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ABSTRACT 

In this paper, we present a formal metamodel-based approach for 

modeling and executing ConcurTaskTrees (CTT). CTT is a 

modeling language for tasks that represent hierarchical tree-like, 

structured workflow models. In the metamodel soundness 

properties as well as operational semantics of the workflow 

language are captured. The models are created with an abstract 

syntax in the UML-based Specification Environment (USE). 

Thereafter, they can be executed in the same tool by calling 

operations from the metamodel that are implemented in the 

Simple OCL-based Imperative Language (SOIL). A plugin for the 

USE tool has been developed to give an appropriate interface to 

the user who can test dynamic control flow properties of the 

models with it. 
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execution. 

1. INTRODUCTION 
Business process modeling gets more and more important with the 

increasing complexity and automation of business processes in 

companies and organizations. They are used to document, 

restructure and optimize the processes. Furthermore, requirements 

for software and computer services that support the business 

processes are captured in these models.  

Nowadays, workflows are frequently modeled in a non-

hierarchical, flat way in EPCs, UML activity diagrams or BPMN. 

Although subprocesses can be defined, the hierarchical modeling 

is not an integral part of these languages and can only be 

integrated in an unnatural, difficult to handle way. Having several 

hierarchies would mean managing several models and inserting a 

new hierarchy would mean creating new models. Whereas 

hierarchy is an integral part in function trees that are used in the 

ARIS method and toolkit [21] for business process modeling. 

Hierarchical supply and value chains are a common feature in the 

domain of business modeling. Task models are used in the HCI 

domain for capturing the hierarchical character of tasks and get 

expressed in a tree-like notation. 

ConcurTaskTrees are widely used in the community of model-

based user interface development. They represent hierarchy-

oriented workflow specifications. By task decomposition the inner 

nodes of the task trees represent user-centered, easy-to-use goal 

specifications [10]. The leaf tasks are executable activities. Within 

the hierarchical structure the control flow is specified by unary 

and binary temporal operators from the process algebra language 

LOTOS [4]. 

The benefits of trees to be used with workflow models are widely 

analyzed and accepted [13,14]. The tree model is used to express 

structuredness within the workflow models rather than goal 

modeling. But both properties can be connected with tree models.  

The approach presented in this paper uses a UML metamodel 

along with the tool USE [1]. USE checks static properties of the 

workflow models during the modeling process by observing OCL 

invariants. The modeler gets quick feedback of identified 

problems and the involved modeling elements are immediately 

presented to her.  

There are even more benefits to UML workflow metamodels with 

respect to dynamic properties. They provide means to define 

execution semantics. OCL invariants are used for system states 

and pre- and postconditions for operations. They describe the 

causal or temporal relationships between the modeling elements in 

a platform independent way. During execution of the workflow 

model, the operational semantics is interpreted and disallowed 

flows of a process are forbidden. Furthermore, enabled activities 

can be identified and they are indicated in the GUI to guide the 

user through the workflow model execution. 

The main goal of the paper is to provide a formal semantics for 

CTTs that is executable and allows a model analysis using OCL at 

design time. Having the operational semantics in the metamodel 

we show that the models can be executed in a prototypical 

implementation in connection with the USE tool. 

The remainder of the paper is structured as follows. The temporal 

operators and CTT-language itself is more deeply introduced in 

section 2. We present our metamodel for CTT in section 3. Also, 

some structural soundness properties and the operational 

semantics that is expressed in the metamodel are presented there. 

The workflow modeling part and the execution in the USE tool is 

presented in section 4. We present related work in section 5 and 

conclude the paper in section 6. 

2. Temporal Operators and Task 

Decompostition in CTT Models 
Firstly, we introduce the temporal CTT-operators in subsection 

2.1. All the siblings in the task tree have to be connected with 

binary temporal operators in a chain. Every task can be notated 

with a unary one as well. We present the task decomposition with 

an example in subsection 2.2. It is used as ongoing example in this 

paper to present the metamodel-based approach as well. 

2.1 Temporal Operators 
First of all, for creating the task model, the tree structure has to be 

established by task decomposition. The overall goal is denoted in 

the root node and it is recursively decomposed into subgoals until 



the action level is reached in the leaf tasks (see section 2.2). All 

the siblings in the task tree have to be connected with binary 

temporal operators. They are listed with the CTT syntax and their 

informal operational semantics in Table I from number 1 to 10.  

As stated in Table I the Concurrency and the Enabling operators 

have each another operator to specify that information is 

exchanged between the two connected tasks. But the kind of data 

cannot be declared in detail. 

TABLE I.  TEMPORAL OPERATORS IN CTT 

Operator Description 
CTT-

syntax  

Operational Semantics 

1. Choice A [] B Either A or B has to be executed. 

2. Concurrency  A ||| B 
A and B has to be executed 

concurrently. 

3. Concurrency with 
information exchange 

A|[]|B 

A and B are executed concurrently 

and information is exchanged 
between them 

4. Disabling A [> B 

A is disabled by B. A has to be in 

the state enabled, running  or done 

to be disabled by B.  

5. SuspendResume A |> B 
B suspends the execution of A. This 
can happen several times during the 

execution of A. 

6. OrderIndependence A |=| B 

Either A or B including their 

subtasks have to be fully executed 

before the other task can be started.  

7. Enabling  A >> B 
A has to be finished before B can be 
started. 

8. Enabling with 

information passing 
A[]>>B 

Additionally, A provides 

information for the execution of B. 

9. Iteration A* 
A can be executed 0-n times in 

iteration 

10. Option [A] A can be executed optional 

 

The binary operators have specific binding strength to specify the 

binding semantics that are needed if more than three sibling tasks 

exist in one hierarchy in the tree model. The binding strength is 

indicated downwards in Table I with the highest priority 

connected to the choice operator. The least priority is 

consequently connected to the enabling operator. To show the 

binding priority we take the following example process term: A 

>> B [] C |> D. It is interpreted as A >> ((B [] C) |> D) after the 

priority specifications of Table I.  

Because brackets do not fit into the graphical tree-like syntax of 

CTT, the binding strength of the operators are needed. If the 

prescripted priorities of the operators do not fit to the flow logic 

you want to model, another artificial tree node has to be inserted 

(see [4]). In the model of Figure 1 this is done with the TransSurg 

task, which will be deeper introduced in subsection 2.2. 

Apart from binary operators, every task can be additionally 

denoted with an unary operator (see numer 9 and 10 in Table I). 

Following the semantics of these operators, the task is either 

iterative or optional. 

2.2 Task Decomposition and CTT Example 

Model 
In this subsection we introduce an emergency process example 

taken from the hospital domain. The CTT model of Figure 1 

represents the emergency process that is so called in the root node 

of the task tree.  

The root task has two subtasks. TransSurg represents the 

compound task for the transportation and surgery of the patient. 

Its subtasks execution can be suspended anytime by the task 

AdjustMedication. This is a leaf node and thus can be executed. 

During its running period, the medication takes place and should 

be documented. 

        

Figure 1:  An Emergency Process modeled in a CTT model 

As mentioned before, we had to insert the TransSurg as additional 

task. Thus, the range of the SuspendResume operator expands 

over the Transport and Surgery tasks. If we had specified these 

three tasks as siblings in a chain as follows: Transport >> Surgery 

|> AdjustMedication the control flow would have been interpreted 

as Transport >> (Surgery |> AdjustMedication) 

The Transport task is decomposed into Helicopter and Ambulance 

that represents the way of transportation and arrival of the patient 

at the hospital. These two tasks are related in a choice dependency 

to each other. Thus only one task of them can be executed and the 

other is skipped consequently. 

After the arrival at the hospital the process continues with the 

surgery. If the patient is in a critical condition that is represented 

by the task HandleCriticalPatient, an emergency surgery has to be 

done. In this case there is no time to prepare a surgery in a sterile 

environment.  

The alternative is specified by the task HandleStablePatient in 

which the situation is not critical and a NormalSurgery can be 

prepared in the operation room. These two tasks are related in a 

choice relationship. Both Surgery tasks are specified together with 

Assist activities that are related in a Concurrency relationship to 

the surgery activities. They take place in parallel and represents 

the task the nurses or anesthetist are responsible for. 

The emergency process is entirely done when the Surgery and 

Assist activities are executed. Following the operational semantics 

of the SuspendResume operator, the suspending task 

AdjustMedication is not further enabled for execution if the 

previous task is already done. 

3. ConcurTaskTree Metamodel 
The metamodel of CTT comprises the class diagram that is 

introduced in subsection 3.1. OCL invariants that are presented in 

subsection 3.2 express soundness properties. The operational 

semantics is based on state charts for task life cycles that are 

introduced in subsection 3.3. In subsection 3.4 the operational 



semantics are implemented with SOIL [2]. The start() operation is 

introduced by example to show the use of SOIL in the metamodel. 

3.1 Class Diagram 
In Figure 2 the UML class diagram is pictured. We see the 

abstract class Task that has a reflexive associationclass TempOp. 

The multiplicity 0..1 is used for this and specifies the binary 

temporal relationships between the sibling tasks. TempOp is kept 

abstract itself. Thus, its concrete subclasses represent the binary 

temporal relationships between the sibling tasks in CTT.  

 

Figure 2: The class diagram for the CTT metamodel 

Within the concrete associationclasses from Choice to Enabling 

the operational semantics can be specified with OCL invariants in 

a platform independent way. With these invariants the correctness 

of the SOIL implementation (see subsection 3.4) can be ensured 

similar to the Design by contract principle [10]. The Enabling 

class for example has an invariant that states if the next task is 

running the previous one has to be done, skipped or failed. 

The unary operators Iteration and Option of CTT (ref. Table I) are 

expressed with the enumeration TempUn. There is an attribute 

tempOp referring to that type in the class Task. Thus, if that 

attribute is set the appropriate task has the corresponding property. 

Otherwise the attribute is Undefined which means that the task is 

normal and has the normal task life cycle (see subsection 3.3). 

The task decomposition for creating the tree structure is enabled 

by the association has that connects a complex CompTask with its 

at least two subtasks. Through this association both composed and 

leaf tasks can be connected as subtasks. 

The class LeafTask represents the executable leaf tasks in the task 

model. It has operations that represent the interface of the task 

objects or work items to the user. She can invoke start, finish, skip 

and fail on these objects during runtime. The attribute state stores 

the execution state of the task that is used during runtime.  

3.2 CTT Structural Soundness Properties 

expressed with OCL Invariants 
The structure for CTT task models or structural soundness 

properties can be expressed by OCL invariants. For example the 

tree structure produced by the association has can be expressed by 

invariants. This is done implicitly by the ones given in Listing 1.  

Invariant taskStructure belongs to the associationclass TempOp 

and ensures that the by temporal relations (TempOp) connected 

tasks must have the same parent’s task. The next invariant 

startAndEndTasksExist expresses that both a start and an end task 

have to exist in one subtree hierarchy. The start task has no 

predecessor and the end task has no successor that is connected by 

the association has in that subtree hierarchy. Thus, only chains 

and no cycles of temporal operators are allowed to relate tasks to 

each other. 

As already stated in subsection 3.1, also the operational semantics 

can be expressed by invariants but this matter we omit here and 

only present the SOIL implementation in subsection 3.4. 

Listing 1. OCL-invariants for the structural soundness properties 

context TempOp inv taskStructure: 

  prev.compTask = next.compTask 

 

context CompTask inv startAndEndTasksExist: 

task->select(prev.isUndefined()) 

  ->size()=1 and 

task->select(next.isUndefined()) 

  ->size()=1 

3.3 State Charts 
We use state chart diagrams as the basis to express the operational 

semantics of the task models. The states of the state diagrams of 

Figure 3 are introduced in the enumeration State of the class 

diagram in Figure 2. In contrast, the original CTT-language uses 

the event-based process algebra LOTOS [4]. 

 

 

Figure 3: Normal and iterative task life cycles  

The task life cycles start in the state waiting. After calling the 

start() operation on a leaf task, it changes to the state running. The 

state chart diagrams are emulated by pre- and postconditions 

connected to the operations listed in the class LeafTask of the 

class diagram in Figure 2. The last lines of Listing 2 shows this 

for the start() operation which also represents the start() transition 

in the state charts of Figure 3. 

The other state changes behave accordingly to the state chart 

diagrams in Figure 3 and are expressed in the same way. Almost 

all transitions can be caused by the user by invoking the 

operations of the classes shown in Figure 2. Further preconditions 

for the state changes of tasks are temporal relationships to other 

tasks in the task model that must not be violated. Thus, there are 

dependencies and conditions that are not expressed in the state 

charts of Figure 3.  



The only operations that appear in the state chart and cannot be 

executed by the user are the operations suspend() and resume(). 

These are only called implicitly by side effects that are caused by 

state changes of other tasks in combination with the 

SuspendResume operator. The side effects depending on the 

temporal relations have to be implemented in the SOIL operations 

that are part of discussion in subsection 3.4. 

The upper diagram of Figure 3 represents the life cycle of a 

normal task and the lower one of an iterative task. The iterative 

task can be executed a number of times by calling start() and 

finish() operations more than once alternately. In addition, the 

iterative task can also be directly finished by immediately calling 

the finish() operation. Then the task is executed zero times which 

is allowed following the CTT semantics. A task has this life cycle 

if itself or one of its parent’s tasks are marked as iterative. This is 

done by setting the attribute tempOp of the class Task to the value 

ITER. 

3.4 Operational Semantics implemented with 

SOIL 
There are several additional operations used in the metamodel that 

are implemented with OCL and SOIL and are not shown in Figure 

2. The class Task for example comprises 60 OCL and SOIL 

operations. Listing 2 shows the implementation of the start()  

operation from the class LeafTask.  

Firstly, local variables are declared in the SOIL code of Listing 2 

in line 3 and 4. Then they are used in combination with several 

functions to test if the task is enabled and thus can be started. If 

the task is suspended by the OrderIndependency or 

SuspendResume operator this is not possible. This is tested in the 

lines 6 and 10. 

Further on, it is checked if the task is restricted to be executed by 

the Enabling operator. The predecessor task and its subtasks are 

not allowed to be in the state waiting or running if the current task 

ought to be started.  

If the result is negative and the task is enabled to start, the state is 

set to running in line 19. In the following, the side effects 

depending on the temporal relations are performed in line 20 to 

24. Lastly, the pre- and postconditions are specified that ensure 

the behavior of the task according to its life cycle of Figure 3. 

Listing 2. The SOIL implementation for the start()-Operation 

start() begin           (1) 

 declare 

  suspended : Boolean, 

  startable : Boolean; 

 suspended :=            (5) 

  self.isSuspendedByOrderIndependency();  

 startable := not suspended; 

 if (startable) then 

  suspended :=  

    self.isSuspendedBySuspendResume(); (10) 

  startable := not suspended; 

 end; 

 if (startable) then 

  suspended := 

   self.isStartableByEnabling();  (15) 

  startable := not suspended; 

 end; 

 if (startable) then 

  self.state := #running; 

  self.skipOptionalTasks();   (20) 

  self.skipChoice(); 

  self.disableTasks(); 

  self.suspendTasks(); 

  self.setStartStamp(); 

 end           (25) 

end 

pre leafStart_waiting: self.state=#waiting 

post leafStart_running:  self.state=#running 

4. Workflow Modeling and Execution  
In this section we present how workflow models are created and 

represented in the metamodel-based approach (subsection 4.1). 

Thereafter, the runtime plugin and a CTT model in execution is 

introduced in subsection 4.2. 

4.1 Workflow Model 
Figure 5 shows the abstract syntax for the task tree models that is 

provided by the USE tool. It shows an UML object diagram that 

represents the CTT workflow model.  

 

Figure 5: The emergency process of Figure 1 modeled as CTT-

diagram with abstract syntax 

To provide the object diagram as modeling pane to the user, USE 

firstly loads the metamodel which is the class diagram of Figure 2 

including the OCL- and SOIL specification. Looking at Figure 5, 

the CTT model in the object diagram is represented more 

abstractly than the one we have already seen in Figure 1.  

Although a concrete syntax is normally better for model 

understandability, the abstract syntax we use for CTT in Figure 5 

has its benefits, too. While the concrete CTT syntax decomposes 

the tasks downwards, we have chosen decomposition to the right 

hand side with the abstract syntax. This leads to a better, more 

compact graphical layout. Thereby bigger process models can be 

better expressed. This fact can be seen by comparing Figure 1 

with 5. Instead of reading the leaf tasks from the left to the right 

hand side, they have to be read from top to bottom within the 

object diagram. 

In the model of Figure 5 the types of the modeling elements are 

denoted. The root task EmergencyProcess is a composed task that 

cannot be executed while the leaf tasks starting with 

AmbulanceDelivery down to AdjustMedication are executable.  



4.2 Runtimeplugin for USE 
The runtime plugin is implemented for the UML tool USE. It 

presents the CTT workflow instance to the user also in a tree-like 

form like shown in Figure 6. The temporal relations of the 

workflow model are omitted in this presentation. Thus, the model 

can be displayed in an even more compact form. The execution 

states of the tasks are presented in specific colors that are listed 

and related in Table II. 

 

Figure 6: A workflow in execution in the CTT-plugin for the 

USE tool 

We see the task operations that are the ones of LeafTask in the 

metamodel represented to the user by the buttons shown at the 

bottom of Figure 6. Depending on the ability of the operations to 

be executed, the buttons are clickable (enabled) or shown greyed 

out (disabled). An operation is executable if no OCL constraint as 

pre- or postcondition or invariant is violated. Otherwise that 

operation is not allowed to be executed. The USE tool tests these 

properties in advance to show the user which operation is possible 

to be called and which is disabled. Thus, she is better guided 

through the workflow execution. 

At the current execution snapshot of Figure 6 the task 

AssistEmergencySurgery is selected and in the state running, 

which is expressed by the blue color (see Table II). Following this 

state and the upper state chart of Figure 3, the buttons finish and 

fail are enabled and start and skip are disabled. 

HelicoperDelivery is marked as black and thus has been executed 

in the scenario of Figure 6. The task AmbulanceDelivery was 

modeled in a Choice relationship to the first task and was 

consequently skipped (marked as grey). EmergencySurgery and 

AssistEmergencySurgery have a blue color and are currently 

running. HandleStablePatient and its subtasks were skipped when 

the task EmergencySurgery was started because of the choice 

relationship to HandleCriticalPatient. 

AdjustMedication is in the state waiting and can be started. The 

state waiting is marked with the green color and the enabled 

property is further indicated by the green colored letters. By 

starting that task the other running tasks would be suspended 

because of the SuspendResume operator in the model of Figure 5. 

The whole EmergencyProcess is executed when no further leaf 

tasks are in the state waiting or running and thus no interaction is 

possible anymore. 

We see in Figure 6 that the composed tasks are also related to 

states although they have no state attribute according to the 

metamodel of Figure 2. This state is derived from the states of its 

leaf tasks. It is calculate by an OCL function getState() that is part 

of the metamodel but not deeper introduced here. 

TABLE II.  COLORS AND THE CORRELATION TO EXECUTION 

STATES 

State Color 

Waiting Green 

Waiting (Enabled) Green (with green letters) 

Running Blue 

Done Black 

Skipped Grey 

Failed Red 

Suspended Turquoise 

Undefined Magenta 

 

5. Related Work 
CTTE is the reference implementation for CTT task models to be 

modeled and simulated in a tool [4]. The developers used an 

event-based process algebra approach to specify the operational 

semantics.  

Additionally, there are already metamodel-based approaches to 

describe CTT in [15,16]. They used state chart diagrams to 

specify task life cycles in [17,18]. An EMF/GMF-based approach 

implemented as an Eclipse-plugin is presented in [17] for CTT-

like models. But in the other metamodel approaches the execution 

semantics are missing. OCL and SOIL were used for this purpose 

in the current paper. 

In the business process modeling context the Event-driven Process 

Chain (EPC) modeling language was implemented in [3] with an 

EMF/GMF metamodel-based approach. The constraint language 

Check was used to check soundness properties of these models. 

In [9] it was analyzed that structurdness of workflow models is 

important for the understandability. In [19] parts of structured 

programming are analyzed to be used for business process 

models. Process Structure Trees [14] are invented to represent 

structured workflow models in an analogous way to Abstract 

Syntax Trees in which structured computer programs are 

represented after program compilation. Jackson Structured 

Diagrams were invented to design structured programs in a tree 

model before system implementation [20]. These models are quite 

similar to CTT task models that similarly produce structured 

workflow diagrams. CTT is transformed into structured BPMN in 

[12].  

In [8] a task model based approach was used in the context of 

workflow management systems (WfMS). In that publication the 

decision modeling aspect was further analyzed for task models. 

Another WfMS that uses trees for workflow models was 



introduced in [13]. With this approach the integration of data and 

dataflows are part of the models. 

For the UML-tool USE there already exist a declarative approach 

for modeling and executing workflow models [5,6]. In contrast to 

the declarative more flexible way of modeling workflows, the 

approach of this paper follows a hierarchical, structured 

alternative way, where goals can be expressed within the 

workflow models. The models that are developed with this 

metamodel promise to be better understood by developers and 

stakeholders [12] while the approach of [5,6] is more expressive.  

6. Conclusion 
Although not widely used, the benefits of trees to be applied as 

workflow models are analyzed and accepted in the business 

process community. We have put forward the CTT language with 

a metamodel-based approach. Soundness properties are captured 

in OCL invariants and are permanently observed by the USE tool. 

The modeler is indicated at the very moment the problem occurs 

during design time. In the metamodel the operational semantics 

are captured by OCL and we used SOIL to implement it. 

ASSL was used instead of SOIL to execute the workflow models 

within the declarative workflow modeling approach [7]. 

Comparing the ASSL with the SOIL approach from the 

engineering point of view, the SOIL approach is easier to handle. 

The SOIL code is directly attached to the operations in the UML 

class diagram. Thus, only one file is used while with ASSL a 

second file is needed for the imperative ASSL procedures that are 

not directly attached to the operations of the UML classes.  

To execute these models by the user, we developed a workflow 

runtime plugin for the USE tool. It uses the SOIL operations of 

the metamodel. The plugin presents the interface part of the task 

to the user in an appropriate way. She can interact and validate the 

workflow model with it. The USE plugin for the declarative 

approach [7] could be easily adapted for the one presented in this 

paper. Only the invocation of the operations from the metamodel 

had to be changed from ASSL to SOIL. The main parts of the user 

interface remained the same. 

We have basically expressed structural soundness properties with 

OCL invariants in this paper. But to introduce task trees further in 

the domain of workflow modeling the soundness properties 

(including operational semantics and deadlocks) have to be further 

analyzed and captured in the metamodel. Another open issue is 

the connection to the data model and the decision modeling [6,8]. 

These aspects are important for workflow models and thus have to 

be part of the modeling language and metamodel. In the current 

state, these aspects are expressed outside a metamodel with 

informal preconditions specifications in CTTE [10]. 
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