
Modeling and Executing ConcurTaskTrees using a UML
and SOIL-based Metamodel

Jens Brüning

University of Rostock
Albert-Einstein-Str. 22

D-18051 Rostock
Jens.Bruening@uni-rostock.de

Martin Kunert

University of Rostock
Albert-Einstein-Str. 22

D-18051 Rostock
Martin.Kunert@uni-rostock.de

Birger Lantow

University of Rostock
Albert-Einstein-Str. 22

D-18051 Rostock
Birger.Lantow@uni-rostock.de

ABSTRACT

In this paper, we present a formal metamodel-based approach for

modeling and executing ConcurTaskTrees (CTT). CTT is a

modeling language for tasks that represent hierarchical tree-like,

structured workflow models. In the metamodel soundness

properties as well as operational semantics of the workflow

language are captured. The models are created with an abstract

syntax in the UML-based Specification Environment (USE).

Thereafter, they can be executed in the same tool by calling

operations from the metamodel that are implemented in the

Simple OCL-based Imperative Language (SOIL). A plugin for the

USE tool has been developed to give an appropriate interface to

the user who can test dynamic control flow properties of the

models with it.

Keywords

Metamodeling, Taskmodeling, UML, OCL, SOIL, Model

execution.

1. INTRODUCTION
Business process modeling gets more and more important with the

increasing complexity and automation of business processes in

companies and organizations. They are used to document,

restructure and optimize the processes. Furthermore, requirements

for software and computer services that support the business

processes are captured in these models.

Nowadays, workflows are frequently modeled in a non-

hierarchical, flat way in EPCs, UML activity diagrams or BPMN.

Although subprocesses can be defined, the hierarchical modeling

is not an integral part of these languages and can only be

integrated in an unnatural, difficult to handle way. Having several

hierarchies would mean managing several models and inserting a

new hierarchy would mean creating new models. Whereas

hierarchy is an integral part in function trees that are used in the

ARIS method and toolkit [21] for business process modeling.

Hierarchical supply and value chains are a common feature in the

domain of business modeling. Task models are used in the HCI

domain for capturing the hierarchical character of tasks and get

expressed in a tree-like notation.

ConcurTaskTrees are widely used in the community of model-

based user interface development. They represent hierarchy-

oriented workflow specifications. By task decomposition the inner

nodes of the task trees represent user-centered, easy-to-use goal

specifications [10]. The leaf tasks are executable activities. Within

the hierarchical structure the control flow is specified by unary

and binary temporal operators from the process algebra language

LOTOS [4].

The benefits of trees to be used with workflow models are widely

analyzed and accepted [13,14]. The tree model is used to express

structuredness within the workflow models rather than goal

modeling. But both properties can be connected with tree models.

The approach presented in this paper uses a UML metamodel

along with the tool USE [1]. USE checks static properties of the

workflow models during the modeling process by observing OCL

invariants. The modeler gets quick feedback of identified

problems and the involved modeling elements are immediately

presented to her.

There are even more benefits to UML workflow metamodels with

respect to dynamic properties. They provide means to define

execution semantics. OCL invariants are used for system states

and pre- and postconditions for operations. They describe the

causal or temporal relationships between the modeling elements in

a platform independent way. During execution of the workflow

model, the operational semantics is interpreted and disallowed

flows of a process are forbidden. Furthermore, enabled activities

can be identified and they are indicated in the GUI to guide the

user through the workflow model execution.

The main goal of the paper is to provide a formal semantics for

CTTs that is executable and allows a model analysis using OCL at

design time. Having the operational semantics in the metamodel

we show that the models can be executed in a prototypical

implementation in connection with the USE tool.

The remainder of the paper is structured as follows. The temporal

operators and CTT-language itself is more deeply introduced in

section 2. We present our metamodel for CTT in section 3. Also,

some structural soundness properties and the operational

semantics that is expressed in the metamodel are presented there.

The workflow modeling part and the execution in the USE tool is

presented in section 4. We present related work in section 5 and

conclude the paper in section 6.

2. Temporal Operators and Task

Decompostition in CTT Models
Firstly, we introduce the temporal CTT-operators in subsection

2.1. All the siblings in the task tree have to be connected with

binary temporal operators in a chain. Every task can be notated

with a unary one as well. We present the task decomposition with

an example in subsection 2.2. It is used as ongoing example in this

paper to present the metamodel-based approach as well.

2.1 Temporal Operators
First of all, for creating the task model, the tree structure has to be

established by task decomposition. The overall goal is denoted in

the root node and it is recursively decomposed into subgoals until

the action level is reached in the leaf tasks (see section 2.2). All

the siblings in the task tree have to be connected with binary

temporal operators. They are listed with the CTT syntax and their

informal operational semantics in Table I from number 1 to 10.

As stated in Table I the Concurrency and the Enabling operators

have each another operator to specify that information is

exchanged between the two connected tasks. But the kind of data

cannot be declared in detail.

TABLE I. TEMPORAL OPERATORS IN CTT

Operator Description
CTT-

syntax

Operational Semantics

1. Choice A [] B Either A or B has to be executed.

2. Concurrency A ||| B
A and B has to be executed

concurrently.

3. Concurrency with
information exchange

A|[]|B

A and B are executed concurrently

and information is exchanged
between them

4. Disabling A [> B

A is disabled by B. A has to be in

the state enabled, running or done

to be disabled by B.

5. SuspendResume A |> B
B suspends the execution of A. This
can happen several times during the

execution of A.

6. OrderIndependence A |=| B

Either A or B including their

subtasks have to be fully executed

before the other task can be started.

7. Enabling A >> B
A has to be finished before B can be
started.

8. Enabling with

information passing
A[]>>B

Additionally, A provides

information for the execution of B.

9. Iteration A*
A can be executed 0-n times in

iteration

10. Option [A] A can be executed optional

The binary operators have specific binding strength to specify the

binding semantics that are needed if more than three sibling tasks

exist in one hierarchy in the tree model. The binding strength is

indicated downwards in Table I with the highest priority

connected to the choice operator. The least priority is

consequently connected to the enabling operator. To show the

binding priority we take the following example process term: A

>> B [] C |> D. It is interpreted as A >> ((B [] C) |> D) after the

priority specifications of Table I.

Because brackets do not fit into the graphical tree-like syntax of

CTT, the binding strength of the operators are needed. If the

prescripted priorities of the operators do not fit to the flow logic

you want to model, another artificial tree node has to be inserted

(see [4]). In the model of Figure 1 this is done with the TransSurg

task, which will be deeper introduced in subsection 2.2.

Apart from binary operators, every task can be additionally

denoted with an unary operator (see numer 9 and 10 in Table I).

Following the semantics of these operators, the task is either

iterative or optional.

2.2 Task Decomposition and CTT Example

Model
In this subsection we introduce an emergency process example

taken from the hospital domain. The CTT model of Figure 1

represents the emergency process that is so called in the root node

of the task tree.

The root task has two subtasks. TransSurg represents the

compound task for the transportation and surgery of the patient.

Its subtasks execution can be suspended anytime by the task

AdjustMedication. This is a leaf node and thus can be executed.

During its running period, the medication takes place and should

be documented.

Figure 1: An Emergency Process modeled in a CTT model

As mentioned before, we had to insert the TransSurg as additional

task. Thus, the range of the SuspendResume operator expands

over the Transport and Surgery tasks. If we had specified these

three tasks as siblings in a chain as follows: Transport >> Surgery

|> AdjustMedication the control flow would have been interpreted

as Transport >> (Surgery |> AdjustMedication)

The Transport task is decomposed into Helicopter and Ambulance

that represents the way of transportation and arrival of the patient

at the hospital. These two tasks are related in a choice dependency

to each other. Thus only one task of them can be executed and the

other is skipped consequently.

After the arrival at the hospital the process continues with the

surgery. If the patient is in a critical condition that is represented

by the task HandleCriticalPatient, an emergency surgery has to be

done. In this case there is no time to prepare a surgery in a sterile

environment.

The alternative is specified by the task HandleStablePatient in

which the situation is not critical and a NormalSurgery can be

prepared in the operation room. These two tasks are related in a

choice relationship. Both Surgery tasks are specified together with

Assist activities that are related in a Concurrency relationship to

the surgery activities. They take place in parallel and represents

the task the nurses or anesthetist are responsible for.

The emergency process is entirely done when the Surgery and

Assist activities are executed. Following the operational semantics

of the SuspendResume operator, the suspending task

AdjustMedication is not further enabled for execution if the

previous task is already done.

3. ConcurTaskTree Metamodel
The metamodel of CTT comprises the class diagram that is

introduced in subsection 3.1. OCL invariants that are presented in

subsection 3.2 express soundness properties. The operational

semantics is based on state charts for task life cycles that are

introduced in subsection 3.3. In subsection 3.4 the operational

semantics are implemented with SOIL [2]. The start() operation is

introduced by example to show the use of SOIL in the metamodel.

3.1 Class Diagram
In Figure 2 the UML class diagram is pictured. We see the

abstract class Task that has a reflexive associationclass TempOp.

The multiplicity 0..1 is used for this and specifies the binary

temporal relationships between the sibling tasks. TempOp is kept

abstract itself. Thus, its concrete subclasses represent the binary

temporal relationships between the sibling tasks in CTT.

Figure 2: The class diagram for the CTT metamodel

Within the concrete associationclasses from Choice to Enabling

the operational semantics can be specified with OCL invariants in

a platform independent way. With these invariants the correctness

of the SOIL implementation (see subsection 3.4) can be ensured

similar to the Design by contract principle [10]. The Enabling

class for example has an invariant that states if the next task is

running the previous one has to be done, skipped or failed.

The unary operators Iteration and Option of CTT (ref. Table I) are

expressed with the enumeration TempUn. There is an attribute

tempOp referring to that type in the class Task. Thus, if that

attribute is set the appropriate task has the corresponding property.

Otherwise the attribute is Undefined which means that the task is

normal and has the normal task life cycle (see subsection 3.3).

The task decomposition for creating the tree structure is enabled

by the association has that connects a complex CompTask with its

at least two subtasks. Through this association both composed and

leaf tasks can be connected as subtasks.

The class LeafTask represents the executable leaf tasks in the task

model. It has operations that represent the interface of the task

objects or work items to the user. She can invoke start, finish, skip

and fail on these objects during runtime. The attribute state stores

the execution state of the task that is used during runtime.

3.2 CTT Structural Soundness Properties

expressed with OCL Invariants
The structure for CTT task models or structural soundness

properties can be expressed by OCL invariants. For example the

tree structure produced by the association has can be expressed by

invariants. This is done implicitly by the ones given in Listing 1.

Invariant taskStructure belongs to the associationclass TempOp

and ensures that the by temporal relations (TempOp) connected

tasks must have the same parent’s task. The next invariant

startAndEndTasksExist expresses that both a start and an end task

have to exist in one subtree hierarchy. The start task has no

predecessor and the end task has no successor that is connected by

the association has in that subtree hierarchy. Thus, only chains

and no cycles of temporal operators are allowed to relate tasks to

each other.

As already stated in subsection 3.1, also the operational semantics

can be expressed by invariants but this matter we omit here and

only present the SOIL implementation in subsection 3.4.

Listing 1. OCL-invariants for the structural soundness properties

context TempOp inv taskStructure:

 prev.compTask = next.compTask

context CompTask inv startAndEndTasksExist:

task->select(prev.isUndefined())

 ->size()=1 and

task->select(next.isUndefined())

 ->size()=1

3.3 State Charts
We use state chart diagrams as the basis to express the operational

semantics of the task models. The states of the state diagrams of

Figure 3 are introduced in the enumeration State of the class

diagram in Figure 2. In contrast, the original CTT-language uses

the event-based process algebra LOTOS [4].

Figure 3: Normal and iterative task life cycles

The task life cycles start in the state waiting. After calling the

start() operation on a leaf task, it changes to the state running. The

state chart diagrams are emulated by pre- and postconditions

connected to the operations listed in the class LeafTask of the

class diagram in Figure 2. The last lines of Listing 2 shows this

for the start() operation which also represents the start() transition

in the state charts of Figure 3.

The other state changes behave accordingly to the state chart

diagrams in Figure 3 and are expressed in the same way. Almost

all transitions can be caused by the user by invoking the

operations of the classes shown in Figure 2. Further preconditions

for the state changes of tasks are temporal relationships to other

tasks in the task model that must not be violated. Thus, there are

dependencies and conditions that are not expressed in the state

charts of Figure 3.

The only operations that appear in the state chart and cannot be

executed by the user are the operations suspend() and resume().

These are only called implicitly by side effects that are caused by

state changes of other tasks in combination with the

SuspendResume operator. The side effects depending on the

temporal relations have to be implemented in the SOIL operations

that are part of discussion in subsection 3.4.

The upper diagram of Figure 3 represents the life cycle of a

normal task and the lower one of an iterative task. The iterative

task can be executed a number of times by calling start() and

finish() operations more than once alternately. In addition, the

iterative task can also be directly finished by immediately calling

the finish() operation. Then the task is executed zero times which

is allowed following the CTT semantics. A task has this life cycle

if itself or one of its parent’s tasks are marked as iterative. This is

done by setting the attribute tempOp of the class Task to the value

ITER.

3.4 Operational Semantics implemented with

SOIL
There are several additional operations used in the metamodel that

are implemented with OCL and SOIL and are not shown in Figure

2. The class Task for example comprises 60 OCL and SOIL

operations. Listing 2 shows the implementation of the start()

operation from the class LeafTask.

Firstly, local variables are declared in the SOIL code of Listing 2

in line 3 and 4. Then they are used in combination with several

functions to test if the task is enabled and thus can be started. If

the task is suspended by the OrderIndependency or

SuspendResume operator this is not possible. This is tested in the

lines 6 and 10.

Further on, it is checked if the task is restricted to be executed by

the Enabling operator. The predecessor task and its subtasks are

not allowed to be in the state waiting or running if the current task

ought to be started.

If the result is negative and the task is enabled to start, the state is

set to running in line 19. In the following, the side effects

depending on the temporal relations are performed in line 20 to

24. Lastly, the pre- and postconditions are specified that ensure

the behavior of the task according to its life cycle of Figure 3.

Listing 2. The SOIL implementation for the start()-Operation

start() begin (1)

 declare

 suspended : Boolean,

 startable : Boolean;

 suspended := (5)

 self.isSuspendedByOrderIndependency();

 startable := not suspended;

 if (startable) then

 suspended :=

 self.isSuspendedBySuspendResume(); (10)

 startable := not suspended;

 end;

 if (startable) then

 suspended :=

 self.isStartableByEnabling(); (15)

 startable := not suspended;

 end;

 if (startable) then

 self.state := #running;

 self.skipOptionalTasks(); (20)

 self.skipChoice();

 self.disableTasks();

 self.suspendTasks();

 self.setStartStamp();

 end (25)

end

pre leafStart_waiting: self.state=#waiting

post leafStart_running: self.state=#running

4. Workflow Modeling and Execution
In this section we present how workflow models are created and

represented in the metamodel-based approach (subsection 4.1).

Thereafter, the runtime plugin and a CTT model in execution is

introduced in subsection 4.2.

4.1 Workflow Model
Figure 5 shows the abstract syntax for the task tree models that is

provided by the USE tool. It shows an UML object diagram that

represents the CTT workflow model.

Figure 5: The emergency process of Figure 1 modeled as CTT-

diagram with abstract syntax

To provide the object diagram as modeling pane to the user, USE

firstly loads the metamodel which is the class diagram of Figure 2

including the OCL- and SOIL specification. Looking at Figure 5,

the CTT model in the object diagram is represented more

abstractly than the one we have already seen in Figure 1.

Although a concrete syntax is normally better for model

understandability, the abstract syntax we use for CTT in Figure 5

has its benefits, too. While the concrete CTT syntax decomposes

the tasks downwards, we have chosen decomposition to the right

hand side with the abstract syntax. This leads to a better, more

compact graphical layout. Thereby bigger process models can be

better expressed. This fact can be seen by comparing Figure 1

with 5. Instead of reading the leaf tasks from the left to the right

hand side, they have to be read from top to bottom within the

object diagram.

In the model of Figure 5 the types of the modeling elements are

denoted. The root task EmergencyProcess is a composed task that

cannot be executed while the leaf tasks starting with

AmbulanceDelivery down to AdjustMedication are executable.

4.2 Runtimeplugin for USE
The runtime plugin is implemented for the UML tool USE. It

presents the CTT workflow instance to the user also in a tree-like

form like shown in Figure 6. The temporal relations of the

workflow model are omitted in this presentation. Thus, the model

can be displayed in an even more compact form. The execution

states of the tasks are presented in specific colors that are listed

and related in Table II.

Figure 6: A workflow in execution in the CTT-plugin for the

USE tool

We see the task operations that are the ones of LeafTask in the

metamodel represented to the user by the buttons shown at the

bottom of Figure 6. Depending on the ability of the operations to

be executed, the buttons are clickable (enabled) or shown greyed

out (disabled). An operation is executable if no OCL constraint as

pre- or postcondition or invariant is violated. Otherwise that

operation is not allowed to be executed. The USE tool tests these

properties in advance to show the user which operation is possible

to be called and which is disabled. Thus, she is better guided

through the workflow execution.

At the current execution snapshot of Figure 6 the task

AssistEmergencySurgery is selected and in the state running,

which is expressed by the blue color (see Table II). Following this

state and the upper state chart of Figure 3, the buttons finish and

fail are enabled and start and skip are disabled.

HelicoperDelivery is marked as black and thus has been executed

in the scenario of Figure 6. The task AmbulanceDelivery was

modeled in a Choice relationship to the first task and was

consequently skipped (marked as grey). EmergencySurgery and

AssistEmergencySurgery have a blue color and are currently

running. HandleStablePatient and its subtasks were skipped when

the task EmergencySurgery was started because of the choice

relationship to HandleCriticalPatient.

AdjustMedication is in the state waiting and can be started. The

state waiting is marked with the green color and the enabled

property is further indicated by the green colored letters. By

starting that task the other running tasks would be suspended

because of the SuspendResume operator in the model of Figure 5.

The whole EmergencyProcess is executed when no further leaf

tasks are in the state waiting or running and thus no interaction is

possible anymore.

We see in Figure 6 that the composed tasks are also related to

states although they have no state attribute according to the

metamodel of Figure 2. This state is derived from the states of its

leaf tasks. It is calculate by an OCL function getState() that is part

of the metamodel but not deeper introduced here.

TABLE II. COLORS AND THE CORRELATION TO EXECUTION

STATES

State Color

Waiting Green

Waiting (Enabled) Green (with green letters)

Running Blue

Done Black

Skipped Grey

Failed Red

Suspended Turquoise

Undefined Magenta

5. Related Work
CTTE is the reference implementation for CTT task models to be

modeled and simulated in a tool [4]. The developers used an

event-based process algebra approach to specify the operational

semantics.

Additionally, there are already metamodel-based approaches to

describe CTT in [15,16]. They used state chart diagrams to

specify task life cycles in [17,18]. An EMF/GMF-based approach

implemented as an Eclipse-plugin is presented in [17] for CTT-

like models. But in the other metamodel approaches the execution

semantics are missing. OCL and SOIL were used for this purpose

in the current paper.

In the business process modeling context the Event-driven Process

Chain (EPC) modeling language was implemented in [3] with an

EMF/GMF metamodel-based approach. The constraint language

Check was used to check soundness properties of these models.

In [9] it was analyzed that structurdness of workflow models is

important for the understandability. In [19] parts of structured

programming are analyzed to be used for business process

models. Process Structure Trees [14] are invented to represent

structured workflow models in an analogous way to Abstract

Syntax Trees in which structured computer programs are

represented after program compilation. Jackson Structured

Diagrams were invented to design structured programs in a tree

model before system implementation [20]. These models are quite

similar to CTT task models that similarly produce structured

workflow diagrams. CTT is transformed into structured BPMN in

[12].

In [8] a task model based approach was used in the context of

workflow management systems (WfMS). In that publication the

decision modeling aspect was further analyzed for task models.

Another WfMS that uses trees for workflow models was

introduced in [13]. With this approach the integration of data and

dataflows are part of the models.

For the UML-tool USE there already exist a declarative approach

for modeling and executing workflow models [5,6]. In contrast to

the declarative more flexible way of modeling workflows, the

approach of this paper follows a hierarchical, structured

alternative way, where goals can be expressed within the

workflow models. The models that are developed with this

metamodel promise to be better understood by developers and

stakeholders [12] while the approach of [5,6] is more expressive.

6. Conclusion
Although not widely used, the benefits of trees to be applied as

workflow models are analyzed and accepted in the business

process community. We have put forward the CTT language with

a metamodel-based approach. Soundness properties are captured

in OCL invariants and are permanently observed by the USE tool.

The modeler is indicated at the very moment the problem occurs

during design time. In the metamodel the operational semantics

are captured by OCL and we used SOIL to implement it.

ASSL was used instead of SOIL to execute the workflow models

within the declarative workflow modeling approach [7].

Comparing the ASSL with the SOIL approach from the

engineering point of view, the SOIL approach is easier to handle.

The SOIL code is directly attached to the operations in the UML

class diagram. Thus, only one file is used while with ASSL a

second file is needed for the imperative ASSL procedures that are

not directly attached to the operations of the UML classes.

To execute these models by the user, we developed a workflow

runtime plugin for the USE tool. It uses the SOIL operations of

the metamodel. The plugin presents the interface part of the task

to the user in an appropriate way. She can interact and validate the

workflow model with it. The USE plugin for the declarative

approach [7] could be easily adapted for the one presented in this

paper. Only the invocation of the operations from the metamodel

had to be changed from ASSL to SOIL. The main parts of the user

interface remained the same.

We have basically expressed structural soundness properties with

OCL invariants in this paper. But to introduce task trees further in

the domain of workflow modeling the soundness properties

(including operational semantics and deadlocks) have to be further

analyzed and captured in the metamodel. Another open issue is

the connection to the data model and the decision modeling [6,8].

These aspects are important for workflow models and thus have to

be part of the modeling language and metamodel. In the current

state, these aspects are expressed outside a metamodel with

informal preconditions specifications in CTTE [10].

7. REFERENCES
[1] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-

Based Specification Environment for Validating UML and

OCL,” Science of Computer Programming, 69:27-34, 2007.

[2] F. Büttner, and M. Gogolla, “Modular Embedding of the

Object Constraint Language into a Programming Language,”

14th Brazilian Symposium on Formal Methods SBMF2011,

LNCS vol. 7021, Springer, 2011.

[3] S. Kühne, H. Kern, V. Gruhn, and R. Laue, “Business

process modeling with continuous validation,” Journal of

Software Maintenance and Evolution: Research and Practice,

Volume 22, Issue 6-7, pages 547–566, 2010.

[4] G. Mori, F. Paterno, and C. Santoro, “CTTE: Support for

Developing and Analyzing Task Models for Interactive

System Design,” IEEE Transactions on Software

Engineering, 2002, pp.797-813.

[5] J. Brüning, M. Gogolla, and P. Forbrig, “Modeling and

formally checking workflow properties using UML and

OCL,” 9th International Conference BIR2010, LNBIP vol.

64, Springer, 2010.

[6] J. Brüning and M. Gogolla, “Metamodel-based Workflow

Modeling and Execution,” 15th International Enterprise

Distributed Object Computing Conference (EDOC2011),

IEEE, 2011.

[7] J. Brüning, L. Hamann, and A. Wolff, “Extending ASSL:

Making UML Metamodel-based Workflows Executable,”

11th International Workshop OCL2011, ECEASST vol. 56,

2011.

[8] J. Brüning, P. Forbrig, “TTMS: A Task Tree Based

Workflow Management System,” 12th International

Conference BPMDS2011, LNBIP vol. 81, Springer, 2011.

[9] R. Laue, and J. Mendling, “Structuredness and its

significance for correctness of process models,” Inf. Syst. E-

Business Management 8(3): 287-307, 2010.

[10] F. Paterno, “Model-Based Design and Evaluation of

Interactive Applications,” Springer, 2000.

[11] B. Meyer, “Applying "Design by Contract",” IEEE

Computer 10(25):40–51, 1992.

[12] J. Kolb, M. Reichert, and B. Weber “Using Concurrent Task

Trees for Stakeholder-centered Modeling and Visualization

of Business Processes,” 4th International Conference S-BPM

ONE 2012, CCIS vol. 284, Springer, 2012.

[13] M. Weske, “Workflow Management Systems: Formal

Foundation, Conceptual Design, Implementation Aspects,”

Postdoctoral Dissertation, University of Münster, 2000.

[14] J. Vanhatalo, H. Völzer, and J. Koehler, “The Refined

Process Structure Tree,” 6th International Conference

BPM2008, LNCS vol. 5240, Springer, 2008.

[15] R. Bastide, and S. Basnyat, “Error Patterns: Systematic

Investigation of Deviations in Task Models,” 5th

International Workshop TAMODIA2006, LNCS vol. 4385,

Springer, 2006.

[16] R. Bastide, “An Integration of Task and Use-Case Meta-

models,” 13th International Conference HCI2009, LNCS vol.

5610, Springer.

[17] D. Reichart, and P. Forbrig, “Transactions in Task Models,”

7th International Workshop TAMODIA2008, LNCS vol.

5247, Springer, 2008.

[18] B. Bomsdorf, “The WebTaskModel Approach to Web

Process Modelling,” 6th International Workshop

TAMODIA2007, LNCS vol. 4849, Springer, 2007

[19] V. Gruhn, and R. Laue, “What business process modelers

can learn from programmers,” Sci. Comput. Program. 65(1):

4-13, 2007.

[20] J. R. Cameron, "JSP & JSD: The Jackson approach to

software development," IEEE Computer Society Press, 1983.

[21] A.-W. Scheer, “ARIS: Business Process Modeling,“

Springer, 2000.

