
Library for Model Querying – lQuery
 Renārs Liepiņš

Institute of Mathematics and Computer Science
University of Latvia, Raina boulevard 29

Riga, LV-1459, Latvia
renars.liepins@lumii.lv

ABSTRACT
Query and transformation languages make it easy to work with
models, but they are bound to one particular data store. That
makes them hard to adopt in projects where data is stored in a
different repository, which hinders more widespread use of
transformations and models. Instead of adopting a transformation
language to a new data store, we propose to build a query and
transformation library for the general-purpose language that is
already used in a project. In this paper we demonstrate that it can
be easily by implementing such a library for an EMOF-like data
store in the Lua language.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features

General Terms
Design, Languages

Keywords
model transformations, model query, language

1. INTRODUCTION
The advantages of model-driven engineering (MDE) has fostered
development of numerous languages specifically tailored for
model transformations. Although these languages have largely
solved the problem of working with models, there are still some
problems that hinder wider use of transformations. The main
difficulty is that each transformation language works only with a
specific repository, and can be easily extended (if at all) only with
a specific general purpose language. Consequently if we want to
use a transformation language with another data store we need to
either import/export our data to the data store that is supported by
the transformation language or we need to write a wrapper for our
data store so that the transformation language can work with it.
This is problematic because the import/export approach can work
only in situations where the transformations can work in a batch
mode. Writing a wrapper is even worse because it requires
detailed knowledge about the implementation of the desired
transformation language. Another problem with existing
transformation languages is extensibility, i.e. if we need some new
primitive operation that the transformation language does not
have, then how to add it? In principle, there are a few options: we
can either extend the transformation language compiler or runtime
ourselves, ask the transformation language developers to do it for
us, or find a workaround. Neither of these options is satisfactory:
the first two are too time-consuming; the last one would defeat the
purpose of using a domain specific language.
To avoid these problems, we propose an alternative approach:
instead of adopting an existing transformation language to the
new data store, let us build a new query and transformation library

in the general-purpose language we are already using in our
project. We assume that the general-purpose language has first
class functions. We think that it is justified because most
mainstream languages either already have first class functions or
will add them in the next major revision. Although, at first it may
seem that it is unfeasible to build a library with the same
expressive power as a domain specific language, it is actually
quite doable using ideas from combinatorial parsing [1].

We will show how this can be done by developing a query library
in the Lua scripting language [2, 3] for working with an EMOF-
like [4] data store. We chose Lua because it has first-class
functions, C-like syntax, and very few core constructs, so it can be
easily explained and understood. And we chose an EMOF-like
data store because most transformation languages work with such
data stores and that in turn makes it easier to compare the library
features and expressiveness with existing transformation
languages.

2. lQuery Library
The lQuery library is a set of functions for querying and
modifying models stored in a model repository. It is implemented
in the Lua language and has been used for building meta-case
tools [5] as well as domain specific modeling tools. Before going
into details about lQuery we will first give a brief overview of the
Lua language and the API of the model repository for which the
library is implemented.

2.1 Brief Overview of Lua
Lua is dynamically typed scripting language, i.e. variables do not
have types, but each value carries its own type. Comments, in
Lua, start with double hyphens (‘--’) and run till the end of the
line.

Lua has only a couple of primitive value types: nil, strings,
numbers, booleans, and functions. And there is only one data
structure: an associative array, commonly called table. The
indices and values in a table can be any Lua value: strings,
numbers, booleans, functions, or other tables. Lua has a special
syntax for creating tables: {} creates an empty table, and {x=1,
y=”a”} creates a table where the index “x” has a value 1 and the
index “y” has a value “a”. To get a value that is associated to a
given key in a table write t.y.
t = {x=1, y=”a”}
print(t.x) -- 1

Functions in Lua are first-class values meaning that functions can
be constructed at runtime, assigned to variables, passed as
arguments, and returned as results from other functions. All
functions in Lua are anonymous. The statement function (x)
... end is a function constructor, just as {} is a table constructor.

2.2 Overview of a Model Repository API
lQuery, like other model transformation languages, works on a
model repository. The repository can be divided into two parts
(Fig. 1): the schema part (upper three classes) and the data part

(lower three classes). The data part is the actual part with which
lQuery works, and the schema part is like annotations that help to
understand what each data item means. The schema part consists
of three things: classes, attributes, and links. Classes are used to
group objects together, and the super/sub relation between classes
is used to state that if an object belongs to a subclass then it also
belongs to the superclass. Attributes are used as keys for
associating string values to objects. Links are used for associating
objects with other objects. The data part consists of: objects,
attribute values, and link assertions. Objects are the actual values
that are stored in repository. Each object has exactly one class.
Attribute values are strings that are associated to some object with
a particular attribute. Each object can have at most one attribute
value for a particular attribute. Link assertions are a collection of
objects that are associated to a particular object for a particular
link.

1
object

★ attr
outgoing ★

1..★ dom

incoming ★
1..★ range

class 1..★

incoming ★

outgoing ★

1 type 1 type 1 type

0..1 inv
Class

className : String {key}

Attr

attrName : String {key}

Link

linkName : String {key}

AttrValue

value : String

Object LinkAssert★

attrValue

1 source
1 target

★ ★ ★

0..1 super
★

sub

0..1 inv

Fig. 1. Model Repository Metamodel

Each schema entity has a unique string id, and there is an API
function to get an entity with a specific id. There are also
functions to get all objects (allObjects()), check whether an
object belongs to a specific class (isKind(o, c)), create an object
(createObject(c)), delete an object (deleteObject(o)), get the
value of an object attribute (getAttrValue(o, a)), set the value of
an object attribute (setAttrValue(o, a, v)), get linked objects
(getLinkedObjects(o, l)), add link between two objects
(createLink(o1, l, o2)), and delete link between two objects
(deleteLink(o1, l, o2)).

Theoretically, such functions are sufficient to write any
transformation, but the resulting code would be very repetitive,
i.e. some patterns would repeat again and again, e.g. navigation
through multiple link chains, or filtering by some condition. To
make the transformations more readable, the redundant parts need
to be abstracted away. lQuery functions help to do it.

2.3 Example Model
In Fig. 2 we can see a simple model and an instance diagram. We
will use it throughout the rest of the paper for demonstrating
lQuery constructs. The model is on the left side, it consists of two
classes: Person and Animal. Person has name and age attributes
and associations to other persons that are his parents and children,
and an association to Animals that are his pets. On the right side
we can see a couple of instances of this model.

parent
*

child
*

pet *

owner 0..1

pet

owner

parent
child

parent

child

Person

name:String
age: Integer

Animal

age:Integer

John:Person

name = "John"
age = 31

dog:Animal

age = 2

Mary:Person

name = "Mary"
age = 32

Bill:Person

name = "Bill"
age = 7

Fig. 2. Example model and instances
Typical queries that we would like to make on this model are: get
instances of a particular class (e.g. all persons), get instances with
a specific attribute value (e.g. persons with name “John”), or get

all pets of a person’s children. If we needed to perform these
queries using only the repository API, then the code would mostly
contain iterator constructs. For example, to get persons that are 32
years old, we would need to write:
--empty table for storing results
persons_with_age_32 = {}
--iterate over all objects
for i, o in ipairs(allObjects()) do
 -- check that object is a person
 -- and the value of age is 32
 if isKind(o, “Person”) and
 getAttrVal(o, “age”) == 32 then
 --insert person into results table
 insert(persons_with_age_32, o)
 end
end

It is far from readable, even for such a simple query, especially if
we compare it with path expressions from XPath language [6],
where it would look something like “.Person[@age=32]”. Our
goal is to create a query language where selector expressions
would be as compact as that. One way to do it is to create a
function that receives an XPath-like selector string and returns the
resulting object collection, but this approach is too limiting
because there are common queries that cannot be adequately
represented as strings, e.g. getting objects with a link to a specific
instance. That is way we will take another approach: we will
define selector functions, and function combinators, so that we
can easily reference objects and object collections by passing
them as arguments to those functions. For the common cases,
where string expressions would suffice, we will define an XPath-
like selector shorthand notation (string expressions) that can be
easily mixed with selector functions and combinators. The result
will be the lQuery library.

2.4 lQuery Core
For he core of lQuery is a single function: query. It has two
arguments: an ordered collection of repository objects and a
selector, and it returns a collection of repository objects. The
selector specifies what will be the result of the query operation on
the source collection. There are two types of selectors: filters and
navigators. Filters are used to return a subset of the initial
collection based on some condition. Navigators are used to get a
new ordered collection of objects from the initial collection.
Examples of filter selectors are: filter by class membership, or
filter by attribute value. Examples of navigation selectors are:
getting the collection of objects that are reachable from current
collection by a given role name, or getting the collection of values
of some attribute. For each of these primitive selectors, there is a
constructor function that creates it. Constructor function names
have been chosen to maximize readability when used as
arguments in query calls. The list of built-in primitive selector
constructors is given in Table 1. For example, to get all persons
from Fig. 2 that are 32 years old we would write:
persons = query(allObjects(), kind(“Person”))
query(persons, hasAttrValue(“age”, 32))

It is much more concise than the same query written using the
base repository API and an explicit for loop (see previous
chapter). But there are still some problems, e.g. we needed to
introduce a temporary variable: persons, and we have to call the
query function twice. It would be better if we could combine the
two query steps into one, because then we do not have to
introduce a temporary variable.

Table 1 Primitive Selector Constructors

Selector Constructor Description

kind(className) returns a filter selector that will match only
those objects that are instances of a class
with id className or its subclasses

hasAttrValue(attrName
, attrValue)

returns a filter selector that will match only
those objects that have an attribute with id
attrName whose value is equal to attrValue

linked(roleName) returns a navigator selector that will match
all those objects that are reachable by a link
with id roleName

attrValue(attrName) returns a navigator selector that will return a
collection of values that are associated to
attribute with id attrName

Another problem is how to perform filters on more complex
conditions. Currently, there are only two primitive filters: filter by
kind, and filter by attribute value. If we need to make a more
complex query, e.g. select persons that have at least one child, we
have to resort to an explicit iterator.
parents = {}
for p in query(allObjects(), kind(“Person”)) do
 children = query(p, linked(“child”))
 if size(children) > 0 then
 insert(parents, p)
 end
end

In the next chapter we will look at selector combinators that will
address these problems.

2.5 Selector Combinators
In the previous chapter, we introduced the query function and
some primitive selectors for filtering and navigation object
collections, but they were not powerful enough to cover many
typical use-cases. Therefore we will introduce functions (selector
combinators) for building new selectors from existing ones. They
will receive selectors as arguments and return a new selector that
can be used elsewhere as if it was a primitive. Let us look at a
couple of selector combinators in more detail (the complete list of
selector combinators is shown in Table 2).

One of the most frequently used selector combinators is chain. It
receives any number of selectors as arguments, and returns a new
selector that when evaluated in a query function will apply the
first selector to the initial collection, and then pass the result of
that evaluation to the next selector and so on through all the
selectors that where passed to it. Thanks to it, we can write long
selector expressions in a very readable way, because we do not
need to manually call query functions and pass them arguments.
For example, to get all persons and then to get all animals that are
pets of those persons, we can write:
query(allObjects(), chain(kind(“Person”), linked(“pet”))

Another frequently needed task is filtering not just by a predefined
selector (like filter by kind, or filter by attribute value), but by a
result of another selector. For this task, there are two selector
combinators: has and hasNot. Selector combinator has accepts a
selector as an argument and creates a filter selector, that when
applied to a collection of repository objects will return a new
collection with only those objects for which the passed selector
returns a non-empty collection. The selector combinator hasNot
works similarly, but returns the objects for which the passed
selector returns an empty collection. For example, to select
persons that have children we write:

query(allObjects(), chain(kind(“Person”),
 has(linked(“child”)))

Another pair of selector combinators is union and intersect. Both
receive one or more selectors and return a new selector. In the
case of union, the returned selector returns a union of object
collections (multi set) of all the results of applying each selector
to the initial collection. The intersect selector returns an
intersection of object collection that are returned by all of the
passed selectors. For example, let us say a person is responsible
for someone, if that someone is either its child, or its pet. To get
all persons that are responsible for someone we would use a filter
by kind and a union:
query(allObjects(),
 chain(kind(“Person”),
 has(union(linked(“child”),
 linked(“pet”))))

The selector combinators chain and intersect can be interchanged
in some situations, but in general they are different. When
combining selectors with chain, each selector will be performed
on the result of the previous selector, but when they are combined
with intersect then all selectors are performed on the original
collection and only then the results are intersected. When all the
selectors are filters, chain and intersect can be interchanged and
chain is actually the preferred, because it will be more efficient,
i.e. every subsequent selector will be applied to a smaller
collection of objects. But they will return a completely different
result, if some of the selectors are navigators, because then the
intersect will perform each selector in the context of source
collection, but the chain will navigate through the chain of links.
For example, intersect(linked(“children”), linked(“pet”))
will return objects that have a link children and a link pets at the
same time, while chain(linked(“children”), linked(“pets”))
will return children’s pets.

The final combinator is closure. It receives one selector and
returns a new selector that when applied to a repository object
collection will return a new collection with all the objects from
the initial collection together with objects that can be found by
repeated application of the passed selector to the resulting
collection until no new objects are found. It is impossible to go
into an infinite loop, because closure will notice cycles and will
not evaluate the passed selector on a once selected oject again. A
typical example for closure is to get all descendants of a person
(here we assume that each person is a descendant of himself, in
the next section we will see how to implement a combinator
closure_plus that will not have this problem). The closure will
first find all person’s children, then find all his children’s children,
and so on, until no more children can be found. It can be written
as follows, assuming that p is a collection of persons for whom we
want to find all descendants:
query(p, closure(linked(“child”))

Combinator closure can be used not only with simple selectors,
like linked, but also with more complex selectors, like chain of
links, or links followed by filters. For example, if the class Person
had an attribute gender, then we could create a selector for getting
only male descendants by writing:
closure(chain(linked(“child”),
 hasAttrValue(“gender”, “Male”)))

Table 2 Selector Combinators
Selector Combinators Description

chain(sel1, sel2, ...,
selN)

returns a selector that applies each of the
supplied selectors in order, first selector gets

applied to the initial collection, and each
subsequent selector is applied to the result of
the previous selector

has(sel) returns a selector that filters initial collection
based on the result of supplied selector: if the
result is a non-empty collection or a non-false
value, then the object will be in the result
collection, otherwise it will be dropped

hasNot(sel) returns a selector that returns the complement of
the one the has selector would have returned

union(sel1, sel2, ...,
selN)

returns a selector that returns a union of all
supplied selector results

intersect(sel1, sel2,
..., selN)

returns a selector that returns an intersection of
all the selector results

closure(sel) returns a transitive closure of repeatedly
applying the selector to the initial collection and
then to each of results until no new object is
added (checks for cycles and is not applied
repeatedly if an object is found multiple times)

2.6 Custom Selector Combinators
When building any reasonably complex application, there usually
are some selector patterns that repeat again and again, e.g. the
compound selector from previous chapter for getting persons that
are responsible for someone, i.e. that have a child or a pet. One
way to avoid the repetition is to create this selector once and
assign it to a variable. Later, when we need to use that selector,
we can pass the variable instead of building it from scratch, like
this:
responsible_persons =
 chain(kind(“Person”),
 has(union(linked(“child”),
 linked(“pet”)))
query(allObjects(), responsible_persons)

This works if the pattern is constant, but what if the pattern is like
a template? For example, we could want to get all objects that are
reachable though a selector chain with length at least one. We can
use functions to create these selectors for us. In a way, the selector
combinators from previous chapter did just that. For example, to
define a new selector combinator (closure_plus) that will receive
a navigation selector and return a new selector that will match all
objects that are reachable through a navigation chain with length
at least 1, we write:
function closure_plus(selector)
 return chain(selector, closure(selector))
end

Now we can use this new selector combinator just as if it was a
library primitive. In real life tasks, this allows the programmer to
build a task-specific selector library on top of the primitive
selectors and selector combinators that is tailored for his problem
domain.

2.7 Custom Primitive Selectors
Although the ability to create higher-level selector combinators is
very powerful, it is not enough, because we are still bound by the
primitives that came with the library. There are situations when
we need a genuinely new kind of selector that cannot be expressed
with the existing primitives, e.g. get all persons from Fig. 2 whose
name starts with a letter ‘B’. Of course, we can always resort to
explicit for loops, but the downside of this approach is that we
cannot use them in our selector chains, i.e. we will have to split
our chains in parts: till the for loop, and after it. The situation is

even worse if we want to use that selection in the closure
combinator, because there is no way to do it, and we would be
forced to re-implement closure specifically for this case. To
alleviate these problems, there is a mechanism for constructing
new primitive selectors. In fact, all of the primitive selectors have
been implemented through it.

There are two primitive selector constructor functions. The first
operates in the context of one repository object, like primitive
selectors returned by linked and kind constructors. The second
operates in the context of repository object collection. The closure
selector is implemented through it.

New selectors with single object context can be created with a
function soloSelector that accepts a one-argument function as an
argument (remember that functions are first-class objects in Lua,
and can be passed as arguments—see section 2.1). When the
resulting selector will be used in a query invocation, it will apply
the passed function to each element from the initial object
collection. It is expected that the function will return either a
repository object, an object collection, or a boolean. If it returns
an object or a collection, then all results are collected in a list that
is flattened afterwards. If the functions returns a boolean, then it
acts as a filter, i.e. only those objects for which it returned true
are included in the result collection.

For example, if we were working with the repository that is shown
Fig. 2 and needed to get all persons who have underage children,
then we would have a problem, because there is no selector for
checking if an attribute value is less than a given integer, and
would have to introduce an explicit for loop. But now we can
construct a selector and use it with other combinators:
underage = soloSelector(function(p)
 return getAttrValue(p, “age”) < 18
end)
query(allObjects(),
 chain(kind(“Person”),
 has(chain(linked(“child”),
 underage)))

Actually, all of the primitive selectors are implemented through
the soloSelector.

The second primitive selector constructor creates a selector from a
one-argument function that will work on all of the initial
collection at once, thus its only argument will be the initial object
collection. The result of the passed function on the initial
collection is the result of the whole selector. This selector
constructor is useful for creating custom selectors that must have
the whole object collection, e.g. getting the first object from a
collection, getting the number of objects in a collection, or
checking if an object collection contains a specific object. For
example, to get the first child of every person we would first
define a new primitive selector first (it is universal and can be
used in other situations) and then use it to get the first child:
first = collSelector(function(coll)
 return coll[1] -- table value by index
 end)
query(allObjects(),
 chain(kind(“Person”),
 chain(linked(“child”),
 first))

2.8 Shorthand Notation
The primitive selectors and selector combinators allow us to write
complex query expressions in a modular and readable way, but in
cases where the selector is constant and simple, the combinator
approach is a bit longer than the analogous expressions in OCL

[7] or XPath. To reach the maximum compactness and readability,
we introduce a shorthand string notation for most common
primitive selectors and combinators. The string form can be used
anywhere in place of a selector: when the query function gets a
string in place of a selector it will compile it to the corresponding
primitive selector constructor or selector combinator calls. This
allows us to mix the shorthand string notation together with
ordinary selectors to achieve maximum compactness and
expressiveness. Currently, there is no way to introduce shorthand
notation for custom defined selectors and selector combinators,
except for redefining the compile function.

The shorthand notation is adapted from the XPath navigation
language. Function compile(shorthand_string) that compiles a
shorthand string into the corresponding selectors. It works as
follows: string that starts with a dot followed by an alphanumeric
string, e.g. “.ClassName”, is compiled to the selector constructor
kind(“ClassName”), string that starts with a slash, e.g.
“/roleName”, is compiled to linked(“roleName”), and string that
starts with brackets followed by an ‘@’ and a name, e.g.
“[@attrName = value]”, is compiled to
hasAttrValue(“attrName”, “value”). The shorthand notation for
selector combinators is as follows: “:has(sel)” is compiled to
selector combinator has(compile(“sel”)).

Let us look at how some of the examples from previous chapters
can be rewritten using the shorthand notation. The very first
example was “get all persons that are 32 years old”. Using
shorthand notation we can write:
query(allObjects(), “.Person[@age=32]”)

The shorthand notation can also be used in selector combinators.
For example to get the descendants of person collection p, we
write:
query(p, closure(“/child”))

In that way, we can use the shorthand where possible, but fall
back to selector combinators or custom selectors when the
shorthand is not expressive enough.

2.9 Manipulation with Whole Sets of Objects
Selection of repository objects is only one part of the model
interpretation task. The other is actually doing something with the
selected objects. Usually, the doing and the selection is
intertwined, i.e. we select some objects, do something with them,
and then use that collection to find next set of objects and do
something with them. Because the repository API has functions
only for manipulating one object at a time, we would have to use
explicit iterators for manipulation and it would break up the
selection-manipulation-selection chain into multiple statements
that in turn would hinder readability. To avoid this problem, we
define a number of methods for repository object collection that
will allow us to manipulate sets of objects at once and intermix
selection and manipulation steps. We use the Lua object notation,
where ‘:’ is used for method. Let us look at each method in more
detail.

There are three manipulation methods: setFeatures, deleteLinks,
and delete. Method setFeatures receives a Lua table as an
argument. Each key in the table is a feature (attribute or link)
name and the corresponding value is either a string for an attribute
value, or an object or an object collection for a link value. The
method adds the given features to each object in the source
collection. In case of an attribute value, the current value is
replaced with the given value. In case of a link, new link assertion
is created for the given object, or for each object in the object
collection. The result of this method is the same collection on

which it was called. For example, to set the attribute “age” of all
persons from Fig. 2 to 18 and add a link “pets” to some object p,
we would write:
p = createObject(“Animal”) -- create a new animal
query(allObjects(), “.Person”)
 :setFeatures({ age = 18,
 pets = p })

Method deleteLinks receives a Lua table as an argument, where
each key is a link name and the corresponding value is either a
single repository object or a repository object collection. The
method deletes link assertions that correspond to the given key
from each object in source collection to the corresponding key
value. If there are no link assertions, then nothing is done. The
result of this method call is the same collection on which it was
called, so that further selection or modification operations can be
done.

Method delete removes all objects that are in the source collection
from the repository and returns an empty collection.

There is also a higher-order method each(fn, args), i.e. a method
that receives a function as an argument. It can be used to call
some function on each object from the source collection for its
side effects, like making some changes in the repository. The
result of the method each is the same collection on which it was
called. This allows us to make multiple such calls one after
another. The supplied function fn will be called on each object in
the source collection: its first argument will be the current object,
and the rest arguments will be args, which where passed to the
method each. The result of this method is the same collection on
which it was called. For example, if we have defined a function
for incrementing the attribute age by a given number, then we can
make every person two years older as follows:
function increment_age_by (person, n)
 current_age = getAttrValue(person, “age”)
 setAttrValue(person, “age”, current_age + n)
end
query(allObjects(), “.Person”):each(increment_age_by, 2)

To allow mixing manipulation and selection steps, there is a
method find(selector) that returns the result of the function query
on the given collection and selector, i.e. p:find(sel) is equivalent
to query(p, sel). In addition the method creates a selection
stack, so that each collection that is a result of the find method
remembers from which collection it was derived. This information
is used by the method back, to return the collection from which
the current collection was derived. These two methods together
with manipulation methods provide a very readable way to write
tree-like visitors. To see these methods in action, let us consider a
somewhat contrived example: we want to find all persons in Fig.
2, then increment the age of their children by one year and the age
of their children's pets by two years, then we want to go back to
the children and find a child with the name “Bill”, rename him to
“Bob”, and delete his pets. To perform these actions, in the given
order, we would write:
allObjects()
 :find(“.Person”)
 :find(“/child”)
 :each(increment_age, 1)
 :find(“/pet”)
 :each(increment_age, 2)
 :back()
 :find(“[@name = Bill]”)
 :setFeatures({name = “Bob”})
 :find(“/pet”)
 :delete()

Note that allObjects() returns an object collection, so we can use
the method find on it. We use indentation to make the traversal
more readable, i.e. after each find we increase the indentation to

signify that we have a new object collection, after each back call
we decrease the indentation to signal that we have returned to the
previous collection. Also note that the result of methods each and
setFeatures is the same collection they were called on (this style
of methods is inspired by fluent interface approach to API
design).
Although all of the previous examples used the shorthand selector
notation in the find method, it is by no means the standard
situation. In real life tasks, we would use custom selector
combinators or predefined patterns, because in any complex task
we would have built a domain specific selector language on top of
the primitives.

3. Related Work
As far as we know, there are no libraries built specifically for
model interpretation, i.e. optimized for selecting object
collections, traversing them and making minor modifications, so
we will compare lQuery to transformation languages, specifically
the path expressions that are used in transformation languages,
and to EMF Model Query library [8].

Transformation languages, as the name suggests, are optimized
for matching patterns in source model and creating corresponding
patterns in target model. Because navigation is not the most
important problem in those tasks, transformation languages have
either only one-step navigations through role names [9], or
navigation expressions that have been inspired by OCL, like in
languages ATL [10] and QVT [11]. But none of these languages
treat navigation expressions as first-class values, and thus it is
impossible to build or change navigation expressions at runtime,
or pass them as arguments to other functions. This makes them
less usable in situations where the task at hand requires a
construct that the language designers did not anticipate. For
example, if lQuery did not have the closure combinator built-in
as a primitive, it would be possible to add it as a user defined
function, and later use it just as if it was a language primitive.
Also, this ability allows a programmer to define a new higher-
level selector language that will be tailored for his domain and
thus abstract away from the specific details of the metamodel
structure. This has two advantages: firstly, the code becomes more
readable because the selectors are tailored for the problem, and
secondly, if the structure of the metamodel changes, we only need
to update our domain-specific selectors but all the logic can
remain the same, because it is built on top of custom selectors.

EMF Model Query is a model query library that is part of Eclipse
Modeling Framework [12]. It treats selectors as objects and can
build them at runtime. But the resulting queries are in the style of
SQL, i.e. select-from-where, where from and where clauses accept
a structure that is similar to a lQuery selector. However, we think
that XPath-like navigation paths, where navigation and filtering
can be intermixed, are more readable.

4. Conclusions
We have shown how to build a query and transformation library
for an EMOF-like data store in the Lua language. The library has
just as readable selector expressions as transformation languages
and in addition it can be easily extended with custom selectors
using the full power of the host language. Also, the new custom
selectors are indistinguishable from the ones that came with the
library. In addition, the whole library, including the parser for
shorthand notation, took less than 1000 lines of Lua code to
implement. It shows that the library can be easily ported and that

the amount of work is comparable to writing a wrapper for an
existing transformation language to work on a new repository.

To test the performance of the library, we rewrote a meta-case
tool [5] for building domain specific graphical tools from a
transformation language L0 [13] in the lQuery. The L0 is a low-
level transformation language that compiles to C++. The rewritten
transformations where 3 times shorter, because of the ability to
create domain specific selector expresions. Surprisingly the
performance of the rewritten tool was comparable to the original,
i.e. users did not notice any difference, and thus it has now
become the main version of the tool. Additionally new tool
features can be developed much more easily because there is no
need for a lengthy compile step.

Although the library is implemented in Lua, it could be just as
easily ported to any other language that has first-class functions.
The same can be said about data store: although the current library
is implemented for an EMOF-like data store, it could be similarly
implemented for a different structure, e.g. XML. The only thing
that would change is the primitive selectors.

For the future work, we plan to explore how to make the compiler
for shorthand notation extendable, so that shorthand can also be
added for custom selectors and selector combinators.

5. REFERENCES
[1] Hutton, G.: Higher-Order Functions for Parsing. In: Journal

of functional programming, Cambridge Univ Press (1992).
[2] Ierusalimschy, R.: Programming in Lua, 2nd edition (2006).

[3] Ierusalimschy, R., Henrique de Figueiredo L.: Passing a
Language through the Eye of a Needle, Communications of
the ACM Vol. 54 No. 7, Pages 38-43

[4] Meta Object Facility (Mof™) Core 2.0,
http://www.omg.org/spec/MOF/2.0/, January 2006.

[5] Sproģis, A., Liepiņš, R., et. all: GRAF: a Graphical Tool
Building Framework. In: ECMFA 2010 Tools and
Consultancy track, France (2010).

[6] XML Path Language (XPath) Version 1.0,
http://www.w3.org/TR/xpath/, November 1999.

[7] Object Constraint Language (Ocl) 2.2,
http://www.omg.org/spec/OCL/2.2, February 2010.

[8] EMF Model Query Developer Guide,
http://help.eclipse.org/helios/index.jsp?nav=/22, May 2011.

[9] Kalnins, A., Barzdins, J., Celms., E.: Model Transformation
Language MOLA. In: Proceedings of MDAFA 2004, 14–28.

[10] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.:
ATL: a QVT-like transformation language. In: Companion to
the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages USA (2006).

[11] Meta Object Facility (MOF) 2.0
Query/View/Transformation, V1.1,
http://www.omg.org/spec/QVT/1.1, January 2011

[12] EMF: Eclipse Modeling Framework,
http://www.eclipse.org/emf/, May 2011

[13] Barzdins, J., Kalnins, A., Rencis, E., Rikacovs, S.: Model
Transformation Languages and their Implementation by
Bootstrapping Method. Pillars of Computer Science, LNCS,
Vol. 4800, Springer-Verlag, 2008, pp. 130-145

