
On Interchanging Between OWL/SWRL and UML/OCL

Milan Milanović
1
, Dragan Gašević

2
, Adrian Giurca

3
, Gerd Wagner

3
, and Vladan

Devedžić
1

1 FON-School of Business Administration, University of Belgrade, Serbia
milan@milanovic.org, devedzic@etf.bg.ac.yu

2 School of Interactive Arts and Technology, Simon Fraser University Surrey, Canada
dgasevic@sfu.ca

3 Institute of Informatics, Brandenburg Technical University at Cottbus, Germany
Giurca@tu-cottbus.de, G.Wagner@tu-cottbus.de

Abstract. The paper presents a metamodel-driven model transformation

approach to interchanging rules between the Semantic Web Rule Language

along with the Web Ontology Language (OWL/SWRL) and Object Constraint

Language (OCL) along with UML (UML/OCL). The solution is based on the

REWERSE Rule Markup Language (R2ML), a MOF-defined general rule

language, as a pivotal metamodel and the bi-directional transformations

between OWL/SWRL and R2ML and between UML/OCL and R2ML. Besides

describing mapping rules between three rule languages, the paper proposes the

implementation by using ATLAS Transformation language (ATL) and

describes the whole transformation process involving several MOF-based

metamodels, XML schemas, and EBNF grammars.

1. Introduction

The benefits of bridging Semantic Web and Model-Driven Architecture (MDA)

technologies have been recognized by researchers awhile ago. On one hand,

ontologies are a backbone of the Semantic Web defined for sharing knowledge based

on explicit definitions of domain conceptualization. The Web Ontology Language

(OWL) has been adopted as a de facto language standard for specifying ontologies on

the Web. On the other hand, models are the central concepts of Model Driven

Architecture (MDA). Having defined a model as a set of statements about the system

under study, software developers can create software systems that are verified with

respect to their models. Such created software artifacts can easily be reused and

retargeted to different platforms (e.g., J2EE or .NET). UML is the most famous

modeling language from the pile of MDA standards, which is defined by a metamodel

specified by using Meta-Object Facility (MOF), while MOF is a metamodeling

language for specifying metamodels, i.e. models of modeling languages. Considering

that MDA models and Semantic Web ontologies have different purposes, the

researchers identified that they have a lot in common such as similar language

constructs (e.g., classes, relations, and properties), very often represent the

same/similar domain, and use similar development methodologies [25]. The bottom

line is the OMG’s Ontology Definition Metamodel (ODM) specification that defines

an OWL-based metamodel (i.e. ODM) by using MOF, an ontology UML profile, and

a set of transformations between ODM and languages such as UML, OWL, ER

model, topic maps, and common logics [17]. In this way, one can reuse the present

UML models when building ontologies.

In this paper, we further extend the research in approaching the Semantic Web and

MDA by proposing a solution to interchanging rules between two technologies. More

specifically, we address the problem of mapping between the Object Constraint

Language (OCL), a language for defining constrains and rules on UML and MOF

models and metamodels, and the Semantic Web Rule Language (SWRL), a language

complementing the OWL language with features for defining rules. In fact, our

proposal covers the mapping between OCL along with UML (i.e., UML/OCL) and

SWRL along with OWL (OWL/SWRL). The main idea of the solution is to employ

the REWERSE Rule Markup Language (R2ML) [11], [12], [13] (a MOF-defined

general rule language capturing integrity, derivation, production, and reaction rules),

as a pivotal metamodel for interchanging between OWL/SWRL and UML/OCL. This

means that we have to provide a two way mappings for either of two rule languages

with R2ML. The main benefit of such an approach is that we can actually map

UML/OCL rules into all other rule languages (e.g., Jess, F-Logic, and Prolog) that

have mappings defined with R2ML. Since various abstract and concrete syntax are

used for representing and sharing all three metamodels (e.g., R2ML XMI, R2ML

XML, OWL XML, OCL XMI, UML XMI, OCL text-based syntax), the

implementation is done by using Atlas Transformation Language (ATL) [20] and by

applying the metamodel-driven model transformation principle [21].

2. Motivation

In this section, we give a simple example of sharing OWL/SWRL and UML/OCL

rules, in order to motivate our work. Let us consider an example of a UML model

representing relations between members of a family. For a given class Person, we can

define a UML association with the Person class itself modeling that one person is a

parent of another one. This is represented by the hasFather association end. In the

similar way, we can represent relations that one person has a brother by adding

another association with the hasBrother association end to our model. However, if we

one wants to represent that a person has an uncle, i.e. the hasUncle association end,

this should be derived based on hasFather and hasBrother association ends, by saying

if a person has a father, and the father has a brother, then the father’s brother is an

uncle of the person. This can be expressed by the UML class diagram and OCL-text

based concrete syntax as it is shown in Fig. 1.

Fig. 1. The family UML model and a OCL invariant on the Person class

The same model can be represented as an OWL ontology consisting of the Person

class and object properties hasFather, hasBrother, and hasUncle (see Fig. 2a). Like in

the UML model where the OCL rule has been defined for the hasUncle association

end, a SWRL rule has to be defined on the OWL ontology for inferring the value for

the hasUncle object property. This SWRL rule is given in Fig. 2b.

<rdf:RDF>

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="Person"/>

 <owl:ObjectProperty rdf:ID="hasUncle">

 <rdfs:domain rdf:resource="#Person"/>

 <rdfs:range rdf:resource="#Person"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasFather">

 <rdfs:range rdf:resource="#Person"/>

 <rdfs:domain rdf:resource="#Person"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasBrother">

 <rdfs:domain rdf:resource="#Person"/>

 <rdfs:range rdf:resource="#Person"/>

 </owl:ObjectProperty>

</rdf:RDF>

 <ruleml:imp>

 <ruleml:_body>

 <swrlx:individualPropertyAtom swrlx:property="hasParent">

 <ruleml:var>x1</ruleml:var>

 <ruleml:var>x2</ruleml:var>

 </swrlx:individualPropertyAtom>

 <swrlx:individualPropertyAtom swrlx:property="hasBrother">

 <ruleml:var>x2</ruleml:var>

 <ruleml:var>x3</ruleml:var>

 </swrlx:individualPropertyAtom>

 </ruleml:_body>

 <ruleml:_head>

 <swrlx:individualPropertyAtom swrlx:property="hasUncle">

 <ruleml:var>x1</ruleml:var>

 <ruleml:var>x3</ruleml:var>

 </swrlx:individualPropertyAtom>

 </ruleml:_head>

 </ruleml:imp>

a) b)

Fig. 2. The family OWL ontology (a) and a SWRL rule in the XML concrete syntax (b)

Even from this rather simple example, one can easily recognize many different

languages that are directly involved in the process of interchanging OWL/SWRL and

UML/OCL. Given the solution based on the use of the R2ML metamodel as a pivotal

metamodel, we can identify the following languages: i) OWL and SWRL abstract

syntax, OWL and SWRL XML syntax, and OWL RDF/XML syntax is used for

OWL/SWRL; ii) R2ML abstract syntax, R2ML XMI concrete syntax, R2ML XML

concrete syntax are used for R2ML; and iii) UML abstract syntax, OCL abstract

syntax, UML XMI concrete syntax, OCL XMI concrete syntax, and OCL text-based

concrete syntax are used for UML/OCL. Here we advocate a solution that is based on

defining mappings between abstract syntax of the three languages where each syntax

is represented by MOF, i.e. by a MOF-based metamodel. This means that we can

exploit transformation tools (e.g., ATL) for MOF-based model to enable interchange

between OWL/SWRL and UML/OCL. In the rest of the paper, we first describe

R2ML as the core of our solution, and later we give a full process (conceptual

mappings at the level of abstract syntax and implementation details) of transforming

between R2ML and OWL/SWRL, and between R2ML and UML/OCL, and thus

between OWL/SWRL and UML/OCL.

3. The Interchange Format R2ML

This section is devoted to the description of integrity rules of R2ML [11], [12], [13]

developed by the REWERSE WG I11 that is used as a basis for interchanging between

OWL/SWRL and UML/OCL.

R2ML supports four kinds of rules, namely, integrity rules, derivation rules,

production rules, and reaction rules. R2ML covers almost all of the use cases

requirements of the W3C RIF WG [27]. Since both SWRL rules and OCL constraints

are integrity rules, we just describe R2ML integrity rules here. An integrity rule, also

known as (integrity) constraint, consists of a constraint assertion, which is a sentence

1 REWERSE Working Group I1–Rule Markup, http://www.rewerse.net/I1

in a logical language such as first-order predicate logic or OCL [6] (see Fig. 3). The

R2ML framework supports two kinds of integrity rules: the alethic and deontic ones.

An alethic integrity rule can be expressed by a phrase, such as “it is necessarily the

case that” and a deontic one can be expressed by phrases, such as “it is obligatory

that” or “it should be the case that.”

Fig. 3. The R2ML definition of integrity rules

The corresponding LogicalFormula must have no free variables, i.e. all the

variables from this formula must be quantified. The metamodel of LogicalFormula is

depicted in Fig. 4. All first order logic constructs for formulas are supported, i.e.

conjunctions, disjunctions, and implications.

Fig. 4. R2ML logical formula

The distinction between a weak and strong negation is used in several

computational languages: it is presented in an explicit form in extended logic

programs [4], only implicitly in SQL and OCL, as was shown in [5]. Intuitively, a

weak negation captures the absence of positive information, while a strong negation

captures the presence of explicit negative information (in terms of Kleene’s 3-valued

logic). Under the minimal/stable models [3], a weak negation captures the

computational concept of negation-as-failure (or closed-world negation) [2].

Quantified formulas, i.e. formulas in which all variables are quantified, represent

the core of integrity constraints. Since expressing cardinality restrictions with plain

logical formulas leads to cumbersome constructions, R2ML introduces “at least/most

n” quantified formulas.

Atoms are basic constituents for formulas in R2ML. Atoms are compatible with all

important concepts of OWL/SWRL. R2ML distinguishes object atoms (see Fig. 5)

and data atoms (see Fig. 6). The design of atoms is tailored to the UML [26] and OCL

[6] concepts as well as to OWL [9] and SWRL [7] concepts. Here we present just

R2ML atoms necessary for our goal. See [13] for a complete description and use of

all supported atoms. An ObjectClassificationAtom refers to a class and consists of an

object term. Its role is for object classification, i.e. an ObjectTerm is an instance of the

referred class. A ReferencePropertyAtom associates an object term as “subject” with

other object term as “object.” This atom corresponds to the UML concept of object

evaluated property, to the concept of an RDF [10] triple with a non-literal object, to

an OWL object property, and to the OWL concept of value for an individual-valued

property.

Fig. 5. Object Atoms

An AttributionAtom consists of a reference to an attribute, an object term as

“subject,” and a data term as “value.” It corresponds to the UML concept of attribute

and to the OWL concept of value for a data-valued property.

In order to support common fact types of natural language directly, it is important

to have n-ary predicates (for n > 2). R2ML’s AssociationAtom is constructed by using

an n-ary predicate as an association predicate, an ordered collection of data terms as

“dataArguments,” and an ordered collection of object terms as “objectArguments.” It

corresponds to the n-ary association concept from UML.

Fig. 6. Data Atoms

R2ML EqualityAtom and InequalityAtom consist of two or more object terms.

They correspond to the SameIndividual and DifferentIndividuals OWL concepts. An

R2ML DataClassificationAtom consists of a data term and refers to a datatype. Its

role is to classify data terms. An R2ML DataPredicateAtom refers to a datatype

predicate, and consists of a number of data terms as data arguments. Its role is to

provide user-defined built-in atoms. It corresponds to the built-in atom concept of

SWRL.

Terms are the basic constituents of atoms. As well as UML, the R2ML language

distinguishes between object terms (Fig. 7) and data terms (see Fig. 8). An

ObjectTerm is an ObjectVariable, an Object, or an object function term, which can be

of two different types:

1. An ObjectOperationTerm is formed with the help of a contextArgument, a user-

defined operation, and an ordered collection of arguments. This term can be

mapped to an OCL FeatureCallExp by calling an object valued operation in the

context of a specific object described by the contextArgument.

2. The RoleFunctionTerm corresponds to a functional association end (of a binary

association) in a UML class model.

Fig. 7. Object Terms

Fig. 8. Data Terms

Objects in R2ML are the same artifacts like in UML. They also correspond to the

Individual concept of OWL. Variables are provided in the form of ObjectVariable

(i.e. variables that can be only instantiated by objects) and DataVariable (i.e.

variables that can be only instantiated by data literals).

The concept of data value in R2ML is related to the RDF concept of data literal. As

well as RDF, R2ML distinguishes between plain and typed literals (see DataLiteral

and its subclasses in Fig. 8). They also correspond to the OCL concept of LiteralExp.

A DataTerm (Fig. 8) is either a data DataVariable, a DataLiteral, or a data

function term, which can be of three different types:

1. A DatatypeFunctionTerm formed with the help of a user-defined

DatatypeFunction and a nonempty, ordered collection of dataArguments.

2. An AttributeFunctionTerm formed with the help of a contextArgument and a user-

defined Attribute.

3. A DataOperationTerm formed with the help of a contextArgument, a user-defined

operation that takes as arguments an ordered collection of terms.

All of them are useful for the representation of OCL expressions, for example, in

FeatureCallExp involving data valued operations.

4. Transforming OWL/SWRL to R2ML

In this section, we explain the transformation steps undertaken to transform

OWL/SWRL rules into R2ML. In a nutshell, this mapping consists of two

transformations. The first one is from OWL/SWRL rules represented in the

OWL/SWRL XML format [14] into the models compliant to the RDM (Rule

Definition Metamodel) [15]. Second, such RDM-based models are transformed into

R2ML models, which are compliant to the R2ML metamodel and this represents the

core of the transformation between the OWL/SWRL and R2ML.

The rationale for introducing one more metamodel, i.e. RDM, is that it represents

an abstract syntax of the SWRL (with OWL) language in the MOF technical space.

As well as SWRL is based on OWL, RDM is also relies on the most recent ODM

specification [17]. However, OWL/SWRL is usually represented and used in the

XML concrete syntax that is a combination of the OWL XML Presentation Syntax

[16] and the SWRL XML concrete syntax [14], i.e. in the XML technical space.

However, the RDM metamodel is located in the MOF technical space. To develop

transformations between these two rule representations, we should put them into the

same technical space. One alternative is to develop transformations in the XML

technical space by using XSTL. However, the present practice has demonstrated that

the use of XSLT as a solution is hard to maintain [18] [19], since small modifications

in the input and output XML formats can completely invalidate the present XSLT

transformation. This is especially amplified when transforming highly verbose XML

formats such as XMI. On the other hand, we can perform this transformation in the

MOF technical space by using model transformation languages such as ATL [20] that

are easier to maintain and have better tools for managing MOF-based models. This

approach has another important benefit, namely, MOF-based models can

automatically be transformed into XMI. We decide to develop the solution in the

MOF technical space by using the ATL transformation language. The transformation

process consists of three steps as follows. Speaking in terms of ATL, the first step is

injection of the SWRL XML files into models conforming to the XML metamodel

(Fig. 9). The second step is to create RDM models from XML models, and this

process is shown in the right part of Fig. 9 . The third step is transforming such RDM

models into R2ML models in the MOF technical space (i.e. the core transformation of

the abstract syntax).

Step 1. This step consists of injecting OWL/SWRL rules from the XML technical

space into the MOF technical space. Such a process is shown in detail for R2ML

XML and the R2ML metamodel in [8]. This step means that we have to represent

OWL/SWRL XML documents (Rules.xml from Fig. 9) into the form compliant to

MOF. We use the XML injector that transforms R2ML XML documents into the

models conforming to the MOF-based XML metamodel that defines XML elements

such as XML Node, Element, and Attribute. This XML injector is distributed as a tool

along with the ATL engine. The result of this injection is an XML model that can be

represented in the XML XMI format, which can be later used as the input for the ATL

transformation. We start our transformation process from the SWRL rule defined in

Section 2 and shown in the OWL/SWRL XML concrete syntax (Fig. 2). Fig. 10

shows the XML model which is injected from the SWRL given in Fig. 2.

Fig. 9. The first and second steps in the transformation scenario: the OWL/SWRL XML format

into the instances of the RDM metamodel

<XML.Element xmi.id = 'a8' name = 'swrlx:individualPropertyAtom'

 value = ''>

 <XML.Element.children>

 <XML.Attribute xmi.id = 'a9' name = 'swrlx:property'

 value = 'hasUncle'/>

 <XML.Element xmi.id = 'a10' name = 'ruleml:var' value = ''>

 <XML.Element.children>

 <XML.Text xmi.id = 'a11' name = '#text' value = 'x1'/>

 </XML.Element.children>

 </XML.Element>

 <XML.Element xmi.id = 'a12' name = 'ruleml:var' value = ''>

 <XML.Element.children>

 <XML.Text xmi.id = 'a13' name = '#text' value = 'x3'/>

 </XML.Element.children>

 </XML.Element>

 </XML.Element.children>

</XML.Element>

Fig. 10. The IndividualPropertyAtom from Fig. 2 as an instance of the XML metamodel in its

XMI format

Step 2. In this step, we transform the XML model (Rules XML from Fig. 9) into

the RDM-compliant model (Rules RDM from Fig. 9). This transformation is done by

using the ATL transformation named XML2RDM.atl. The output RDM model (Rules

RDM) conforms to the RDM metamodel. An excerpt of the RDM model for the rule

from Fig. 2 is shown in Fig. 11. It is important to say that we can not exploit the

standardized QVT transformation between UML and OWL from [17], since our input

rules are a combination of SWRL and OWL (i.e., RDM nad ODM).

 In the XML2RDM.atl transformation, source elements from the XML metamodel

are transformed into target elements of the RDM metamodel. The XML2RDM.atl

transformation is done on the M1 level (i.e. the model level). This transformation uses

the information about elements from the M2 (metamodel) level, i.e., metamodels

defined on the M2 level (i.e., the XML and RDM metamodels) in order to provide

transformations of models on the level M1. It is important to point out that M1

models (both source and target ones) must be conformant to their M2 metamodels.

This principle is well-know as metamodel-driven model transformations [21].

<XMI xmi.version = '1.2' timestamp = 'Wed Jul 19 23:01:46 CEST 2006'>

 <!--...-->

 <RDM.IndividualVariable xmi.id = 'a1' name = 'x2'/>

 <RDM.IndividualVariable xmi.id = 'a2' name = 'x3'/>

 <RDM.IndividualVariable xmi.id = 'a3' name = 'x1'/>

 <RDM.Antecedent xmi.id = 'a4'>

 <RDM.Antecedent.containsAtom>

 <RDM.Atom xmi.idref = 'a5'/>

 <RDM.Atom xmi.idref = 'a6'/>

 </RDM.Antecedent.containsAtom>

 </RDM.Antecedent>

 <RDM.Consequent xmi.id = 'a7'>

 <RDM.Consequent.containsAtom>

 <RDM.Atom xmi.idref = 'a8'/>

 </RDM.Consequent.containsAtom>

 </RDM.Consequent>

 <RDM.Atom xmi.id = 'a5' name = 'IndividualPropertyAtom'>

 <!--...-->

 </RDM.Atom>

 <!--...-->

 <RDM.ODM.ObjectProperty xmi.id = 'a9' name = 'hasBrother' deprecated = 'false'

functional = 'false' transitive = 'false' symmetric = 'false'

inverseFunctional = 'false'

 complex = 'false'/>

 <!--...-->

 <RDM.ODM.Rule xmi.id = 'a13'>

 <RDM.ODM.Rule.hasConsequent>

 <RDM.Consequent xmi.idref = 'a7'/>

 </RDM.ODM.Rule.hasConsequent>

 <RDM.ODM.Rule.hasAntecedent>

 <RDM.Antecedent xmi.idref = 'a4'/>

 </RDM.ODM.Rule.hasAntecedent>

 </RDM.ODM.Rule>

 </XMI.content>

</XMI>

Fig. 11. The RDM XMI representation of the rule shown in Fig. 2

Step 3. The last step in this transformation process is the most important

transformation where we transforming RDM model to R2ML model (Fig. 12). This

means that this step represents the transformation of the OWL/SWRL abstract syntax

into the R2ML abstract syntax.

Fig. 12. The transformation of the models compliant to the RDM metamodel into the models

compliant to the R2ML metamodel

This transformation step is fully based on the conceptual mappings between the

elements of the RDM and R2ML metamodel. In Table 1, we give an excerpt of

mappings between the SWRL XML Schema, XML metamodel, RDM metamodel and

R2ML metamodel. Due to the size limitation for this paper, we selected a few

characteristic examples of mapping rules. The current mapping specification contains

26 rules.

Table 1. An excerpt of mappings between the OWL/SWRL XML schema, XML metamodel,

RDM metamodel, and the R2ML metamodel

OWL/SWRL XML metamodel RDM metamodel R2ML metamodel

individualPropertyAtom
Element name =

'swrlx:individualPropertyAtom'
Atom

UniversallyQuantified

Formula

OneOf Element name = 'owlx:OneOf' EnumeratedClass Disjunction

var Element name = 'ruleml:var' IndividualVariable ObjectVariable

sameIndividualAtom
Element name =

'swrlx:sameIndividualAtom'
Atom EqualityAtom

maxcardinality
Element name =

'owlx:maxcardinality'

MaxCardinality

Restriction
AtMostQuantifiedFormula

For XML Schema complex types, an instance of the XML metamodel element is

created through the XML injection described in Step 1 above. Such an XML element

is then transformed into an instance of the RDM metamodel by using ATL, and then

to instances of R2ML metamodel.

The actual transformation between the RDM metamodel and elements of the

R2ML metamodel are defined as a sequence of rules in the ATL language

(RDM2R2ML.atl in Fig. 12). These rules use additional helpers in defining mappings.

Each rule in the ATL has one input element (i.e., an instance of a metaclass from a

MOF based metamodel) and one or more output elements. ATL in fact instantiate the

R2ML metamodel (M2 level), i.e. it creates R2ML models. In this ATL

transformation, we use so-called ATL matched rules. A matched rule matches a given

type of a source model element, and generates one or more kinds of target model

elements. Fig. 13 gives an example of a matched rule which is, in fact, an excerpt of

the RDM2R2ML.atl transformation for the IndividualPropertyAtom class of the RDM

metamodel.
rule IndividualPropertyAtom2UniversallyQuantifiedFormula {

 from i : RDM!Atom (

 i.name = 'IndividualPropertyAtom'

)

 to

 o : R2ML!UniversallyQuantifiedFormula (

 variables <- i.terms,

 formula <- refpropat

),

 refpropat : R2ML!ReferencePropertyAtom (

 referenceProperty <- refprop,

 subject <- i.terms->first(),

 object <- i.terms->last()

),

 refprop : R2ML!ReferenceProperty (

 refPropertyID <- i.hasPredicateSymbol.name

)

}

Fig. 13. An excerpt of the ATL transformation: A matched rule that transforms an RDM

IndividualPropertyAtom to an R2ML UniversallyQuantifiedFormula

For example, the R2ML model shown in Fig. 14 is the output of the RDM to

R2ML transformation for the RDM model (IndividualPropertAtom) given in Fig. 11.

This is actually the end of the transformation between abstract syntax of OWL/SWRL

and R2ML.

An additional step (besides the three ones explained in this section) can be to

transform rules from R2ML into the R2ML XML concrete syntax. For example, the

R2ML model shown in Fig. 14 can now be transformed to elements of the XML

metamodel (R2ML2XML), and then automatically transformed to the R2ML XML

concrete syntax by using the XML extractor that is included the ATL engine. The

result of the XML extraction of the R2ML model (from Fig. 14) is shown in Fig. 15.
<R2ML>

<!--...-->

<R2ML.Formulas.UniversallyQuantifiedFormula xmi.id = 'a12'>

 <R2ML.Formulas.QuantifiedFormula.formula>

 <R2ML.RelAt.ReferencePropertyAtom xmi.id = 'a13'

 isNegated = 'false'>

 <R2ML.RelAt.ReferencePropertyAtom.object>

 <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a11'/>

 </R2ML.RelAt.ReferencePropertyAtom.object>

 <R2ML.RelAt.ReferencePropertyAtom.referenceProperty>

 <R2ML.BasContVoc.ReferenceProperty xmi.idref = 'a14'/>

 </R2ML.RelAt.ReferencePropertyAtom.referenceProperty>

 <R2ML.RelAt.ReferencePropertyAtom.subject>

 <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a6'/>

 </R2ML.RelAt.ReferencePropertyAtom.subject>

 </R2ML.RelAt.ReferencePropertyAtom>

 </R2ML.Formulas.QuantifiedFormula.formula>

 <R2ML.Formulas.QuantifiedFormula.variables>

 <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a6'/>

 <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a11'/>

 </R2ML.Formulas.QuantifiedFormula.variables>

</R2ML.Formulas.UniversallyQuantifiedFormula>

<!--...-->

</R2ML>

Fig. 14. An excerpt of the R2ML XMI representation of the RDM rule shown in Fig. 11

<r2ml:Implication>

 <r2ml:consequent>

 <r2ml:UniversallyQuantifiedFormula>

 <r2ml:ObjectVariable r2ml:name="x1"/>

 <r2ml:ObjectVariable r2ml:name="x3"/>

 <r2ml:ReferencePropertyAtom r2ml:refPropertyID="hasUncle">

 <r2ml:subject>

 <r2ml:ObjectVariable r2ml:name="x1"/>

 </r2ml:subject>

 <r2ml:object>

 <r2ml:ObjectVariable r2ml:name="x3"/>

 </r2ml:object>

 </r2ml:ReferencePropertyAtom>

 </r2ml:UniversallyQuantifiedFormula>

 </r2ml:consequent>

 <!--...-->

</r2ml:Implication>

Fig. 15. An excerpt of the R2ML XML representation of the SWRL rule shown in Fig. 2

5. Mapping R2ML Integrity constraints to OCL

In previous section, we have shown how one can get a valid R2ML model from any

RDM model. The final objective of this section is to explain the transformation of

R2ML models (rules) into OCL models [6]. To do so, we have defined mappings for

transforming elements of the OCL metamodel into elements of the R2ML metamodel

(see Fig. 16). OCL has its own abstract and concrete syntax, and for transformation

process we use its abstract syntax defined in the form of a MOF-based metamodel [6].

Since the R2ML and OCL metamodels are both located in the MOF technical space

and there is an metamodel for OCL defined in the OCL specification, the

transformation by ATL is straightforward in terms of technological requirements, i.e.

we do not have to introduce an additional metamodel like we have done with RDM.

Step 1. We transform an R2ML model (Rules_R2ML from Fig. 16) into an OCL

model (Rules_OCL) by using an ATL transformation named R2ML2OCL.atl. The

output OCL model (Rules_OCL) conforms to the OCL metamodel. In Table 2, we

give an excerpt of mappings between the R2ML metamodel and OCL metamodel on

which this ATL transformation is based. The current version of the transformation

contains 39 mapping rules.

Fig. 16. The transformation scenario: R2ML metamodel to and from OCL metamodel, with

EBNF injection/extraction of OCL code

Table 2. An excerpt of mappings between the R2ML metamodel, OCL metamodel, and OCL

code

R2ML metamodel OCL metamodel OCL code

Conjuction
OperationCallExp

 referredOperation (name = 'and')
Operand and Operand

Implication
OperationCallExp

 referredOperation (name = 'implies')
Expression implies Expression

AttributionAtom

OperationCallExp

 referredOperation (name = '=')

 PropertyCallExp (subject)

Subject.attribute = value

ObjectVariable Variable Variable name

EqualityAtom
OperationCallExp

 referredOperation (name = '=')

Expression1 = Expression2 and

Expression2 = Expression3, ...

RoleFunctionTerm

PropertyCallExp

 referredProperty (name = 'property')

 source Variable

Variable.property

AtMostQuantifiedFormula

OperationCallExp

 referredOperation (name = '<=')

 argument maxvalue

Expression <= maxvalue

For element of the R2ML metamodel, an instance of the OCL metamodel is

created in the model repository. The ATL transformation is done for classes,

attributes, and references. For this transformation we have used integrity and

derivation rules of the R2ML metamodel in its current version (0.3). For the R2ML

model (rule) shown in Fig. 14, we get an OCL model represented in the OCL XMI

concrete syntax given in Fig. 17. The figure shows an OCL iterator expression

(forAll) that has Boolean as the return type, and an operation call expression as its

source. That operation call expression then calls an operation, which has the set type

as its return type and a class as its source.

Step 2. Because the OCL concrete syntax is located in the EBNF technical space,

we need to get an instance of the OCL metamodel (abstract syntax) into EBNF

technical space. There are three possible solutions to this problem. The first one is

creating another transformation from the OCL metamodel to the ATL metamodel

(which extends a modified standard OCL metamodel), e.g., to its query expression,

and then by using the tool "Extract ATL model to ATL file" included in ATL, we can

get the OCL code. However, the disadvantage of this solution is the creation of a new

transformation from the OCL metamodel to the ATL metamodel, which is a time

consuming and more general task overcoming the scope of our research. The second

solution is to create ATL query expression on OCL metamodel elements, which will

then generate OCL code in a file. The disadvantage of this solution is that this

solution can not be used for all OCL metamodel elements, because it will be complex

to define all mappings. The third solution is to use a TCS (Textual Concrete Syntax)

interpreter [22] based on the TCS syntax definition of OCL. A TCS represents a

domain specific language for the specification of textual concrete syntaxes in MDE,

and it is a part of the ATL tool suite. It can be used to parse text-to-model and to

serialize model-to-text. The concrete syntax of OCL has been implemented in TCS

according to the syntax specified in [6]. Fig. 18 shows the mapping from the OCL

metamodel (in the KM3 format [24]) to its corresponding TCS.
<OCL.EssentialOCL.IteratorExp xmi.id = 'a11' name = 'forAll'>

 <UML.TypedElement.type>

 <UML.PrimitiveType xmi.id = 'a4' name = 'Boolean'/>

 </UML.TypedElement.type>

 <OCL.EssentialOCL.CallExp.source>

 <OCL.EssentialOCL.OperationCallExp xmi.id = 'a18'>

 <UML.TypedElement.type>

 <OCL.EssentialOCL.SetType xmi.idref = 'a19'/>

 </UML.TypedElement.type>

 <OCL.EssentialOCL.CallExp.source>

 <UML.Class xmi.idref = 'a17'/>

 </OCL.EssentialOCL.CallExp.source>

 <OCL.EssentialOCL.OperationCallExp.referredOperation>

 <UML.Operation xmi.idref = 'a25'/>

 <!--...-->

 <OCL.EssentialOCL.OperationCallExp.referredOperation>

 </OCL.EssentialOCL.OperationCallExp>

 </OCL.EssentialOCL.CallExp.source>

 <!--...-->

</OCL.EssentialOCL.IteratorExp>

Fig. 17. An excerpt of the OCL XMI representation of the R2ML model shown in Fig. 14

Using the TCS interpreter and defined mapping rules (as in Fig. 18 for element

Class), we have done an EBNF extraction from the OCL model to the OCL code. Our

starting example shown in Fig. 1 is actually the OCL code that represents the OCL

model from Fig. 17. This OCL code is also the transformed SWRL rule from Fig. 2.

In the opposite direction, from OCL to R2ML, for Step 1 (the ENBF injection), we

also have two solutions. The first one is to use the OCL Parser from the Dresden OCL

Toolkit [23] for parsing OCL code and creating OCL model from it. This solution

needs a predefined UML model (in the UML XMI format) as the input on which OCL

code is defined, and this is not what we want, because for the input we want only

OCL code without the UML model on which it is defined. The second solution is by

using TCS for creating model from code. Since we used this solution for generating

code from model and it supports generation of OCL code without UML model, we

decided to us it, for this direction. When the OCL model is generated form the OCL

code, we use OCL2R2ML.atl transformation for transforming this model into the

corresponding R2ML model (as shown in Fig. 16).

package OCL {

 //...

 class Class extends Type {

reference ownedOperation[*] container : Operation;

 reference ownedAttribute[*] container : Property;

 attribute isAbstract : Boolean;

 }

 //...

}

a)

syntax OCL {

 //...

 template Class context

 : (isAbstract ? "abstract") "class" name

 "{"

 ownedOperation ownedAttribute

 "}"

 ;

 //...

}

b)

Fig. 18. The transformation of elements of the OCL metamodel into its corresponding OCL

textual concrete syntax (TCS): a) OCL metamodel; b) OCL TCS

6. Conclusions

The presented approach to interchanging OWL/SWRL and UML/OCL is based on the

pivotal (R2ML) metamodel that addresses the complexity of mappings between two

languages, which contain many different concepts. In this paper, we have not focused

only on mapping rules between OWL/SWRL and R2ML and between UML/OCL and

R2ML [13], but we have also described the whole transformation process based on

the use of the ATL model transformation language and several other XML schemas

and MOF metamodels. Besides bridging OWL/SWRL and UML/OCL, the use of

R2ML allows us to reuse (i.e., apply on OWL/SWRL and UML/OCL) the previously

implemented transformations between R2ML and R2ML XML concrete syntax, F-

Logic, Jess, and RuleML, thus further interchanging OWL/SWRL and UML/OCL.

The presented research is a next step towards the further reconciliation of MDA

and Semantic Web languages, and hence continues the work established by the

OMG’s ODM specification that only addressed mappings between OWL and UML,

while we extended it on the accompanying rule languages, i.e., SWRL and OCL. In

the future, we finalize the on-going implementation of all transformation proposed in

the paper, which will be followed by the detailed report on the experience. We also

plan to extend our rule transformation framework in order to support other OMG’s

specifications covering rules, i.e., the ones for business and production rules.

References

1. Biron, P. V., Malhotra, A. (2004). “XML Schema Part 2: Datatypes Second Edition,” W3C

Recommendation, http://www.w3.org/TR/xmlschema-2/.

2. Clark, K.L. (1978). “Negation as Failure,” In Gallaire, H., and Minker, J. (eds.), Logicand

Data Bases, Plenum Press, NY, pp.293-322.

3. Gelfond, M., Lifschitz, V. (1988). “The stable model semantics for logic programming,” In

Proc. of ICLP-88, pp. 1070-1080.

4. Gelfond, M., Lifschitz, V. (1991). “Classical Negation in Logic Programs and Disjunctive

Databases,” New Generation Computing, vol. 9, pp. 365-385.

5. Wagner, G. (2003). “Web Rules Need Two Kind of Negations,” In Proc. of the Workshop

on Principles and Practice of Semantic Web Reasoning, pp.33-50.

6. OMG OCL (2006). “Object Constraint Language,” OMG Specification, Version 2.0,

formal/06-05-01, http://www.omg.org/docs/formal/06-05-01.pdf.

7. Horrocks, I., et al. (2004). “SWRL: A Semantic Web Rule Language Combining OWL and

RuleML,” W3C Member Submission, http://www.w3.org/Submission/SWRL/.

8. Milanović, M., et al. (2006). “Validating Rule Language Metamodels with the Help of

Model Transformations,” 2nd Int. Conf. of Rules and Rule Markup Languages for the

Semantic Web, Athens, USA (submitted).

9. Patel-Schneider, P. F., Horroks I. (2004). “OWL Web Ontology Language Semantic and

Abstract Syntax,” http://www.w3.org/2004/OWL.

10. Klyne, G., Carroll J., (eds.) (2004). “Resource Description Framework (RDF): Concepts

and Abstract Syntax, W3C Rec. 10 February 2004, http://www.w3.org/TR/rdf-concepts/.

11. R2ML (2006). The REWERSE I1 Rule Language, http://oxygen.informatik.tu-

cottbus.de/rewerse-i1/?q=node/6.

12. Wagner, G., Giurca, A., Lukichev, S. (2005). “R2ML: A General Approach for Marking-up

Rules,” In Proceedings of Dagstuhl Seminar 05371, in F. Bry, F. Fages, M. Marchiori,H.

Ohlbach (Eds.) Principles and Practices of Semantic Web Reasoning,

http://drops.dagstuhl.de/opus/volltexte/2006/479/.

13. Wagner, G., Giurca, A., Lukichev, S., Antoniou G., Damasio C. V., Fuchs N. E.,

“Language Improvements and Extensions,” REWERSE I1-D8 deliverable,

http://rewerse.net/deliverables.html.

14. Horrocks, I., Patel-Schneider, F., P., Boley, H., Tabet, S., Grosof, B., Dean, M. (2004).

“SWRL: A Semantic Web Rule Language, Combining OWL and RuleML,” W3C Member

Submission.

15. Brockmans, S., Haase, P. (2006). “A Metamodel and UML Profile for Rule-extended OWL

DL Ontologies - A Complete Reference,” Universität Karlsruhe (TH) - Technical Report.

16. Hori, M., Euzenat, J., Patel-Schneider, F., P. (2003). “OWL Web Ontology Language XML

Presentation Syntax,” W3C Note.

17. OMG ODM (2006). “Ontology Definition Metamodel,” 6th Revised Submission.

18. Falkovych, K., Sabou, M., and Stuckenschmidt, H. (2003). “UML for the Semantic Web:

Transformation-based approaches,” Knowledge Transformation for the Semantic Web, eds.,

Frontiers in Artificial Intelligence and Applications, vol. 95, IOS, Amsterdam, pp. 92-106.

19. Jovanović, J., Gašević, D. “XML/XSLT-Based Knowledge Sharing,” Expert Systems with

Applications, Vol. 29, No. 3, 2005, pp. 535-553.

20. ATLAS Transformation Language (ATL), http://www.sciences.univ-nantes.fr/lina/atl.

21. Bézivin, J. (2001). “From Object Composition to Model Transformation with the MDA,” In

Proc. of the 39th Int. Conf. and Exh. on Tech. of OO Lang. and Sys., pp. 350-355.

22. Jouault, F. (2006). “TCS: Textual Concrete Syntax,” In Proceedings of the 2nd AMMA/ATL

Workshop ATLAS group (INRIA & LINA), Nantes, France.

23. Dresden OCL Toolkit, Technische Unversität Dresden, Software Engineering Group,

http://dresden-ocl.sourceforge.net.

24. Jouault, F., Bézivin, J. (2006). “KM3: a DSL for Metamodel Specification,” In Proceedings

of 8th IFIP International Conference on Formal Methods for Open Object-Based

Distributed Systems, Bologna, Italy, pp. 171-185.

25. Gašević, D., Djurić, D, Devedžić, V., Model Driven Architecture and Ontology

Development, Springer, Berlin, 2006.

26. OMG, Unified Modeling Language (UML) 2.0, Docs. formal/05-07-04 & formal/05-07-05

27. Rule Interchange Format (RIF) use cases and requirements, W3C Working Draft,

http://www.w3.org/TR/rif-ucr/

