explanations: making AI “interpretable”

Open the black
box problems

Black box
explanation

Model
explanation

Outcome
explanation

Model
inspection

Transparent
box design

R. Guidotti, A. Monreale, S. Ruggieri et al.
A Survey of Methods for Explaining Black Box Models.
ACM Computing Surveys, 51(5) 1–42. January 2019.
http://dx.doi.org/10.1145/3236009

6

http://dx.doi.org/10.1145/3236009

Things to watch out for

When do we need interpretability?

• Whenever there are real consequences from the result!

• Finding cat pictures vs deciding if someone “looks like a criminal”

Interpretability of the process

• Different algorithms have different inherent interpretability

• Compare decision trees and neural networks

Interpretability of the data

• Humans can easily follow explanations about texts or images

• Hard to explain conclusions about complex networks, GIS data...

Size of the explanations

• In an emergency, I can’t read 100 pages!

• In a plane crash post-mortem, we need all the details 7

Runtime models for transparent boxes

Rule learning

• Organizing the rules for sufficiently large systems while they are
accurate and concise is the hard part

• Beyond decision trees: Bayesian rules, “interpretable decision sets”,
linear models, predictive association rules, etc.

• The runtime models would consist of these rules, plus the way in
which they were learned

Prototype selection

• Learn set of protoypes for various equivalence classes in the input
space within the training set

• Explanation = here are my prototypes, here are their labels, I apply
X strategy to decide (K-means, K-medoids)

• Runtime models would preserve the prototypes, the process for their
selection, and trace how the prototypes are used

8

Runtime models for explaining the process

Generating close-enough interpretable mimics

• Train the NN/decision forest/SVM as usual

• Later, create an interpretable model that mimics the original one as
close as possible (e.g. decision tree, ruleset)

• Runtime models could be involved in a loop here, where the NN
trains a little, the mimicking model evolves, and users are kept in
the loop about the training

Summarizing system evolution

• Suppose the system goes through a finite number of states

• Is there a periodicity to the evolution to the system?

• We can keep a runtime state transition model to incrementally build
a baseline of typical system evolution

9

Runtime models for explaining the outcome

Example from neural networks: saliency masks

We can visualize which parts of the image led to each label for an image,
and how confident the network was about it.

How does this translate to runtime models?

• We need to represent what the system perceived, what it thought
about what it saw, and how confident it was about its next decision

• Essentially, decision provenance

• The history of the model becomes important once more!

10

Runtime models for inspecting properties

Neural network approaches

• Cortez, Embrecht: find feature importance (e.g. pH level vs
probability of high-quality wine)

• Statistical approaches also exist for general black boxes (partial
dependence plot)

• Activation maximization: generate image that highly activates the
network (what is each neuron looking for?)

Going back to runtime models

• Do we have approaches to run these sensitivty analyses?

• Model checking is common in MDE for this: does it scale to
real-world systems?

• Can we inspect for “softer” desirables, e.g. fairness?

• We could query the history of our runtime models to test desirable
properties about its evolution 11

Example system: RDM

Remote Data Mirroring system

Our current version of RDM

Key points about RDM

• Self-adaptive system

• Switches network
between Minimum
Spanning Tree and
Redundant

• Balances 3
non-functional reqs.:

• Maximization of
Reliability

• Minimization of
Cost

• Maximization of
Performance

12

Is RDM a transparent box?

Our RDM uses Partially Observable Markov Decision Processes

• Underlying state cannot be directly observed

• Indirectly observed based on three metrics:
• Range of Bandwidth Consumption (RBC, low is best for MC/MP)
• Total Time for Writing (TTW, low is best for MC/MP)
• Active Network Links (ANL, high is best for MR)

• RDM uses Bayesian inference + tree-based lookahead to estimate
satisficement of NFRs, then applies reward table to make decision

• Recent versions allow for automated tweaking of the reward table

Is this transparent?

• Rule-based system: the overall decision can be traced

• RDM is not visibly exposing its rules and trees, though!

• Transparency requires considering the experience as well

13

Is RDM a transparent box?

Our RDM uses Partially Observable Markov Decision Processes

• Underlying state cannot be directly observed

• Indirectly observed based on three metrics:
• Range of Bandwidth Consumption (RBC, low is best for MC/MP)
• Total Time for Writing (TTW, low is best for MC/MP)
• Active Network Links (ANL, high is best for MR)

• RDM uses Bayesian inference + tree-based lookahead to estimate
satisficement of NFRs, then applies reward table to make decision

• Recent versions allow for automated tweaking of the reward table

Is this transparent?

• Rule-based system: the overall decision can be traced

• RDM is not visibly exposing its rules and trees, though!

• Transparency requires considering the experience as well

13

Outcome explanation through dedicated trace models

Existing JSON logs were translated on-the-fly to a trace metamodel:

Log

timesliceID : EString

Decision

name : EString

Observation

description : EString

probability : EDouble = 0.0

Measurement

measurementPosition : EInt

Threshold

name : EString

value : EDouble = 0.0

NFRBelief

estimatedProbability : EDouble = 0.0

satisfied : EBoolean = false

ActionBelief

estimatedValue : EDouble = 0.0

Action

name : EString

NFR

name : EString

RewardTable

NFRSatisfaction

satisfied : EBoolean = false

RewardTableRow

value : EDouble = 0.0

RewardTableThreshold

value : EDouble = 0.0

Measure

name : EString

[0..*] decisions

[0..*] actions
[0..*] requirements

[0..1] rewardTable

[0..*] actionBeliefs

[0..1] observation

[0..1] actionTaken

[0..*] measurements

[0..1] nfr

[0..1] action

[0..*] rows

[0..1] nfr [0..*] satisfactions

[0..1] action

[0..*] nfrBeliefsPre

[0..*] nfrBeliefsPost

[0..1] nfr [0..*] thresholds

[0..*] metrics

[0..1] measure

[0..*] measure

[0..*] thresholds

• Log of Decisions, made upon Observations where Measurements
have been taken of certain Measures related to NFRs

• Observations result in pre/post-decision levels of belief in the
satisficement of the NFRs

• Each Decision picks the Action with the highest estimated value

14

Outcome explanation through dedicated trace models

Existing JSON logs were translated on-the-fly to a trace metamodel:

Log

timesliceID : EString

Decision

name : EString

Observation

description : EString

probability : EDouble = 0.0

Measurement

measurementPosition : EInt

Threshold

name : EString

value : EDouble = 0.0

NFRBelief

estimatedProbability : EDouble = 0.0

satisfied : EBoolean = false

ActionBelief

estimatedValue : EDouble = 0.0

Action

name : EString

NFR

name : EString

RewardTable

NFRSatisfaction

satisfied : EBoolean = false

RewardTableRow

value : EDouble = 0.0

RewardTableThreshold

value : EDouble = 0.0

Measure

name : EString

[0..*] decisions

[0..*] actions
[0..*] requirements

[0..1] rewardTable

[0..*] actionBeliefs

[0..1] observation

[0..1] actionTaken

[0..*] measurements

[0..1] nfr

[0..1] action

[0..*] rows

[0..1] nfr [0..*] satisfactions

[0..1] action

[0..*] nfrBeliefsPre

[0..*] nfrBeliefsPost

[0..1] nfr [0..*] thresholds

[0..*] metrics

[0..1] measure

[0..*] measure

[0..*] thresholds

• Log of Decisions, made upon Observations where Measurements
have been taken of certain Measures related to NFRs

• Observations result in pre/post-decision levels of belief in the
satisficement of the NFRs

• Each Decision picks the Action with the highest estimated value

14

Outcome explanation through dedicated trace models

Existing JSON logs were translated on-the-fly to a trace metamodel:

Log

timesliceID : EString

Decision

name : EString

Observation

description : EString

probability : EDouble = 0.0

Measurement

measurementPosition : EInt

Threshold

name : EString

value : EDouble = 0.0

NFRBelief

estimatedProbability : EDouble = 0.0

satisfied : EBoolean = false

ActionBelief

estimatedValue : EDouble = 0.0

Action

name : EString

NFR

name : EString

RewardTable

NFRSatisfaction

satisfied : EBoolean = false

RewardTableRow

value : EDouble = 0.0

RewardTableThreshold

value : EDouble = 0.0

Measure

name : EString

[0..*] decisions

[0..*] actions
[0..*] requirements

[0..1] rewardTable

[0..*] actionBeliefs

[0..1] observation

[0..1] actionTaken

[0..*] measurements

[0..1] nfr

[0..1] action

[0..*] rows

[0..1] nfr [0..*] satisfactions

[0..1] action

[0..*] nfrBeliefsPre

[0..*] nfrBeliefsPost

[0..1] nfr [0..*] thresholds

[0..*] metrics

[0..1] measure

[0..*] measure

[0..*] thresholds

• Log of Decisions, made upon Observations where Measurements
have been taken of certain Measures related to NFRs

• Observations result in pre/post-decision levels of belief in the
satisficement of the NFRs

• Each Decision picks the Action with the highest estimated value

14

Outcome explanation through dedicated trace models

Existing JSON logs were translated on-the-fly to a trace metamodel:

Log

timesliceID : EString

Decision

name : EString

Observation

description : EString

probability : EDouble = 0.0

Measurement

measurementPosition : EInt

Threshold

name : EString

value : EDouble = 0.0

NFRBelief

estimatedProbability : EDouble = 0.0

satisfied : EBoolean = false

ActionBelief

estimatedValue : EDouble = 0.0

Action

name : EString

NFR

name : EString

RewardTable

NFRSatisfaction

satisfied : EBoolean = false

RewardTableRow

value : EDouble = 0.0

RewardTableThreshold

value : EDouble = 0.0

Measure

name : EString

[0..*] decisions

[0..*] actions
[0..*] requirements

[0..1] rewardTable

[0..*] actionBeliefs

[0..1] observation

[0..1] actionTaken

[0..*] measurements

[0..1] nfr

[0..1] action

[0..*] rows

[0..1] nfr [0..*] satisfactions

[0..1] action

[0..*] nfrBeliefsPre

[0..*] nfrBeliefsPost

[0..1] nfr [0..*] thresholds

[0..*] metrics

[0..1] measure

[0..*] measure

[0..*] thresholds

• Log of Decisions, made upon Observations where Measurements
have been taken of certain Measures related to NFRs

• Observations result in pre/post-decision levels of belief in the
satisficement of the NFRs

• Each Decision picks the Action with the highest estimated value 14

Model inspection through time-aware querying

Watching for properties as system runs

• Easier to formulate + scalable than automated proofs

• With enough history and scenarios, we gain confidence

• We formulate the property test as query on model history

Approaches: balance between flexibility and storage efficiency

• We turn the model history into a temporal graph and use a
time-aware model query language (we have a dialect of EOL)

• We have a presentation on Thursday about this!

• We turn the query into a set of Complex Event Processing patterns
on model changes, trying to find evidence/violations on the fly

15

Example: TrafficLight

• Suppose we have a TrafficLight with two attributes:
• count with the number of vehicles that passed in the last 5 seconds.
• color of the light (red, yellow, green).

• We want to check that across all intervals when the light was yellow,
no more than 5 vehicles passed.

• The query in our EOL dialect looks like this:

tl . when(v | v. color = ’yellow ’
and (v.prev. isUndefined () or v. prev. color <> ’yellow’))

. always(v | v. unscoped.sinceThen
. before (v | v. color <> ’yellow’ or v. next. isUndefined ())
. versions . collect (v | v. count). sum() <= 5)

• .when(...) finds the moments when the light becomes yellow.
• .always(...) escapes the when scope, sets out an interval from

then until a color change or the end of the history, and then sums
the count over all versions in the interval

16

Other potential types of model inspection

What-if scenarios

• What if this particular scenario happened now?

• How would our runtime model evolve?

• Conceptually, we have our base timeline, and what-if timelines

• Essentially, this allows for a form of sensitivity analysis

Domain-specific inspections

• Inspection of neural nets has received a lot of attention

• Can we design domain-specific inspections for our runtime models?

• Do we have to design our notations in a specific way to allow for it?

17

Where next?

Designing models@run.time systems as transparent boxes

Entity

Activity Agent
wasAssociatedWith

wasAttributedTo

wasGeneratedBy

used

actedOnBehalfOfwasInformedBy

wasDerivedFrom

• We have base architectures for self-adaptive systems (e.g. MAPE-K)
• Can use architectures to make our SAS transparent boxes by design
• Example: capturing system evolution with a W3C PROV graph
• This structure is independent from our particular ML algorithm
• Runtime models as algorithm-agnostic metadata

18

Extracting approximation models from ML models

Source — LearnDataSci (CC-BY-SA 4.0)
• You have an ongoing training

process (e.g. Q-learning)

• Can you make sense of the
matrix? 500 × 6 numbers to
watch!

• Could extract decision forest
that approximates the matrix

• Users can watch how the
decision forest changes

• Runtime models as the
interpretable versions of an ML
model undergoing training

19

Using requirement/process models to inspect ML approaches

ML approaches bring new desirable properties

• We want it to be fair (not biased with minority populations)

• We want it to be consistent

• It must preserve privacy, have a certain accuracy, follow a
recommended cross-validation process...

Runtime models to supervise ML training process

• Training itself is not just about defining the process, but also
defining our requirements on a “successful” trained ML model

• How do we specify “fairness”, though?

• How do we check this at runtime, during training?

• We’ll have to check the Friday talks on models + ML/AI!

20

Thank you!
Questions?

@antoniogado / a.garcia-dominguez@aston.ac.uk

20

	Introduction
	How can runtime models help?
	Example system: RDM
	Where next?

