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ABSTRACT 
Query and transformation languages make it easy to work with 
models, but they are bound to one particular data store. That 
makes them hard to adopt in projects where data is stored in a 
different repository, which hinders more widespread use of 
transformations and models. Instead of adopting a transformation 
language to a new data store, we propose to build a query and 
transformation library for the general-purpose language that is 
already used in a project. In this paper we demonstrate that it can 
be easily by implementing such a library for an EMOF-like data 
store in the Lua language. 
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D.3.3 [Programming Languages]: Language Contructs and 
Features 
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1. INTRODUCTION 
The advantages of model-driven engineering (MDE) has fostered 
development of numerous languages specifically tailored for 
model transformations. Although these languages have largely 
solved the problem of working with models, there are still some 
problems that hinder wider use of transformations. The main 
difficulty is that each transformation language works only with a 
specific repository, and can be easily extended (if at all) only with 
a specific general purpose language. Consequently if we want to 
use a transformation language with another data store we need to 
either import/export our data to the data store that is supported by 
the transformation language or we need to write a wrapper for our 
data store so that the transformation language can work with it. 
This is problematic because the import/export approach can work 
only in situations where the transformations can work in a batch 
mode. Writing a wrapper is even worse because it requires 
detailed knowledge about the implementation of the desired 
transformation language. Another problem with existing 
transformation languages is extensibility, i.e. if we need some new 
primitive operation that the transformation language does not 
have, then how to add it? In principle, there are a few options: we 
can either extend the transformation language compiler or runtime 
ourselves, ask the transformation language developers to do it for 
us, or find a workaround. Neither of these options is satisfactory: 
the first two are too time-consuming; the last one would defeat the 
purpose of using a domain specific language. 
To avoid these problems, we propose an alternative approach: 
instead of adopting an existing transformation language to the 
new data store, let us build a new query and transformation library 

in the general-purpose language we are already using in our 
project. We assume that the general-purpose language has first 
class functions. We think that it is justified because most 
mainstream languages either already have first class functions or 
will add them in the next major revision. Although, at first it may 
seem that it is unfeasible to build a library with the same 
expressive power as a domain specific language, it is actually 
quite doable using ideas from combinatorial parsing [1]. 

We will show how this can be done by developing a query library 
in the Lua scripting language [2, 3] for working with an EMOF-
like [4] data store. We chose Lua because it has first-class 
functions, C-like syntax, and very few core constructs, so it can be 
easily explained and understood. And we chose an EMOF-like 
data store because most transformation languages work with such 
data stores and that in turn makes it easier to compare the library 
features and expressiveness with existing transformation 
languages. 

2. lQuery Library 
The lQuery library is a set of functions for querying and 
modifying models stored in a model repository. It is implemented 
in the Lua language and has been used for building meta-case 
tools [5] as well as domain specific modeling tools. Before going 
into details about lQuery we will first give a brief overview of the 
Lua language and the API of the model repository for which the 
library is implemented. 

2.1 Brief Overview of Lua 
Lua is dynamically typed scripting language, i.e. variables do not 
have types, but each value carries its own type. Comments, in 
Lua, start with double hyphens (‘--’) and run till the end of the 
line. 

Lua has only a couple of primitive value types: nil, strings, 
numbers, booleans, and functions. And there is only one data 
structure: an associative array, commonly called table. The 
indices and values in a table can be any Lua value: strings, 
numbers, booleans, functions, or other tables. Lua has a special 
syntax for creating tables: {} creates an empty table, and {x=1, 
y=”a”} creates a table where the index “x” has a value 1 and the 
index “y” has a value “a”. To get a value that is associated to a 
given key in a table write t.y. 
t = {x=1, y=”a”}  
print(t.x) -- 1 

Functions in Lua are first-class values meaning that functions can 
be constructed at runtime, assigned to variables, passed as 
arguments, and returned as results from other functions. All 
functions in Lua are anonymous. The statement function (x) 
... end is a function constructor, just as {} is a table constructor.  

2.2 Overview of a Model Repository API 
lQuery, like other model transformation languages, works on a 
model repository. The repository can be divided into two parts 
(Fig. 1): the schema part (upper three classes) and the data part 



(lower three classes). The data part is the actual part with which 
lQuery works, and the schema part is like annotations that help to 
understand what each data item means. The schema part consists 
of three things: classes, attributes, and links. Classes are used to 
group objects together, and the super/sub relation between classes 
is used to state that if an object belongs to a subclass then it also 
belongs to the superclass. Attributes are used as keys for 
associating string values to objects. Links are used for associating 
objects with other objects. The data part consists of: objects, 
attribute values, and link assertions. Objects are the actual values 
that are stored in repository. Each object has exactly one class. 
Attribute values are strings that are associated to some object with 
a particular attribute. Each object can have at most one attribute 
value for a particular attribute. Link assertions are a collection of 
objects that are associated to a particular object for a particular 
link. 
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Fig. 1. Model Repository Metamodel 

Each schema entity has a unique string id, and there is an API 
function to get an entity with a specific id. There are also 
functions to get all objects (allObjects()), check whether an 
object belongs to a specific class (isKind(o, c)), create an object 
(createObject(c)), delete an object (deleteObject(o)), get the 
value of an object attribute (getAttrValue(o, a)), set the value of 
an object attribute (setAttrValue(o, a, v)), get linked objects 
(getLinkedObjects(o, l)), add link between two objects 
(createLink(o1, l, o2)), and delete link between two objects 
(deleteLink(o1, l, o2)). 

Theoretically, such functions are sufficient to write any 
transformation, but the resulting code would be very repetitive, 
i.e. some patterns would repeat again and again, e.g. navigation 
through multiple link chains, or filtering by some condition. To 
make the transformations more readable, the redundant parts need 
to be abstracted away. lQuery functions help to do it. 

2.3 Example Model 
In Fig. 2 we can see a simple model and an instance diagram. We 
will use it throughout the rest of the paper for demonstrating 
lQuery constructs. The model is on the left side, it consists of two 
classes: Person and Animal. Person has name and age attributes 
and associations to other persons that are his parents and children, 
and an association to Animals that are his pets. On the right side 
we can see a couple of instances of this model. 
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Fig. 2. Example model and instances 
Typical queries that we would like to make on this model are: get 
instances of a particular class (e.g. all persons), get instances with 
a specific attribute value (e.g. persons with name “John”), or get 

all pets of a person’s children. If we needed to perform these 
queries using only the repository API, then the code would mostly 
contain iterator constructs. For example, to get persons that are 32 
years old, we would need to write: 
--empty table for storing results 
persons_with_age_32 = {} 
--iterate over all objects 
for i, o in ipairs(allObjects()) do 
  -- check that object is a person 
  -- and the value of  age is 32 
  if isKind(o, “Person”) and 
     getAttrVal(o, “age”) == 32 then 
     --insert person into results table 
     insert(persons_with_age_32, o) 
  end 
end 

It is far from readable, even for such a simple query, especially if 
we compare it with path expressions from XPath language [6], 
where it would look something like “.Person[@age=32]”. Our 
goal is to create a query language where selector expressions 
would be as compact as that. One way to do it is to create a 
function that receives an XPath-like selector string and returns the 
resulting object collection, but this approach is too limiting 
because there are common queries that cannot be adequately 
represented as strings, e.g. getting objects with a link to a specific 
instance. That is way we will take another approach: we will 
define selector functions, and function combinators, so that we 
can easily reference objects and object collections by passing 
them as arguments to those functions. For the common cases, 
where string expressions would suffice, we will define an XPath-
like selector shorthand notation (string expressions) that can be 
easily mixed with selector functions and combinators. The result 
will be the lQuery library. 

2.4 lQuery Core 
For he core of lQuery is a single function: query. It has two 
arguments: an ordered collection of repository objects and a 
selector, and it returns a collection of repository objects. The 
selector specifies what will be the result of the query operation on 
the source collection. There are two types of selectors: filters and 
navigators. Filters are used to return a subset of the initial 
collection based on some condition. Navigators are used to get a 
new ordered collection of objects from the initial collection. 
Examples of filter selectors are: filter by class membership, or 
filter by attribute value. Examples of navigation selectors are: 
getting the collection of objects that are reachable from current 
collection by a given role name, or getting the collection of values 
of some attribute. For each of these primitive selectors, there is a 
constructor function that creates it. Constructor function names 
have been chosen to maximize readability when used as 
arguments in query calls. The list of built-in primitive selector 
constructors is given in Table 1. For example, to get all persons 
from Fig. 2 that are 32 years old we would write: 
persons = query(allObjects(), kind(“Person”)) 
query(persons, hasAttrValue(“age”, 32)) 

It is much more concise than the same query written using the 
base repository API and an explicit for loop (see previous 
chapter). But there are still some problems, e.g. we needed to 
introduce a temporary variable: persons, and we have to call the 
query function twice. It would be better if we could combine the 
two query steps into one, because then we do not have to 
introduce a temporary variable. 

Table 1 Primitive Selector Constructors 



Selector Constructor Description 

kind(className) returns a filter selector that will match only 
those objects that are instances of a class 
with id className or its subclasses 

hasAttrValue(attrName
, attrValue) 

returns a filter selector that will match only 
those objects that have an attribute with id 
attrName whose value is equal to attrValue 

linked(roleName) returns a navigator selector that will match 
all those objects that are reachable by a link 
with id roleName 

attrValue(attrName) returns a navigator selector that will return a 
collection of values that are associated to 
attribute with id attrName 

Another problem is how to perform filters on more complex 
conditions. Currently, there are only two primitive filters: filter by 
kind, and filter by attribute value. If we need to make a more 
complex query, e.g. select persons that have at least one child, we 
have to resort to an explicit iterator. 
parents = {} 
for p in query(allObjects(), kind(“Person”)) do 
   children = query(p, linked(“child”)) 
   if size(children) > 0 then 
     insert(parents, p) 
   end 
end 

In the next chapter we will look at selector combinators that will 
address these problems. 

2.5 Selector Combinators 
In the previous chapter, we introduced the query function and 
some primitive selectors for filtering and navigation object 
collections, but they were not powerful enough to cover many 
typical use-cases. Therefore we will introduce functions (selector 
combinators) for building new selectors from existing ones. They 
will receive selectors as arguments and return a new selector that 
can be used elsewhere as if it was a primitive. Let us look at a 
couple of selector combinators in more detail (the complete list of 
selector combinators is shown in Table 2). 

One of the most frequently used selector combinators is chain. It 
receives any number of selectors as arguments, and returns a new 
selector that when evaluated in a query function will apply the 
first selector to the initial collection, and then pass the result of 
that evaluation to the next selector and so on through all the 
selectors that where passed to it. Thanks to it, we can write long 
selector expressions in a very readable way, because we do not 
need to manually call query functions and pass them arguments. 
For example, to get all persons and then to get all animals that are 
pets of those persons, we can write: 
query(allObjects(), chain(kind(“Person”), linked(“pet”)) 

Another frequently needed task is filtering not just by a predefined 
selector (like filter by kind, or filter by attribute value), but by a 
result of another selector. For this task, there are two selector 
combinators: has and hasNot. Selector combinator has accepts a 
selector as an argument and creates a filter selector, that when 
applied to a collection of repository objects will return a new 
collection with only those objects for which the passed selector 
returns a non-empty collection. The selector combinator hasNot 
works similarly, but returns the objects for which the passed 
selector returns an empty collection. For example, to select 
persons that have children we write: 

query(allObjects(), chain(kind(“Person”), 
                          has(linked(“child”))) 

Another pair of selector combinators is union and intersect. Both 
receive one or more selectors and return a new selector. In the 
case of union, the returned selector returns a union of object 
collections (multi set) of all the results of applying each selector 
to the initial collection. The intersect selector returns an 
intersection of object collection that are returned by all of the 
passed selectors. For example, let us say a person is responsible 
for someone, if that someone is either its child, or its pet. To get 
all persons that are responsible for someone we would use a filter 
by kind and a union: 
query(allObjects(), 
      chain(kind(“Person”), 
            has(union(linked(“child”), 
                      linked(“pet”)))) 

The selector combinators chain and intersect can be interchanged 
in some situations, but in general they are different. When 
combining selectors with chain, each selector will be performed 
on the result of the previous selector, but when they are combined 
with intersect then all selectors are performed on the original 
collection and only then the results are intersected. When all the 
selectors are filters, chain and intersect can be interchanged and 
chain is actually the preferred, because it will be more efficient, 
i.e. every subsequent selector will be applied to a smaller 
collection of objects. But they will return a completely different 
result, if some of the selectors are navigators, because then the 
intersect will perform each selector in the context of source 
collection, but the chain will navigate through the chain of links. 
For example, intersect(linked(“children”), linked(“pet”)) 
will return objects that have a link children and a link pets at the 
same time, while chain(linked(“children”), linked(“pets”)) 
will return children’s pets. 

The final combinator is closure. It receives one selector and 
returns a new selector that when applied to a repository object 
collection will return a new collection with all the objects from 
the initial collection together with objects that can be found by 
repeated application of the passed selector to the resulting 
collection until no new objects are found. It is impossible to go 
into an infinite loop, because closure will notice cycles and will 
not evaluate the passed selector on a once selected oject again. A 
typical example for closure is to get all descendants of a person 
(here we assume that each person is a descendant of himself, in 
the next section we will see how to implement a combinator 
closure_plus that will not have this problem). The closure will 
first find all person’s children, then find all his children’s children, 
and so on, until no more children can be found. It can be written 
as follows, assuming that p is a collection of persons for whom we 
want to find all descendants: 
query(p, closure(linked(“child”)) 

Combinator closure can be used not only with simple selectors, 
like linked, but also with more complex selectors, like chain of 
links, or links followed by filters. For example, if the class Person 
had an attribute gender, then we could create a selector for getting 
only male descendants by writing: 
closure(chain(linked(“child”), 
              hasAttrValue(“gender”, “Male”))) 

Table 2 Selector Combinators 
Selector Combinators Description 

chain(sel1, sel2, ..., 
selN) 

returns a selector that applies each of the 
supplied selectors in order, first selector gets 



applied to the initial collection, and each 
subsequent selector is applied to the result of 
the previous selector 

has(sel) returns a selector that filters initial collection 
based on the result of supplied selector: if the 
result is a non-empty collection or a non-false 
value, then the object will be in the result 
collection, otherwise it will be dropped 

hasNot(sel) returns a selector that returns the complement of 
the one the has selector would have returned 

union(sel1, sel2, ..., 
selN) 

returns a selector that returns a union of all 
supplied selector results 

intersect(sel1, sel2, 
..., selN) 

returns a selector that returns an intersection of 
all the selector results 

closure(sel) returns a transitive closure of repeatedly 
applying the selector to the initial collection and 
then to each of results until no new object is 
added (checks for cycles and is not applied 
repeatedly if an object is found multiple times) 

2.6 Custom Selector Combinators 
When building any reasonably complex application, there usually 
are some selector patterns that repeat again and again, e.g. the 
compound selector from previous chapter for getting persons that 
are responsible for someone, i.e. that have a child or a pet. One 
way to avoid the repetition is to create this selector once and 
assign it to a variable. Later, when we need to use that selector, 
we can pass the variable instead of building it from scratch, like 
this: 
responsible_persons = 
  chain(kind(“Person”), 
        has(union(linked(“child”), 
                  linked(“pet”))) 
query(allObjects(), responsible_persons) 

This works if the pattern is constant, but what if the pattern is like 
a template? For example, we could want to get all objects that are 
reachable though a selector chain with length at least one. We can 
use functions to create these selectors for us. In a way, the selector 
combinators from previous chapter did just that. For example, to 
define a new selector combinator (closure_plus) that will receive 
a navigation selector and return a new selector that will match all 
objects that are reachable through a navigation chain with length 
at least 1, we write: 
function closure_plus(selector) 
   return chain(selector, closure(selector)) 
end 

Now we can use this new selector combinator just as if it was a 
library primitive. In real life tasks, this allows the programmer to 
build a task-specific selector library on top of the primitive 
selectors and selector combinators that is tailored for his problem 
domain. 

2.7 Custom Primitive Selectors 
Although the ability to create higher-level selector combinators is 
very powerful, it is not enough, because we are still bound by the 
primitives that came with the library. There are situations when 
we need a genuinely new kind of selector that cannot be expressed 
with the existing primitives, e.g. get all persons from Fig. 2 whose 
name starts with a letter ‘B’. Of course, we can always resort to 
explicit for loops, but the downside of this approach is that we 
cannot use them in our selector chains, i.e. we will have to split 
our chains in parts: till the for loop, and after it. The situation is 

even worse if we want to use that selection in the closure 
combinator, because there is no way to do it, and we would be 
forced to re-implement closure specifically for this case. To 
alleviate these problems, there is a mechanism for constructing 
new primitive selectors. In fact, all of the primitive selectors have 
been implemented through it. 

There are two primitive selector constructor functions. The first 
operates in the context of one repository object, like primitive 
selectors returned by linked and kind constructors. The second 
operates in the context of repository object collection. The closure 
selector is implemented through it. 

New selectors with single object context can be created with a 
function soloSelector that accepts a one-argument function as an 
argument (remember that functions are first-class objects in Lua, 
and can be passed as arguments—see section 2.1). When the 
resulting selector will be used in a query invocation, it will apply 
the passed function to each element from the initial object 
collection. It is expected that the function will return either a 
repository object, an object collection, or a boolean. If it returns 
an object or a collection, then all results are collected in a list that 
is flattened afterwards. If the functions returns a boolean, then it 
acts as a filter, i.e. only those objects for which it returned true 
are included in the result collection. 

For example, if we were working with the repository that is shown 
Fig. 2 and needed to get all persons who have underage children, 
then we would have a problem, because there is no selector for 
checking if an attribute value is less than a given integer, and 
would have to introduce an explicit for loop. But now we can 
construct a selector and use it with other combinators: 
underage = soloSelector(function(p) 
    return getAttrValue(p, “age”) < 18 
end) 
query(allObjects(), 
      chain(kind(“Person”), 
            has(chain(linked(“child”), 
                      underage))) 

Actually, all of the primitive selectors are implemented through 
the soloSelector. 

The second primitive selector constructor creates a selector from a 
one-argument function that will work on all of the initial 
collection at once, thus its only argument will be the initial object 
collection. The result of the passed function on the initial 
collection is the result of the whole selector. This selector 
constructor is useful for creating custom selectors that must have 
the whole object collection, e.g. getting the first object from a 
collection, getting the number of objects in a collection, or 
checking if an object collection contains a specific object. For 
example, to get the first child of every person we would first 
define a new primitive selector first (it is universal and can be 
used in other situations) and then use it to get the first child: 
first = collSelector(function(coll) 
          return coll[1] -- table value by index 
        end) 
query(allObjects(), 
      chain(kind(“Person”), 
            chain(linked(“child”), 
                  first)) 

2.8 Shorthand Notation 
The primitive selectors and selector combinators allow us to write 
complex query expressions in a modular and readable way, but in 
cases where the selector is constant and simple, the combinator 
approach is a bit longer than the analogous expressions in OCL 



[7] or XPath. To reach the maximum compactness and readability, 
we introduce a shorthand string notation for most common 
primitive selectors and combinators. The string form can be used 
anywhere in place of a selector: when the query function gets a 
string in place of a selector it will compile it to the corresponding 
primitive selector constructor or selector combinator calls. This 
allows us to mix the shorthand string notation together with 
ordinary selectors to achieve maximum compactness and 
expressiveness. Currently, there is no way to introduce shorthand 
notation for custom defined selectors and selector combinators, 
except for redefining the compile function. 

The shorthand notation is adapted from the XPath navigation 
language. Function compile(shorthand_string) that compiles a 
shorthand string into the corresponding selectors. It works as 
follows: string that starts with a dot followed by an alphanumeric 
string, e.g. “.ClassName”, is compiled to the selector constructor 
kind(“ClassName”), string that starts with a slash, e.g. 
“/roleName”, is compiled to linked(“roleName”), and string that 
starts with brackets followed by an ‘@’ and a name, e.g. 
“[@attrName = value]”, is compiled to 
hasAttrValue(“attrName”, “value”). The shorthand notation for 
selector combinators is as follows: “:has(sel)” is compiled to 
selector combinator has(compile(“sel”)). 

Let us look at how some of the examples from previous chapters 
can be rewritten using the shorthand notation. The very first 
example was “get all persons that are 32 years old”. Using 
shorthand notation we can write: 
query(allObjects(), “.Person[@age=32]”) 

The shorthand notation can also be used in selector combinators. 
For example to get the descendants of person collection p, we 
write: 
query(p, closure(“/child”)) 

In that way, we can use the shorthand where possible, but fall 
back to selector combinators or custom selectors when the 
shorthand is not expressive enough. 

2.9 Manipulation with Whole Sets of Objects 
Selection of repository objects is only one part of the model 
interpretation task. The other is actually doing something with the 
selected objects. Usually, the doing and the selection is 
intertwined, i.e. we select some objects, do something with them, 
and then use that collection to find next set of objects and do 
something with them. Because the repository API has functions 
only for manipulating one object at a time, we would have to use 
explicit iterators for manipulation and it would break up the 
selection-manipulation-selection chain into multiple statements 
that in turn would hinder readability. To avoid this problem, we 
define a number of methods for repository object collection that 
will allow us to manipulate sets of objects at once and intermix 
selection and manipulation steps. We use the Lua object notation, 
where ‘:’ is used for method. Let us look at each method in more 
detail. 

There are three manipulation methods: setFeatures, deleteLinks, 
and delete. Method setFeatures receives a Lua table as an 
argument. Each key in the table is a feature (attribute or link) 
name and the corresponding value is either a string for an attribute 
value, or an object or an object collection for a link value. The 
method adds the given features to each object in the source 
collection. In case of an attribute value, the current value is 
replaced with the given value. In case of a link, new link assertion 
is created for the given object, or for each object in the object 
collection. The result of this method is the same collection on 

which it was called. For example, to set the attribute “age” of all 
persons from Fig. 2 to 18 and add a link “pets” to some object p, 
we would write: 
p = createObject(“Animal”) -- create a new animal  
query(allObjects(), “.Person”) 
   :setFeatures({ age = 18, 
                  pets = p }) 

Method deleteLinks receives a Lua table as an argument, where 
each key is a link name and the corresponding value is either a 
single repository object or a repository object collection. The 
method deletes link assertions that correspond to the given key 
from each object in source collection to the corresponding key 
value. If there are no link assertions, then nothing is done. The 
result of this method call is the same collection on which it was 
called, so that further selection or modification operations can be 
done. 

Method delete removes all objects that are in the source collection 
from the repository and returns an empty collection. 

There is also a higher-order method each(fn, args), i.e. a method 
that receives a function as an argument. It can be used to call 
some function on each object from the source collection for its 
side effects, like making some changes in the repository. The 
result of the method each is the same collection on which it was 
called. This allows us to make multiple such calls one after 
another. The supplied function fn will be called on each object in 
the source collection: its first argument will be the current object, 
and the rest arguments will be args, which where passed to the 
method each. The result of this method is the same collection on 
which it was called. For example, if we have defined a function 
for incrementing the attribute age by a given number, then we can 
make every person two years older as follows: 
function increment_age_by (person, n) 
   current_age = getAttrValue(person, “age”) 
   setAttrValue(person, “age”, current_age + n) 
end 
query(allObjects(), “.Person”):each(increment_age_by, 2) 

To allow mixing manipulation and selection steps, there is a 
method find(selector) that returns the result of the function query 
on the given collection and selector, i.e. p:find(sel) is equivalent 
to query(p, sel). In addition the method creates a selection 
stack, so that each collection that is a result of the find method 
remembers from which collection it was derived. This information 
is used by the method back, to return the collection from which 
the current collection was derived. These two methods together 
with manipulation methods provide a very readable way to write 
tree-like visitors. To see these methods in action, let us consider a 
somewhat contrived example: we want to find all persons in Fig. 
2, then increment the age of their children by one year and the age 
of their children's pets by two years, then we want to go back to 
the children and find a child with the name “Bill”, rename him to 
“Bob”, and delete his pets. To perform these actions, in the given 
order, we would write: 
allObjects() 
   :find(“.Person”) 
      :find(“/child”) 
         :each(increment_age, 1) 
         :find(“/pet”) 
            :each(increment_age, 2) 
            :back() 
         :find(“[@name = Bill]”) 
            :setFeatures({name = “Bob”}) 
            :find(“/pet”) 
               :delete() 

Note that allObjects() returns an object collection, so we can use 
the method find on it. We use indentation to make the traversal 
more readable, i.e. after each find we increase the indentation to 



signify that we have a new object collection, after each back call 
we decrease the indentation to signal that we have returned to the 
previous collection. Also note that the result of methods each and 
setFeatures is the same collection they were called on (this style 
of methods is inspired by fluent interface approach to API 
design). 
Although all of the previous examples used the shorthand selector 
notation in the find method, it is by no means the standard 
situation. In real life tasks, we would use custom selector 
combinators or predefined patterns, because in any complex task 
we would have built a domain specific selector language on top of 
the primitives. 

3. Related Work 
As far as we know, there are no libraries built specifically for 
model interpretation, i.e. optimized for selecting object 
collections, traversing them and making minor modifications, so 
we will compare lQuery to transformation languages, specifically 
the path expressions that are used in transformation languages, 
and to EMF Model Query library [8]. 

Transformation languages, as the name suggests, are optimized 
for matching patterns in source model and creating corresponding 
patterns in target model. Because navigation is not the most 
important problem in those tasks, transformation languages have 
either only one-step navigations through role names [9], or 
navigation expressions that have been inspired by OCL, like in 
languages ATL [10] and QVT [11]. But none of these languages 
treat navigation expressions as first-class values, and thus it is 
impossible to build or change navigation expressions at runtime, 
or pass them as arguments to other functions. This makes them 
less usable in situations where the task at hand requires a 
construct that the language designers did not anticipate. For 
example, if lQuery did not have the closure combinator built-in 
as a primitive, it would be possible to add it as a user defined 
function, and later use it just as if it was a language primitive. 
Also, this ability allows a programmer to define a new higher-
level selector language that will be tailored for his domain and 
thus abstract away from the specific details of the metamodel 
structure. This has two advantages: firstly, the code becomes more 
readable because the selectors are tailored for the problem, and 
secondly, if the structure of the metamodel changes, we only need 
to update our domain-specific selectors but all the logic can 
remain the same, because it is built on top of custom selectors. 

EMF Model Query is a model query library that is part of Eclipse 
Modeling Framework [12]. It treats selectors as objects and can 
build them at runtime. But the resulting queries are in the style of 
SQL, i.e. select-from-where, where from and where clauses accept 
a structure that is similar to a lQuery selector. However, we think 
that XPath-like navigation paths, where navigation and filtering 
can be intermixed, are more readable. 

4. Conclusions 
We have shown how to build a query and transformation library 
for an EMOF-like data store in the Lua language. The library has 
just as readable selector expressions as transformation languages 
and in addition it can be easily extended with custom selectors 
using the full power of the host language. Also, the new custom 
selectors are indistinguishable from the ones that came with the 
library. In addition, the whole library, including the parser for 
shorthand notation, took less than 1000 lines of Lua code to 
implement. It shows that the library can be easily ported and that 

the amount of work is comparable to writing a wrapper for an 
existing transformation language to work on a new repository. 

To test the performance of the library, we rewrote a meta-case 
tool [5] for building domain specific graphical tools from a 
transformation language L0 [13] in the lQuery. The L0 is a low-
level transformation language that compiles to C++. The rewritten 
transformations where 3 times shorter, because of the ability to 
create domain specific selector expresions. Surprisingly the 
performance of the rewritten tool was comparable to the original, 
i.e. users did not notice any difference, and thus it has now 
become the main version of the tool. Additionally new tool 
features can be developed much more easily because there is no 
need for a lengthy compile step. 

Although the library is implemented in Lua, it could be just as 
easily ported to any other language that has first-class functions. 
The same can be said about data store: although the current library 
is implemented for an EMOF-like data store, it could be similarly 
implemented for a different structure, e.g. XML. The only thing 
that would change is the primitive selectors. 

For the future work, we plan to explore how to make the compiler 
for shorthand notation extendable, so that shorthand can also be 
added for custom selectors and selector combinators. 
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