
Ontology Driven Design of EMF Metamodels and
Well-formedness Constraints ∗

Benedek Izsó
izso@mit.bme.hu

Zoltán Szatmári
szatmari@mit.bme.hu

Gábor Bergmann
bergmann@mit.bme.hu

Ákos Horváth
ahorvath@mit.bme.hu

István Ráth
rath@mit.bme.hu

Dániel Varró
varro@mit.bme.hu

Budapest University of Technology and Economics
Department of Measurement and Information Systems

H-1117 Magyar tudósok krt. 2., Budapest, Hungary

ABSTRACT
Ontologies provide high-level means for capturing requirements of
systems with precise semantics and automated meta-level reason-
ing techniques to identify specification flaws early in the design
even if certain parts of the system is underspecified. Domain-
specific modeling environments effectively support domain engi-
neers for designing the system by providing efficient means for
instance-level validation of well-formedness constraints. In the
current paper, we aim at a combined use of ontologies and DSM
techniques where domain requirements captured in textual ontol-
ogy languages like OWL2/SWRL will drive the development of
a DSM environment. More specifically, we provide (i) an auto-
mated mapping from OWL2 ontologies to metamodels defined by
the industry-standard EMF platform, which is extended by a (ii)
mapping of requirements and constraints (captured in OWL2 and
SWRL) into a textual graph pattern language efficiently evaluated
by the EMF-INCQUERY incremental model query technology.

1. INTRODUCTION
Discovering and exploiting the synergies between ontologies of se-
mantic web engineering and metamodels of domain-specific lan-
guage engineering has become a hot research topic in recent years
[9, 13, 20]. Ontologies using popular languages like OWL2 [11] or
SWRL [8] are able to capture domains and its requirements in a
very early phase of the design in a precise yet natural way. Ontol-
ogy reasoners are optimized for concept-level (i.e., meta-level) val-
idation (like Pellet [1] or RacerPro [12]), which can detect incon-
sistent specifications and classifications in an early phase of design
based upon precise semantic foundations of ontologies. Domain-
specific language engineering frameworks and tools, on the other
hand, are tailored to the needs of domain engineers, thus increasing
their productivity by offering functionally rich programming envi-
∗This work was partially supported by the CERTIMOT Research
Project, the MOGENTES Research Project, the TÁMOP - 4.2.2.B-
10/1 2010-0009 grant and János Bolyai Scholarship .

ronments and efficient instance-level validators (like Eclipse OCL
or EMF-INCQUERY) that can quickly detect violations of design
rules or constraints on the instance-level.

Ontologies provide a natural formalism for capturing requirements
or sketching the concepts of a system on a high level of abstraction.
They can be written in several textual concrete syntaxes, including
the machine processable RDF/XML, close to metamodel functional
syntax or human-friendly Manchester syntax. Even controlled nat-
ural language representations are developed like the Attempto Con-
trolled English, or the FluentEditor for OWL, which can help in
language description or knowledge documentation. During the de-
sign one coherent metalanguage is used (as the SWRL is an organic
extension of OWL2). Ideas can be formalized incrementally as they
come thanks to ontology’s open world assumption. Distributed de-
sign is also supported, as unification and consistency check can be
done automatically with the help of reasoners.

DSM tools can be efficiently used by domain experts for the de-
tailed design of the system. EMF [16] became the de facto standard
in the industry, as it provides class diagram like structural descrip-
tion language with high level tool support. Instance data can be cre-
ated and manipulated with easy to use graphical editors (that builds
on GMF, GEF or Graphiti) or textual editors with Imp, Xtext, EMF-
Text. Consistency requirements can be captured in OCL or graph
pattern language, which can be continuously evaluated, and errors
can be displayed by marking inconsistent elements.

The overall motivation behind our research is to develop a domain-
specific modeling environment, with the combination of OWL and
EMF based tools to benefit from each world. More specifically,
we argue that (i) domain specific language engineering can be
efficiently supported when starting from semantic web technolo-
gies, and (ii) certain instance-level validation tasks can be run
on the domain specific model by an efficient, incremental model
query framework, especially when the underlying knowledge base
is changing or evolving.

The main contribution of the paper is to propose a method for de-
riving initial versions of EMF based DSM environments from on-
tologies describing the domain. Thus we provide an automated
mapping from standard OWL2 and SWRL descriptions (captur-
ing high-level requirements of a domain) to EMF metamodels and
graph patterns captured in the textual IQPL (IncQuery Pattern Lan-
guage) language [4]. This target language was chosen (instead of

OCL), as both SWRL and IQPL are graph pattern based languages,
thus we need to bridge a smaller semantic gap between the two lan-
guages. Furthermore we found the SWRL to OCL mapping prob-
lematic, as in OCL the results are instances of a context element
(1-ary), while in SWRL and IQPL multiple pattern variables can
be used, allowing n-ary result set elements.

Our motivating example uses a domain-specific model of a railway
system to demonstrate what requirements can be captured in on-
tology, and how can they be translated to EMF, to allow efficient
closed world validation during the evolution of instance models.

The rest of the paper is structured as follows. First, we give an
overview of the main phases and artifacts of the mapping process
in Sec. 2. Sec. 3 presents a brief introduction to the source and tar-
get technologies and introduces the running example of the paper.
The detailed description of the mapping is given in Sec. 4. Finally,
Sec. 5 discusses related work and Sec. 6 concludes our paper.

2. OVERVIEW OF THE MAPPING
The conceptual and technological overview of the entire mapping
is provided in Fig. 1. Formulating textual requirement specifica-
tions in ontology is described in previous papers [6] [7], so first,
we assume that domain engineers capture domain-specific knowl-
edge and requirements using the SWRL extended OWL2 ontology
language. In this phase ontology can be edited with Protégé [2] and
reasoners (like Pellet) can be used for constraint consistency check-
ing. Then the proposed model transformation (implemented in the
VIATRA2 framework [19]) automatically derives EMF metamodel
for basic structures. From complex constraints which cannot be ex-
pressed directly in the EMF metamodel IQPL graph patterns [4] are
generated. Our mapping allows the domain engineer to formulate
and check consistency of requirements in an early design phase.
The initial version of the target platform can be built automatically
from these generated artifacts for instance model editing.

OWL2, SWRL

EMF metamodel,
IQPL

EMF instance
model

• Formulate textual requirements
 with Protégé
• Check meta-level consistency
 with Pellet

• Build and modify instance
 model with DSM editors
• Validate instance model
 efficiently with EMF-IncQuery

Specification
Platform
(source)

Design
Platform
(target)

«conforms to»

Transformation
with VIATRA2

Figure 1: The ontology to domain-specific platform transfor-
mation process

Finally, the domain engineer can create and modify a custom in-
stance model with advanced EMF tools, while EMF-INCQUERY
performs efficient [15] continuous instance level well-formedness
validation in the background by incrementally evaluating IQPL
graph patterns after each edit operation.

3. CASE STUDY AND BACKGROUND
3.1 Motivating example
We demonstrate our approach using an example from the railway
domain. The domain metamodel originates from the MOGENTES
EU FP7 [18] project, and the requirements were defined by railway
domain experts.

The EMF representation of the domain, which is derived from the
ontology is demonstrated in Fig. 2. A train route can be defined by
a set of sensors. Sensors are associated with track elements, which
can be a track segment or a switch. The status of a switch can be
left, right or failure. A route can have associated switch positions,
which describe the required state of a switch belonging to the route.
Different route definitions can specify different states for a specific
switch.

Figure 2: EMF representation of the Train metamodel

Several high-level requirements can be specified that must hold for
any valid instance models of a train system such as:

REQ1 Every switch must have at least one sensor connected to it.
REQ2 A segment must have positive length.
REQ3 All sensors that are associated with a switch that belongs to

a route must also be associated directly with the same route.
REQ4 A route must have at least two supervisors unless all switches

belonging to the route are in LEFT or RIGHT position.
REQ5 A segment that is more than 10 km long cannot share sen-

sors with a switch.

3.2 Specification platform
OWL2 (Web Ontology Language) [11] is a W3C standard de-
signed to describe semantic web models. The OWL2 language al-
lows to define classes, called concepts in description logics (DL)
and various properties between classes, called roles in DL termi-
nology. Classes and properties are arranged into a subsumption hi-
erarchy, while each property can have a domain and a range class.
Furthermore, OWL2 allows to express additional restrictions (con-
straints) for classes and properties. These constraints are less ex-
pressive than first order logic (FOL), but the description logic foun-
dation of ontologies guarantees decidability to provide advanced
reasoning capabilities over OWL2 specifications using the direct
semantics interpretation.

In Fig. 3 SwitchPosition and Switch are concepts (classes), which
can be related by the switch (case sensitive!) relation (ObjectProp-
erty). SwitchStateKind is a nominal type (known as enumeration in
object oriented languages), which can be LEFT, RIGHT or FAIL-
URE. Every SwitchPosition must have exactly one Thing which is
a Switch, and every Switch has one actualState.

ObjectProperty : s w i t c h
Domain : S w i t c h P o s i t i o n
Range : Swi tch

Class : S w i t c h P o s i t i o n
SubClassOf : s w i t c h

e x a c t l y 1 owl : Thing
ObjectProperty : a c t u a l S t a t e

Domain : Swi tch
Range : S w i t c h S t a t e K i n d

Class : Swi tch
SubClassOf :

S w i t c h _ a c t u a l S t a t e
e x a c t l y 1 owl : Thing

Class : S w i t c h S t a t e K i n d
EquivalentTo :

{ SwitchSta teKind_LEFT ,
SwitchStateKind_RIGHT ,
SwitchStateKind_FAILURE }

Figure 3: Excerpt of the train ontology in Manchester syntax

From a metamodeling viewpoint, the language supports two-level
metamodeling, where instances are stored in the ABox (which is
the model or instance level knowledge base), while concepts and
roles are stored in the TBox (language or meta-level store).

The Semantic Web Rule Language (SWRL) [8] is an extension of
OWL2 to enhance expressiveness for capturing more complex de-
sign constraints for ontologies. An SWRL expression (shown later
in Fig. 6) is composed of variables (denoted by a ’?’ prefix), class
expressions and property expressions (expressed as predicates over
variables in a Prolog-like notation), and other built-ins, which are
primarily used for attribute checking. The basic form of a rule is:
antecedent→ consequent. If the antecedent is true (for any vari-
able substitution), the consequent must hold, which is conceptually
close to queries in logic programming languages.

3.3 Design platform
Eclipse Modeling Framework (EMF) uses Ecore metamodels to
describe the abstract syntax of a modeling language. The main el-
ements of Ecore are EClass (depicted as a box), EReference (or as-
sociations) between EClasses (depicted as an edge between boxes),
and EAttribute of EClasses (depicted in the middle compartment
of a box). EReferences and EAttributes can be single/multi-valued
and ordered/unordered. EReferences may additionally imply con-
tainment. Inheritance may be defined between classes (depicted by
an empty arrowhead), which means that the inherited class has all
the properties its parent has, and its instances are also instances of
the ancestor class, but it may further define some extra features. An
EObject instance has exactly one EClass type, and the metamodel
is stored separately from instance models. The EMF metamodel of
the running example is shown in Fig. 2, which is converted auto-
matically from simple ontology axioms with the tool described in
the paper.

IncQuery Pattern Language (IQPL) [4] is based on the formal-
ism of graph patterns and has a textual notation that can be seen in
Fig. 7. A graph pattern (GP) identifies parts of the instance model
that fulfill given conditions (or constraints). A basic graph pattern
consists of structural constraints prescribing the existence of nodes
and edges of a given type. A negative application condition (NAC)
defines cases when the original pattern is not valid (even if all pos-
itive constraints are met), in the form of a negative sub-pattern. A
match of a graph pattern is a group of model elements that have
the exact same structure as the pattern, satisfying all the constraints
(except for NACs, which must be violated). The core graph pat-
tern formalism has the expressive power of first order logic, but the
query language of EMF-INCQUERY provides semantic extensions
such recursive patterns, and match counting or practical extensions
like attribute constraints.

4. MAPPING ONTOLOGIES TO DOMAIN-
SPECIFIC LANGUAGES

In this section a bridge is created between ontology descriptions
and domain-specific models. The mapping is divided into three
steps. First, a part of the OWL2 ontology is mapped into an EMF
metamodel, which provides the basic metamodel structure. After-
wards complex OWL2 axioms are mapped into graph patterns and
finally SWRL rules are also mapped into graph patterns.

4.1 Mapping OWL2 to EMF
When representing knowledge in a domain-specific model (UML,
EMF), the metamodel can be derived from the hierarchy of con-
cepts defined in the TBox of an ontology. Such mappings have
been defined by several authors [10,17]. In this paper we rely on the
OWL2 to EMF transformation proposed by [13], which is briefly
summarized below.

OWL2 classes are mapped to EClasses. Their object properties
are transformed into EReferences, and datatype properties to EAt-
tributes. Most OWL2 datatypes have their Ecore datatype coun-
terparts. Both languages support generalization, cardinality con-
straints and enumeration types. The naming conventions of the
mapping are not detailed here, but examples in this paper use self-
describing names. Fig. 2 depicts the EMF metamodel derived from
the ontology based on the domain.

4.2 Mapping OWL2 to graph patterns
An OWL2 ontology is built up from ontology axioms, which are
statements about the relationship between two ontology expres-
sions. Expressions are composites, consisting of simple expres-
sions, ontology declarations and possibly other composites, mak-
ing up a complex construct that can be represented as a canonical
tree. Essentially, the nodes of this tree are n-ary (higher order) func-
tions that can be embedded into each other at arbitrary depth and
together express a complex condition that defines the valid mem-
bers of the instance model universe.

In our approach, complex constructs are mapped into declarative
graph pattern language, as they cannot be expressed in the EMF
metamodel. Graph patterns are generic queries that rely on a com-
bination of elementary structural constraints as well as attribute
value constraints to express a condition over the instance model.
A match of a graph pattern is a set of those model element combi-
nations that satisfy the constraints of the pattern. Graph patterns are
identified by pattern signatures (name of the pattern, and the name
of its parameters), and are registered into a flat namespace. They
may reuse (call) each other using the find keyword similarly to the
semantics of embedded queries (where the result of a sub-query can
be used within the scope of the calling query).

When mapping OWL2 constructs to graph patterns, we use an in-
direct validation approach, whereby results of the graph query cor-
respond to those elements, which violate the given constraint. In
other words, a negated query is generated from OWL2 axioms, in
order to efficiently retrieve the set of violations.

Mapping algorithm overview. The algorithm that processes
OWL2 constructs and maps them to graph patterns consists of two
main phases. In the first phase, the metamodel (type axioms) of
the OWL2 input is processed to create the EMF metamodel as de-
scribed in Section 4.1, as well as auxiliary helper patterns that will
be used in complex well-formedness queries to refer to elementary
types of the metamodel. In the second phase, complex OWL2 ax-
ioms are processed according to a depth-first tree traversal along

the canonical decomposition. At each tree node (corresponding
to an OWL2 axiom or expression), a transformation is prepared
that maps the given OWL2 construct to a corresponding graph pat-
tern that matches exactly when a violation of the axiom is found in
the instance model using the closed world assumption. As IQPL
graph patterns reside in a flat namespace, patterns generated from
the same axiom type are distinguished with index numbers attached
to their names.

Running example. In this section, REQ4 is used to describe
an example input-output pair of the mapping algorithm. This re-
quirement can be formulated using the OWL2 functional syntax as
follows:

1 SubClassOf (O b j e c t I n t e r s e c t i o n O f (ObjectComplementOf (
2 ObjectAllValuesFrom (: s w i t c h P o s i t i o n
3 ObjectAllValuesFrom (: s w i t c h
4 ObjectSomeValuesFrom (: a c t u a l S t a t e
5 ObjectOneOf (: SwitchStateKind_RIGHT
6 : Swi tchSta teKind_LEFT))))) : Route)
7 ObjectMinCardinal i ty (2 : s u p e r v i s o r))

This axiom operates with two main expressions. The first defines
the set of routes that are not in the set (line 1) that collects routes
with switches (lines 2-3) positioned either LEFT or RIGHT (lines
4-6). The second expression defines the routes that have at least
two supervisors (lines 7) connected to it. The axiom defines that
the set defined with the first expression must be subset of the set
defined with the second expression (SubClassOf).

This OWL2 construct will be transformed into a collection of inter-
connected graph patterns, where the call tree structure of the graph
patterns closely corresponds the structure of the OWL2 formula.
The top of the call tree is depicted in Fig. 4, where squared nodes
are the patterns of declarations, the top node is the axiom to be
checked, and other oval nodes are expressions. Arrows represent
pattern composition.

subClassOf_1

objectMinCardinality_8
objectIntersectionOf_1

typedRelation_9

class_Supervisor objectProperty_Route_supervisor

class_Route objectComplementOf_2

...

Figure 4: Pattern call tree of REQ4

The overall result of the mapping of example 4.2 is shown in Fig. 5,
where the OWL2 tree representation, and the correspondingly gen-
erated graph patterns are shown side-by-side.

Metamodel post-processing. In the first phase of the map-
ping, OWL2 declarations (that define concept, relation and individ-
ual names, i.e. the “metamodel") are processed. As output, aux-
iliary graph patterns are generated that will be used as elementary
type and relationship subqueries in complex expressions. Exam-
ples for such auxiliary patterns that can be found in Fig. 5 at lines
18–20 (switchPosition role), 27–29 and 38–42 (switch role), 48–50
(Route concept), and 55–57 (supervisor role).

Processing OWL2 axioms and expressions. Complex OWL2
constructs are processed, according to the depth-first traversal. The
following examples highlight some important mapping rules sup-
ported by our transformation:
• SubClassOf axioms describe subsumption or subset relation

between expressions. If an instance is member of the subset,
then it must also be a member of the superset. The graph pat-
tern shown in lines 1–4 matches instances that are elements
of the subset but are not elements of its superset.

• Intersections are Boolean connectives. For instance, bad
routes can be described as routes that have not only switches
in their left or right position. This can be formalized us-
ing ObjectIntersectionOf, and can be mapped as described
in lines 5–8.
• Negation helps e.g. describing individuals without only left

or right switches (lines 9–11).
• Universal quantification in OWL2 can be mapped by apply-

ing the ∀P.C≡¬∃P.(¬C) equivalence (double negation). For
instance, to find individuals with switches only in the left or
right position, the property restriction can be expressed with
ObjectAllValuesFrom, and can be mapped to the graph pat-
tern as shown in lines 21–26.
• Existential quantification is directly supported by the target

graph pattern formalism. For example, an ontology expres-
sion that matches instances with left or right actualState can
be written in OWL2 as: ObjectSomeValuesFrom(actualState
ObjectOneOf(LEFT RIGHT)). This expression matches in-
dividuals that have an actualState, which is achieved by a
pattern reuse/composition, as can be seen in lines 30–33.
• Enumerations (expressed by ObjectOneOf) are mapped ac-

cording to the example in lines 42–47, where a pattern is cre-
ated that matches all instance model elements that are LEFT
or RIGHT as described in lines 37–41.
• Cardinality and subsumption expressions, in simple cases,

are mapped to an EMF metamodel (Section 4.1).
OWL2 allows qualified number restrictions, where a num-
ber constraint can be applied for a role, and the type of the
target can also be constrained. For example, for individuals
having at least two supervisors attached (of type Supervisor),
the ontology expression supervisor min 2 Supervisor can be
mapped using the aggregation feature of the graph pattern
language, as illustrated in lines 51–54. Here, the Individual
pattern variable is bound, and the number of different pos-
sible Target substitutions are counted in Count (relying on
the auxiliary pattern shown in lines 55–57). The cardinality
constraint is satisfied, if it has at least two appropriate target
individuals (as expressed by the check condition).

4.3 Mapping SWRL to graph patterns
Mapping the SWRL part of the ontology to graph patterns is based
upon the previously defined helper graph patterns.

The constraint REQ5, namely, a segment that is more than 10 km
long cannot share sensors with a switch (informally described in
Sec. 3.1) can be represented with the SWRL rule in Fig. 6. The vi-
olations of this axiom are groups of elements in the instance model
that satisfy the entire antecedent, but not the consequent.

Therefore this rule is mapped to the graph pattern in Fig. 7, which
is a direct translation of the antecedent, with the consequent added
as a NAC. Variables of the SWRL axiom is mapped to graph pat-
tern parameters, so violating elements can be returned in a tuple set.
As for transcribing the contents of the antecedent and consequent

:SwitchStateKind::RIGHT

SubClassOf

ObjectIntersectionOf

ObjectOneOf

ObjectComplementOf

ObjectAllValuesFrom

ObjectAllValuesFrom

ObjectSomeValuesFrom

ObjectMinCardinality

:SwitchStateKind::LEFT

:switchPosition

:switch

2

:supervisor

:Route

01 pattern subClassOf_1(Individual)={
02 find objectIntersectionOf_1(Individual);
03 neg find objectMinCardinality_1(Individual);
04 }
05 pattern objectIntersectionOf_1(Individual)={
06 find objectComplementOf_1(Individual);
07 find class_Route(Individual);
08 }
09 pattern objectComplementOf_1(Individual)={
10 neg find objectAllValuesFrom_1(Individual);
11 }
12 pattern objectAllValuesFrom_1(Individual)={
13 neg shareable pattern objectAllValuesFrom_BadRange (Individual) ={
14 find objectProperty_switchPosition(Individual, Target);
15 neg find objectAllValuesFrom_2(Target);
16 }
17 }
18 pattern objectProperty_switchPosition(Source : Route, Target : SwitchPosition)={
19 Route.switchPosition(Source, Target);
20 }
21 pattern objectAllValuesFrom_2(Individual)={
22 neg shareable pattern objectAllValuesFrom_BadRange (Individual) ={
23 find objectProperty_switch(Individual, Target);
24 neg find objectSomeValuesFrom_1(Target);
25 }
26 }
27 pattern objectProperty_switch(Source : SwitchPosition, Target : Switch)={
28 SwitchPosition.switch(Source, Target);
29 }
30 pattern objectSomeValuesFrom_1(Individual)={
31 find objectProperty_switch (Individual, Target);
32 find objectOneOf_1(Target);
33 }
34
35 // See pattern objectProperty_switch(Source, Target) at lines 29-33
36
37 pattern objectOneOf_1(Individual)={
38 find individual_RIGHT(Individual);
39 } or {
40 find individual_LEFT(Individual);
41 }
42 pattern individual_RIGHT(Individual : SwitchStateKind)={
43 Individual == SwitchStateKind::RIGHT;
44 }
45 pattern individual_LEFT(Individual : SwitchStateKind)={
46 Individual == SwitchStateKind::LEFT;
47 }
48 pattern class_Route(Individual)={
49 Route(Individual);
50 }
51 pattern objectMinCardinality_1(Individual)={
52 Count == count find objProperty_Route_supervisor(Individual, Target);
53 check ((Count as Integer) >= 2);
54 }
55 pattern objectProperty_supervisor(Source : Route, Target : Supervisor)={
56 Route.supervisor(Source, Target);
57 }

:switch

Figure 5: The ontology mapping to graph patterns

1 Segment (? seg) ,
2 l e n g t h (? seg , ? s l) ,
3 greaterThan (? s l , 1 0) ,
4 Sensor (? sen1) ,
5 s e n s o r (? seg , ? sen1) ,
6 Switch (? sw) ,
7 Sensor (? sen2) ,
8 s e n s o r (? sw , ? sen2)
9

10 −>
11
12 DifferentFrom (? sen1 , ? sen2)

Figure 6: The example SWRL rule

1 pattern swrlRule_1(Sw, Seg, Sen1 , S, Sen2 , Sl) = {
2 find class_Segment(Seg);
3 find dataProperty_length(S, Sl);
4 find swrlComparison_3(Sl);
5 find class_Sensor(Sen1);
6 find objectProperty_sensor(Seg, Sen1);
7 find class_Switch(Sw);
8 find class_Sensor(Sen2);
9 find objectProperty_sensor(Sw, Sen2);

10
11 neg pattern head(Sen1 : Thing , Sen2 : Thing) = {
12 Sen1 =/= Sen2;
13 }
14 }
15
16 pattern swrlComparison_3(Sl : Integer) = {
17 check(Sl > 10);
18 }

Figure 7: Mapping SWRL rule ontol-
ogy axiom

parts, concept terms and role terms are mapped to pattern calls of
class declaration patterns (lines 2, 5, 7, 8) and role declaration pat-
terns (lines 3, 6, 9), respectively.

The SWRL constructs SameAs and DifferentFrom check whether
two variables represent the same entities. In the example Different-
From is used, which can be transcribed to the pattern language as
shown in line 12 of Fig. 7.

4.4 Discussion of the mapping
Large part of the OWL2 and SWRL languages (around 50 axioms
and 45 expressions) are successfully mapped and transformed to
EMF. Some expressions were excluded, like DatatypeDefinition or
n-ary data range operators, and only major XML and EMF datatype
definitions are matched. Some SWRL built-ins and annotations are
not implemented in the current transformation, although it could be
done by adding new helper graph patterns.

The mapping described in the paper guarantees one-way transfor-
mation. Converting basic structures (EMF metamodel) back to on-
tology can be done, but transforming graph patterns back is not
possible entirely, as graph patterns are more expressive than FOL,
while ontologies (based on description logics) represent a decidable
fragment of logics, thus being less expressive than FOL [14].

A difference between ontology and EMF based applications is how

they treat missing information. Ontologies use open world assump-
tion (OWA), which means that the truth value of missing informa-
tion is unknown, they are not used during reasoning. This means
that ontologies deal with underspecification and uncertainties help-
ing the language development process. Oppositely, DSM tools use
closed world assumption (CWA), which means that missing infor-
mation is treated as false leading to much more implicit assertions.
This approach of data processing assumes complete dataset at a
specific time, but DSM tools allow information modification, dele-
tion as well as addition, changing previously false assertions to true.
On the other hand ontology reasoners are prepared for monotonic
information processing, allowing only the addition of new asser-
tions. This is why an OWA → CWA semantic shift is practical
during the transformation of requirements captured in ontologies
and constraints used in DSM instance model editing.

There are certain limitations originating from the differences be-
tween ontologies and DSM languages. First, in ontologies, differ-
ent formulae may have the same semantics. For example, the OWL
expression Switchv≥ 1sensor (every switch must have at least one
sensor) is equal to the formula Switchv∃sensor (a sensor exists for
every switch). Should the Switch class own the sensor relation, it
could be described in the EMF metamodel. But as the parent class
owns the relation, the constraint can be described only with a graph
pattern.

Another difference is that in EMF an EObject is a direct instance of
an EClass, and cannot be instance of multiple metamodel elements.
As a major difference, in ontologies this kind of multityping is al-
lowed, which cannot be handled with the current transformation.

In EMF there is no relation inheritance, which is common in on-
tologies. The constraint can be captured by graph patterns, but the
programmer is responsible to connect two EMF objects by the ac-
tual relation and its ancestors.

Avoiding these problematic cases, deriving an initial version of
a DSM using this approach for ensuring structural consistency is
practically feasible, as demonstrated by the running example.

5. RELATED WORK
The interaction of semantic web and model-based technologies has
already been examined in many, different settings. The EMFTriple
[9] project can be considered as a representative of tight integra-
tion of these domains, as it provides an EMF-compliant RDF data
repository backend as a set of Eclipse plugins. EMFTriple pro-
vides no own solution for model validation, but such support can
be achieved by using additional modules (e.g. EMFQuery, EMF-
IncQuery or OCL).

In the OntoDSL [20] approach, DSL models are enriched by for-
mal class descriptions, which are together checked by an ontology
based framework. In this way, the consistency of DSL models can
be verified by a reasoning service even in an early design phase.
Note that this approach provides services of the ontology domain to
the process of DSL specification, in contrast to our solution, which
offers instance-level model validation techniques in the domain-
specific domain.

In addition to a nice overview on the fundamentals of both the OWL
and EMF domains, [13] proposes an automatic transformation from
OWL2 ontologies to EMF models and corresponding OCL con-
straints, and in this sense, this approach shows the largest similarity
to ours. The conversion is implemented as an Eclipse plugin, and it
is adjustable on both meta and instance level. They mapped OWL2
axioms (without SWRL) to OCL constraints.

The SWRL Drools Tab [3] is a plug-in implemented to Protégé,
which maps SWRL extended OWL2 axioms to Drools rules. Here
the purpose of the mapping is to perform OWL2 RL reasoning and
execute rules, and not to guarantee closed world consistency.

Stardog ICV [5] translates OWL2 and SWRL rules to SPARQL
graph patterns, in a formally defined way. This shows the impor-
tance of closed world consistency checking of models described in
ontology, but this solution remains in the ontology domain, where
traditional model-driven development tools cannot be used, and in-
cremental query engine is not available.

6. CONCLUSIONS AND FUTURE WORK
In the current paper, we proposed to adapt advanced meta-level
consistency checking techniques offered by ontology reasoners to
the DSM design process. For this purpose, we defined a mapping
(and implemented in a transformation) from the SWRL extended
OWL2 ontology language to EMF metamodels and IncQuery Pat-
tern Language, which can be used to automatically derive a proto-
type of the DSM system. As a result, we obtain a synergic vali-
dation approach: metamodel-level validation is performed by ad-
vanced (TBox-level) ontology reasoners (like Pellet or RacerPro),

while efficient [15] instance model validation can be carried out
using the Eclipse Modeling Framework and EMF-IncQuery.

A developer with graph pattern and EMF knowledge can fine tune
or supplement the constraints by editing the generated artifacts of
the prototype constraint checking system. These changes cannot
be written back into the ontology, which would enable constraint
consistency checking of the final system. Practical roud-trip engi-
neering could be implemented in the future, but complete reverse
mapping cannot be done due to the greater expressivity of IQPL.

The current implementation transforms TBox axioms to EMF meta-
model, while instance model is created by the user at the target plat-
form using the DSL tools. The transformation could be easily ex-
tended to support transforming ABox individuals to EMF instance
model, which would allow transition from existing ontologies.

7. REFERENCES
[1] Pellet: OWL 2 reasoner for Java.

http://clarkparsia.com/pellet/.
[2] Protégé ontology editor. http://protege.stanford.edu/.
[3] SWRL Drools Tab, 2012. http://protege.cim3.net/

cgi-bin/wiki.pl?SWRLDroolsTab.
[4] G. Bergmann, Z. Ujhelyi, I. Ráth, and D. Varró. A Graph

Query Language for EMF models. Springer, 2011.
[5] K. Clark and B. Parsia. Stardog: A commercial RDF

database, 2011. http://stardog.com/.
[6] G. Dobson, S. Hall, and G. Kotonya. A domain-independent

ontology for non-functional requirements. 2007.
[7] G. Dobson, R. Lock, and I. Sommerville. Quality of service

requirements specification using an ontology. 2005.
[8] B. Glimm, M. Horridge, B. Parsia, and P. F. Patel-Schneider.

A syntax for rules in OWL 2, 2009.
[9] G. Hillairet. EMFTriple: a tool that brings semantic web

languages to the EMF, 2011. http://code.google.com/
a/eclipselabs.org/p/emftriple/.

[10] Object Management Group. Ontology Definition Metamodel
(OMG) Version 1.0. Technical report, May 2009.

[11] OWL Working Group. OWL 2 Web Ontology Language.
http://www.w3.org/2007/OWL/, 2009.

[12] Racer Systems GmbH. Racerpro.
http://www.racer-systems.com/products/racerpro/.

[13] T. Rahmani, D. Oberle, and M. Dahms. An adjustable
transformation from OWL to Ecore. Springer, 2010.

[14] A. Rensink. Representing first-order logic using graphs.
2004.

[15] I. Ráth. High performance queries and their novel
applications, 2012.

[16] The Eclipse Project. Eclipse Modeling Framework.
http://www.eclipse.org/emf/.

[17] The Eclipse Project. EMF Ontology Definition Metamodel.
http://www.eclipse.org/modeling/mdt/eodm/docs/
articles/EODM_Documentation/, 2011.

[18] The MOGENTES project. Model-Based Generation of Tests
for Dependable Embedded Systems.
http://www.mogentes.eu/.

[19] D. Varró and A. Balogh. The model transformation language
of the VIATRA2 framework. October 2007.

[20] T. Walter, F. Silva Parreiras, and S. Staab. OntoDSL: An
ontology-based framework for domain-specific languages.
Springer, 2009.

