
Experiences using OCL for Business Rules on Financial
Messaging

David Garry
Nomos Software

Rubicon Centre, CIT Campus
Cork, Ireland

+353 21 4928945
david.garry@nomos-software.com

ABSTRACT
In this paper we describe our experiences in using the OCL
language in a commercial environment to validate XML-based
financial data such as FpML [1] and ISO 20022 [2] data. We
describe three problems we have encountered in supporting
customer requirements when validating data in this context, and
outline how we have chosen to support these requirements. We
suggest that it would be useful to define a common approach to
solving these problems for users of OCL.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – constraints.

General Terms
Languages.

Keywords
OCL, model driven, case study, experience.

1. INTRODUCTION
The OCL language is a standardized constraint and query
language. The language specification [3] is published by the
OMG, and is supported in a number of modeling environments.

At Nomos Software, we use OCL in a commercial environment
to execute constraints over XML-based financial messaging: in
other words we use OCL to implement business rules on
financial data. We use our proprietary implementation of OCL.

2. PROBLEMS ENCOUNTERED
When using OCL in commercial environments, we have
encountered three very common requirements: easy identification
of exact error locations when an OCL constraint fails; support for
additional data types and operations (extensions to the OCL
standard library); and support for checking against external data
sources from within OCL expressions.

2.1 Identifying exact error locations
It is possible, and very useful, to write very general constraints
with OCL. However, when a business rule fails, it is important to
be able to easily understand why it failed. In our usage scenario,
the person investigating the business rule failure only sees the
XML data file that is in error, and does not have access to a
debugging environment. They need a good description of the
problem, as well as the exact data and the location of the data

that is in error. For simple constraints, this is straightforward.
For general or complex constraints, this can be difficult.
Table 1, for example, shows a constraint on an ISO 20022
‘payment status report’ message [4] from the European Payments
Council Implementation Guidelines [5].

Table 1 ISO20022 OCL Constraint
context OriginalGroupInformation20

inv EPC_OrgnlGrp:

StsRsnInf->forAll(a |
 (a.Orgtr.Nm->size() = 1 or
 (a.Orgtr.Id->size() = 1 and
 a.Orgtr.Id.OrgId.BICOrBEI->size() = 1))
 and a.Orgtr.PstlAdr->size() = 0
 and a.Orgtr.CtryOfRes->size() = 0)

This constraint states that the originator (Orgtr) of reason
information in a payment status report must be identified either
by a name (Nm) or by a bank identifier code (BIC). Postal
address (PstlAdr) and country of residence (CtryOfRes) cannot
be included. This constraint could fail for a number of reasons
e.g. because a postal address was included or because a country
of residence was included,

In order to to make it possible to return more useful information
on the failure reason, we implemented a mechanism to trigger
query rules if a constraint fails for a particular context. The OCL
author can write one or more query rules and associate them with
an OCL constraint; the query rules are triggered if the constraint
fails; and the results of the queries are returned to the person
troubleshooting the error.

For example, the queries in Table 2 will return information,
including line number, on postal address or country of residence
fields that were incorrectly included in a payment status report.

Table 2 Query Rules
context
OriginalGroupInformation20::getPstlAdr() :
Set(PostalAddress6)

body: self.Orgtr.PstlAdr->asSet()

context
OriginalGroupInformation20::getCtryOfRes() :
Set(CountryCode)

body: self.Orgtr.CtryOfRes->asSet()

When the constraint in Table 1 executes, these queries are
executed against every failed instance of the context.

An alternative approach to solving this problem is outlined in [6].
The authors show that certain patterns of OCL expressions return
more useful information for troubleshooting purposes than
others. Careful crafting of OCL expressions can help ensure that
useful error information is returned at execution time. We note
however that, without very good tool support, this makes writing
OCL more difficult, and that it may not be possible to provide
good debugging information for all scenarios in this way.

2.2 Extending the OCL standard library
The OCL standard library supports 5 primitive types: Integer,
Real, Boolean, String, and UnlimitedNatural, each with a
number of pre-defined operations [3]. This is very limited. Rules
that are straightforward to write in other languages can be
difficult to express in OCL. For example, comparing dates is
difficult. This is important, e.g., for FpML messaging.

Since we specialise in executing OCL on XML-based models, we
chose to support the full set of W3C XML Schema built-in
primitive types with additional operations. For example, we
support the dateTime type, along with a range of operations such
as after, before, allowedDaysInFuture and allowedDaysInPast.
This simplifies the expression of dateTime related rules
dramatically.

For example, the constraint in Table 3, expressed on the FpML
4-5 model available from [1], checks that a trade’s adjusted
exercise date is before the adjusted early termination date.

Table 3 – Usage of dateTime operations in OCL
context EarlyTerminationEvent

inv ird39:

adjExerciseDate.before(adjEarlyTermDate)

Our experience is that support for a broader range of primitive
types is useful. Moreover, it is useful to support operations on
domain specific types.

Data models for a business domain usually include domain
specific types. In ISO20022 messaging, a type is defined for
unique bank account identifiers (the IBAN in Europe). Special
checks on the IBAN structure must be implemented on the IBAN
[1]. To make it easy to write rules on IBANs, we added support
for an ‘isValidIBAN’ operation on the IBAN type. Table 4 shows
an example of an OCL expression that invokes this operation.

Table 4 Validating an IBAN in OCL

context CashAccount16

inv: PIP_C_93_validIBAN

self.Id.IBAN.isValidIBAN()

Making it easy to write OCL for domain-specific data is
important. A simple mechanism to extend the OCL standard
library for specific domains would be very helpful.

2.3 Referencing external data sources
When executing business rules on messaging data, it is often
necessary to compare the data against data in an external
database or in a code list defined by some external organisation.
For example, fields in payments messaging must comply with
code lists maintained by ISO 20022 [7].

To facilitate this, we allow customers to define their own
operations on types, and to provide the runtime implementation
of the operations. Since the runtime implementations are
provided by the customers, they can access customer-specific
data sources.

The OCL in Table 5 shows an example of such an operation. The
operation isExterrnalFinInstIdCde() is made available on the
string type and checks that OrgnlMsgId (original message id) is
listed in the financial instrument type external code list.

Table 5 Accessing external data sources with OCL
context OriginalGroupInformation20

inv: PIP_C_93_validRef

self.OrgnlMsgId.isExternalFinInstIdCde()

A standard mechanism to allow users to be able to invoke
external calls from within OCL expressions would be very
useful.

3. CONCLUSION
We have outlined three problems encountered when using OCL
to execute business rules in a commercial setting. We have
provided examples of the problems, and outlined how we
resolved them in our applications. We suggest that it would be
useful to come up with a common approach to solving these
problems for users of OCL.

4. ACKNOWLEDGMENTS
Our thanks to ACM SIGCHI for allowing us to modify templates
they had developed.

Our thanks to XMLdation [8], for allowing us to use examples
from their set of OCL business rules in this paper.

5. REFERENCES
[1] FpML (Financial products Markup Language)

http://www.fpml.org/
[2] ISO 20022 (ISO Standard for Financial Services

Messaging) http://www.iso20022.org/
[3] Object Constraint Language, Version 2.3.1. OMG

Document Number : formal/2012-01-01.
http://www.omg.org/spec/OCL/2.3.1/.

[4] Payment status report message, pain.002.001.03.xsd,
http://www.iso20022.org/message_archive.page

[5] SEPA Credit Transfer Scheme Customer-to-Bank
Implementation Guidelines Version 6.0,
http://www.europeanpaymentscouncil.eu/knowledge_bank_
detail.cfm?documents_id=537

[6] Chiorean, D., Vladiela, P., and Ober, I. 2012. Testing-
oriented improvements of OCL specification patterns. In
Proceedings of AQTR 2010 (IEEE, volume 2, pages: 1-6)

[7] ISO20022 External code list definition.
http://www.iso20022.org/external_code_list.page

[8] XMLdation http://www.xmldation.com/
[9] IBAN structure http://www.tbg5-

finance.org/?ibandocs.shtml

