
Featherweight OCL

A study for the consistent semantics of OCL 2.3 in HOL

Achim D. Brucker
SAP AG, SAP Research
Vincenz-Priessnitz-Str. 1

76131 Karlsruhe, Germany
achim.brucker@sap.com

Burkhart Wolff∗
Université Paris-Sud

Parc Club Orsay Université
91893 Orsay Cedex, France

wolff@lri.fr

ABSTRACT
At its origins, OCL was conceived as a strict semantics for
undefinedness, with the exception of the logical connectives
of type Boolean that constitute a three-valued propositional
logic. Recent versions of the OCL standard added a second
exception element, which, similar to the null references in
programming languages, is given a non-strict semantics.

In this paper, we report on our results in formalizing the
core of OCL in higher-order logic (HOL). This formaliza-
tion revealed several inconsistencies and contradictions in
the current version of the OCL standard. These inconsis-
tencies and contradictions are reflected in the challenge to
define and implement OCL tools in a uniform manner.

Categories and Subject Descriptors
D3.1.1 [Software]: Programming Languages—Formal Def-
initions and Theory

1. INTRODUCTION
At its origins [13, 16], OCL was conceived as a strict se-

mantics for undefinedness, with the exception of the log-
ical connectives of type Boolean that constitute a three-
valued propositional logic. Recent versions of the OCL stan-
dard [14, 15] added a second exception element, which is
given a non-strict semantics. Unfortunately, this extension
results in several inconsistencies and contradictions. These
problems are reflected in difficulties to define interpreters,
code-generators, specification animators or theorem provers
for OCL in a uniform manner and resulting incompatibilities
of various tools. For the OCL community, this results in the
challenge to define a new formal semantics definition OCL

that could replace the “Annex A” of the OCL standard [15].
In the paper “Extending OCL with Null-References” [8] we

explored—based on mathematical arguments and paper and
pencil proofs—a consistent formal semantics that comprises
two exception elements: invalid (“bottom”in semantics ter-
minology) and null (for “non-existing element”).

∗This work was partly supported by the Digiteo Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2012 ACM 978-1-4503-0688-1/11/06 ...$10.00.

This short paper is based on a formalization of [8], called
“Featherweight OCL,” in Isabelle/HOL [12]. This formaliza-
tion is in its present form merely a semantical study and
a proof of technology than a real tool. It focuses on the
formalization of the key semantical constructions, i. e., the
type Boolean and the logic, the type Integer and a stan-
dard strict operator library, and the collection type Set(A)

with quantifiers, iterators and key operators.
The rest of this paper summarizes our experiences and

findings in formalizing a core of OCL 2.3 in Isabelle/HOL.
Thus, this paper serves as an extended abstract of the de-
tailed documents that are available at http://www.brucker.
ch/projects/hol-ocl/Featherweight-OCL/.

2. FEATHERWEIGHT OCL
Featherweight OCL is a formalization of the core of OCL

aiming at formally investigation the relationship between
the different notions of “undefinedness,” i. e., invalid and
null. As such, it does not attempt to define the complete

OCL library. Instead, it concentrates on the core concepts
of OCL as well as the types Boolean, Integer, and typed
sets (Set(T)). Following the tradition of HOL-OCL [3, 5],
Featherweight OCL is based on the following principles:

1. It is an embedding into a powerful semantic meta-
language and environment, namely Isabelle/HOL [12].

2. It is a shallow embedding in HOL; types in OCL were
injectively mapped to types in Featherweight OCL.
Ill-typed OCL specifications cannot be represented in
Featherweight OCL and a type in Featherweight OCL

contains exactly the values that are possible in OCL.
Thus, sets may contain null (Set{null} is a defined
set) but not invalid (Set{invalid} is just invalid).

3. Any Featherweight OCL type contains at least invalid
and null (the type Void contains only these instances).
The logic is consequently four-valued, and there is a
null-element in the type Set(A).

4. It is a strongly typed language in the Hindley-Milner
tradition. We assume that a pre-process eliminates all
implicit conversions due to subtyping by introducing
explicit casts (e. g., oclAsType()). The details of such
a pre-processing are described in [2]. Casts are seman-
tic functions, typically injections, that may convert
data between the different Featherweight OCL types.

5. All objects are represented in an object universe in
the HOL-OCL tradition [4] the universe construction
also gives semantics to type casts, dynamic type tests,
as well as functions such as oclAllInstances(), or
isNewInState().

http://www.brucker.ch/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
http://www.infsec.ethz.ch/people/wolffb/
mailto:"Burkhart Wolff" <wolff@lri.fr>
http://www.brucker.ch/projects/hol-ocl/Featherweight-OCL/
http://www.brucker.ch/projects/hol-ocl/Featherweight-OCL/

6. Featherweight OCL types may be arbitrarily nested:
Set{Set{1,2}} = Set{Set{2,1}} is legal and true.

7. For demonstration purposes, the set-type in Feather-
weight OCL may be infinite, allowing infinite quantifi-
cation and a constant that contains the set of all Inte-
gers. Arithmetic laws like commutativity may there-
fore expressed in OCL itself. The iterator is only de-
fined on finite sets.

8. It supports equational reasoning and congruence rea-
soning, but this requires a differentiation of the differ-
ent equalities like strict equality, strong equality, meta-
equality (HOL). Strict equality and strong equality re-
quire a subcalculus, “cp” (a detailed discussion of the
different equalities as well the subcalculus “cp”—for
three-valued OCL 2.0—is given in [7]), which is nasty
but can be hidden from the user inside tools.

3. LESSONS LEARNED
While our paper and pencil arguments, given in [8], turned

out to be essentially correct, there had also been a lesson to
be learned: If the logic is not defined as a Kleene-Logic, hav-
ing a structure similar to a complete partial order (CPO),
reasoning becomes complicated: several important algebraic
laws break down which makes reasoning in OCL inherent
messy and a semantically clean compilation of OCL formu-
lae to a two-valued presentation, that is amenable to anima-
tors like KodKod [17] or SMT-solvers like Z3 [10] completely
impractical. Concretely, if the expression not(null) is de-
fined invalid (as is the case in the present standard [15]),
than standard involution does not hold, i. e., not(not(A)) =
A does not hold universally. Similarly, if null and null is
invalid, then not even idempotence X and X = X holds. We
strongly argue in favor of a lattice-like organization, where
null represents “more information” than invalid and the
logical operators are monotone with respect to this seman-
tical “information ordering.”

Featherweight OCL makes these two deviations from the
standard, builds all logical operators on Kleene-not and
Kleene-and, and shows that the entire construction of our
paper “Extending OCL with Null-References” [8] is then cor-
rect, and the DNF-normaliation as well as δ-closure laws
(necessary for a transition into a two-valued presentation of
OCL specifications ready for interpretation in SMT solvers
(see [9] for details) are valid in Featherweight OCL.

4. CONCLUSION AND FUTURE WORK
Featherweight OCL concentrates on formalizing the se-

mantics of a core subset of OCL in general and in particular
on formalizing the consequences of a four-valued logic (i. e.,
OCL versions that support, besides the truth values true

and false also the two exception values invalid and null).
In the following, we outline the necessary steps for turning

Featherweight OCL into a fully fledged tool for OCL, e. g.,
similar to HOL-OCL as well as for supporting test case gen-
eration similar to HOL-TestGen [6]. There are essentially
five extensions necessary:

• extension of the library to support all OCL data types,
e. g., Sequence(T), OrderedSet(T). This formaliza-
tion of the OCL standard library can be used for check-
ing the consistency of the formal semantics (known as
“Annex A”) with the informal and semi-formal require-
ments in the normative part of the OCL standard.

• development of a compiler that compiles a textual or
CASE tool representation (e. g., using XMI or the tex-
tual syntax of the USE tool [16]) of class models. Such
compiler could also generate the necessary casts when
converting standard OCL to Featherweight OCL as well
as providing“normalizations”such as converting multi-
plicities of class attributes to into OCL class invariants.

• a setup for translating Featherweight OCL into a two-
valued representation as described in [9]. As, in real-
world scenarios, large parts of UML/OCL specifications
are defined (e. g., from the default multiplicity 1 of an
attributes x, we can directly infer that for all valid
states x is neither invalid nor null), such a transla-
tion enables an efficient test case generation approach.

• a setup in Featherweight OCL of the Nitpick anima-
tor [1]. It remains to be shown that the standard, Kod-
kod [17] based animator in Isabelle can give a similar
quality of animation as the OCLexec Tool [11]

• a code-generator setup for Featherweight OCL for Is-
abelle’s code generator. For example, the Isabelle code
generator supports the generation of F#, which would
allow to use OCL specifications for testing arbitrary
.net-based applications.

The first two extensions are sufficient to provide a formal
proof environment for OCL 2.3 similar to HOL-OCL while
the remaining extensions are geared towards increasing the
degree of proof automation and usability as well as providing
a tool-supported test methodology for UML/OCL.

Our work shows that developing a machine-checked for-
mal semantics of recent OCL standards still reveals signif-
icant inconsistencies—even though this type of research is
not new. In fact, we started our work already with the
1.x series of OCL. The reasons for this ongoing consistency
problems of OCL standard are manifold. For example, the
consequences of adding an additional exception value to OCL

2.2 are widespread across the whole language and many of
them are also quite subtle. Here, a machine-checked for-
mal semantics is of great value, as one is forced to formal-
ize all details and subtleties. Moreover, the standardization
process of the OMG, in which standards (e. g., the UML in-
frastructure and the OCL standard) that need to be aligned
closely are developed quite independently, are prone to ad-
hoc changes that attempt to align these standards. And,
even worse, updating a standard document by voting on the
acceptance (or rejection) of isolated text changes does not
help either. Here, a tool for the editor of the standard that
helps to check the consistency of the whole standard after
each and every modifications can be of great value as well.

References
[1] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample

generator for higher-order logic based on a relational model
finder. In M. Kaufmann and L. C. Paulson, editors, ITP,
LNCS 6172, pages 131–146. Springer, 2010. doi: 10.1007/
978-3-642-14052-5 11.

[2] A. D. Brucker. An Interactive Proof Environment for Object-
oriented Specifications. PhD thesis, ETH Zurich, 2007. ETH

Dissertation No. 17097.

[3] A. D. Brucker and B. Wolff. The HOL-OCL book. Technical
Report 525, ETH Zurich, 2006.

[4] A. D. Brucker and B. Wolff. An extensible encoding
of object-oriented data models in HOL. Journal of Au-

http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1007/978-3-642-14052-5_11

tomated Reasoning, 41:219–249, 2008. doi: 10.1007/
s10817-008-9108-3.

[5] A. D. Brucker and B. Wolff. HOL-OCL – A Formal Proof
Environment for UML/OCL. In J. Fiadeiro and P. Inverardi,
editors, FASE, LNCS 4961, pages 97–100. Springer, 2008.
doi: 10.1007/978-3-540-78743-3 8.

[6] A. D. Brucker and B. Wolff. HOL-TestGen: An interactive
test-case generation framework. In M. Chechik and M. Wirs-
ing, editors, FASE, LNCS 5503, pages 417–420. Springer,
2009. doi: 10.1007/978-3-642-00593-0 28.

[7] A. D. Brucker and B. Wolff. Semantics, calculi, and analysis
for object-oriented specifications. Acta Informatica, 46(4):
255–284, 2009. doi: 10.1007/s00236-009-0093-8.

[8] A. D. Brucker, M. P. Krieger, and B. Wolff. Extending OCL

with null-references. In S. Gosh, editor, Models in Software
Engineering, LNCS 6002, pages 261–275. Springer, 2009. doi:
10.1007/978-3-642-12261-3 25.

[9] A. D. Brucker, M. P. Krieger, D. Longuet, and B. Wolff.
A specification-based test case generation method for
UML/OCL. In J. Dingel and A. Solberg, editors, MoDELS
Workshops, LNCS 6627, pages 334–348. Springer, 2010. doi:
10.1007/978-3-642-21210-9 33.

[10] L. M. de Moura and N. Bjørner. Z3: An efficient SMT

solver. In C. R. Ramakrishnan and J. Rehof, editors,
TACAS, LNCS 4963, pages 337–340. Springer, 2008. doi:
10.1007/978-3-540-78800-3 24.

[11] M. P. Krieger, A. Knapp, and B. Wolff. Generative program-
ming and component engineering. In E. Visser and J. Järvi,
editors, GPCE, pages 53–62. ACM, 2010.

[12] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—
A Proof Assistant for Higher-Order Logic, LNCS 2283.
Springer, 2002. doi: 10.1007/3-540-45949-9.

[13] Object Management Group. Object constraint language
specification (version 1.1), Sept. 1997. Available as OMG

document ad/97-08-08.

[14] Object Management Group. UML 2.0 OCL specification,
Apr. 2006. Available as OMG document formal/06-05-01.

[15] Object Management Group. UML 2.3.1 OCL specification,
Feb. 2012. Available as OMG document formal/2012-01-01.

[16] M. Richters. A Precise Approach to Validating UML Mod-
els and OCL Constraints. PhD thesis, Universität Bremen,
Logos Verlag, Berlin, BISS Monographs, No. 14, 2002.

[17] E. Torlak and D. Jackson. Kodkod: A relational model
finder. In O. Grumberg and M. Huth, editors, TACAS,
LNCS 4424, pages 632–647. Springer, 2007. doi: 10.1007/
978-3-540-71209-1 49.

http://dx.doi.org/10.1007/s10817-008-9108-3
http://dx.doi.org/10.1007/s10817-008-9108-3
http://dx.doi.org/10.1007/978-3-540-78743-3_8
http://dx.doi.org/10.1007/978-3-642-00593-0_28
http://dx.doi.org/10.1007/s00236-009-0093-8
http://dx.doi.org/10.1007/978-3-642-12261-3_25
http://dx.doi.org/10.1007/978-3-642-12261-3_25
http://dx.doi.org/10.1007/978-3-642-21210-9_33
http://dx.doi.org/10.1007/978-3-642-21210-9_33
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/3-540-45949-9
http://www.omg.org/cgi-bin/doc?ad/97-08-08
http://www.omg.org/cgi-bin/doc?formal/06-05-01
http://www.omg.org/cgi-bin/doc?formal/2012-01-01
http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.1007/978-3-540-71209-1_49

	Introduction
	Featherweight OCL
	Lessons Learned
	Conclusion and Future Work

