
UML/OCL – Detaching the Standard Library 
D.H.Akehurst1, W.G.J.Howells1, K.D.McDonald-Maier2 

1 University of Kent 
{D.H.Akehurst,W.G.J.Howells}@kent.ac.uk 

2 University of Essex 
kdm@essex.ac.uk 

Abstract. The Object Constraint Language (or variations of it) is increasingly 
being used as a text based navigation or expression language over Object-based 
modelling languages other than the original target of UML. The recent increase 
of Domain Specific Languages has in particular contributed to this process. As 
a consequence, it is useful to investigate the lengths to which an OCL like 
expression language can be made independent of the specifics of the underlying 
modelling language, concepts and implementation. This paper looks at the issue 
from the perspective of detaching the OCL specification from the standard 
library of types that is currently built into its definition. 

1 Introduction 
The Object Constraint Language (OCL) [3] was originally conceived and designed 

as a constraint language for use with the UML. Since then, its use has been extended 
to form a general expression and query language for use with MOF based modelling 
languages. Such languages need only to support a few basic concepts in order to 
facilitate the use of OCL for evaluating expressions over the language. 

Based on the OCL standard, our works with the Kent OCL toolkit [2] have shown 
that it is possible to construct a “Bridge” to multiple modelling languages and / or 
multiple implementations of those languages. – UML, MOF, ECORE, MDR, 
Java..etc. 

Our original bridge proposes a small set of interfaces that must be implemented in 
order to support the use of OCL with a new language. Some of these classes are 
required specifically to support the concepts in the OCL standard library, and thus the 
implementation is by necessity tied to that library. In addition, within the 
implementation of the OCL processor, the mapping from the OCL standard lib types 
to implementation types is fixed, e.g. an OCL String maps to a Java String. 

When moving to different implementations of a model, one often discovers that the 
mapping of OCL standard library types onto similar types in the model 
implementation is different for different implementation techniques. For example, 
there may be a user defined String class that the OCL string should be mapped to. In 
our experience, we have found that it would be most useful to be able to replace the 
standard types (and methods available on those types) with alternatives, depending on 
the implementation of the model. 

This would achieve three things: 
1. The mapping to model implementation of basic types is simplified 
2. It provides the ‘user’ the option to extend, alter, or replace elements of the 

standard library. 



3. It simplifies the implementation of an OCL compiler/interpreter. 
The purpose of this paper is to examine the feasibility of defining an OCL-like 

language that would meet the requirement of being able to replace the standard 
library. 

The paper is organised as follows: Section 2 looks at the basic requirements of a 
textual navigation language for object graphs. Section 3 discusses issues about 
mapping syntax and literal values onto a (potentially) user defined standard library. 
Section 4 presents a simple meta-model we have been experimenting with. Section 5 
includes a discussion on the relationship between user models and the OCL-like 
language. 

2 Basic requirements 
Obviously we cannot, with OCL, provide a generic language for writing 

expressions over any language. However, if we make the not unreasonable 
assumption that the target languages will all be based on a notion of object-
orientation, then we can assert that expressions in the language must be capable of 
navigating a path through a graph of objects and links. The following subsections 
introduce the main components we believe are necessary in such a language. 

2.1 Navigation Paths 
There are two basic requirements for providing a language for navigating such a 

graph. 
1. A means to reference the stating point in a navigation path  
2. A means to traverse a link. 

A starting point is traditionally given by defining the ‘type’ of object that can be 
used as the starting point for the given expression. Further, there are traditionally two 
options for crossing a link to a new object, either via a property (attribute or 
association end in UML) or by an operation call.  In some cases, the link is pre-
defined as part of the initial graph (e.g. an association/link) or sometimes the link is 
dynamically constructed (e.g. as part of the execution of an operation or derived 
property). There is no relevant difference between qualified property and operation; 
the difference is really a syntactic one: 

• object.property or object.property[qualifier] 
• object.operation(argument) 

From a navigation point of view, both of these result in a new ‘node’ (object) in the 
navigation path and could be seen as equivalent. However, with a closer look there 
are some differences that require us to treat them separately: 

1. Due to various conventions, the implementation of operations and 
properties has tended to differ; e.g. the Java conventions of implementing 
properties with accessor and mutator methods, starting their name with 
‘get’ and ‘set’. 

2. There is a semantic difference between an operation and a qualified 
derived property! An operation can modify the state of a model (i.e. 
modify the objects and links in the graph) whereas a derived property 
does not; from an OCL perspective, OCL is not supposed to alter the 



state, and can thus only call operations that do not alter the state (e.g. 
marked with ‘isQuery’ in UML). 

The second of these distinctions is not necessarily relevant if an extension of OCL 
is to be used as a textual means to describe behaviour, including state modification. 

Our preference on these issues is to provide two mechanisms for navigation, 
operations and qualified properties (there may be no qualifier arguments); thus 
facilitating a differentiation between property and operation if necessary. 

2.2 Iterator Expressions 
One of the significant features of OCL is the “iterator” expressions. These are akin 

to higher order functions from functional programming languages. They are essential 
for the navigation over collections of objects. In general, these iterator operations 
take an argument, which is of the form of an OCL expression, and apply the 
expression to each element of the collection in order to calculate the result of the 
operation. In OCL, these iterator operations are currently built into the language, i.e. 
they are part of the language definition rather than operation defined on an object. 
This unfortunately means that users cannot define new iterator operations. In order to 
facilitate such definitions, it is necessary to introduce the concept of an Expression as 
an object type, so that it can be passed as an argument. 

2.3 Alternative Paths 
With a text expression, it is often necessary to define a set of alternative navigation 

paths, the choice of which to take being determined at runtime. Typically this facility 
is offered with concepts such as an “if” statement and/or a “switch” or “select” 
statement. 

The OCL currently has the concept of an if statement; we see no reason not to 
extend this to the multiple path options offered by concepts such as the “switch” or 
“select” statements found in many programming languages. Such a concept could 
follow the same convention as the existing “if” statement in requiring a default option 
(the construct must always return a value), or assume that if a default option is not 
provided then an OCL “null” or “invalid”’ value is returned. 

This kind of multiple paths conditional statement is particularly useful when 
testing variables of an enumeration type, in addition to other situations, which using 
the current OCL must be formed using multiple nested “if … then … else … endif” 
statements. 

2.4 Sub Expressions 
The OCL concept of “let … in …” is essential to writing concise and readable 

complex expressions. They provide a means to define a number of sub-expressions 
that can be reused within the expression as a whole. This could be seen as syntactic 
sugar; however, its use can, in addition to improving readability, also improve the 
performance of evaluating the expression; hence we feel the concept should be 
included in the language definition. 



3 Syntax and Literal Values 
It is necessary to define a binding between literal values and types within the 

model. Usually this is built in to the language. However, we believe it is feasible to 
provide definitions/mappings at compile time. 

An example mapping between literal values and types found in a Java 
implementation of a model could be given as shown in Table 1. This mapping would 
not, of course, provide the operations given by the standard OCL library. (The non-
terminal names come from the grammar specification of the language.) 

 
Literal non-terminal name Type 
stringLiteral java.lang.String 
integerLiteral java.lang.Integer 
realLiteral java.lang.Double 
booleanLiteral java.lang.Boolean 

Table 1 

An alternative mapping shown in Table 2, could provide the standard OCL 
operations, but requires the model to be implemented in Java using the named types. 
Literal non-terminal name Type 
stringLiteral my.ocl.String 
integerLiteral my.ocl.Integer 
realLiteral my.ocl.Real 
booleanLiteral my.ocl.Boolean 

Table 2 

Operator symbols are also an issue; whether they are prefix, infix or postfix, they 
must to be mapped to appropriate operations on a type. This could be provided in a 
simple fashion by binding the operator symbols to operations names as illustrated in 
Table 3. The problem with this would be with operators such as ‘-’, which has both a 
prefix and an infix meaning and hence would ideally be mapped to two different 
operation names – ‘minus’ and ‘negate’. 

 
Operator Symbol Operation Name 
+ plus 
- negate 
- minus 
* multiply 
/ divide 
and and 
or or 
% modulus 

Table 3 

A more complex approach could be taken by binding the operator symbol and the 
operand types to operations on particular types, as indicated in Table 4. This approach 



requires the mappings to explicitly reference the types on which the operators are 
applicable. 

 
Types Operator Symbol Operation Name 
{..Integer, ..Integer} + plus 
{..Double, ..Double} + plus 
{..String, ..String} + concatenate 
{..Double, ..Double} - minus 
{..Integer, ..Integer} - minus 
{..Double } - negate 
{..Integer } - negate 
{..Boolean, ..Boolean } and and 

Table 4 

A third alternative would be to make a distinction in the mapping information 
between prefix, infix and postfix operators, but require the names of the implementing 
operation to be the same whatever type the operator is applied to. 

 
Type Operator Symbol Operation Name 
infix + plus 
infix - minus 
prefix - negate 
prefix not not 
infix and and 

Table 5 

The first option is nice and simple, but is too restrictive; the second option gives us 
extensive flexibility in mapping operators to operations, but in out opinion requires 
too much information to be specified. Our preference is for the third option, which 
gives sufficient flexibility without requiring the level of detail necessary with the 
second option. 

4 A Simple Navigation Language Meta-Model 
The meta-model for a language defined along these means could consist of two 

parts 
1. Navigation Part: for defining navigation paths and expressions. 
2. Bridge Part: for abstracting the connection between navigation paths and 

the object graph. 
The meta-model of an OCL-like language that we have been using to experiment 

with the ideas discussed in this paper is shown below in the two figures. 



ExplicitExpression

VariableDeclaration
(from kmf3::kel::bridge)

PropertyCallExpression

OperationCallExpression

TupleLiteralExpressionPrimitiveLiteralExpression

ObjectLiteralExpression

Type
(from kmf3::kel::bridge)

ConditionalExpressionVariableReference NavigationExpressionLiteralExpresison

Expression

kmf::kel-Expression

freeVariable+

0..1
{qualifier name}

 
Figure 1 – Types of Expression 

VariableDeclaration

+name:String
+type:Type

OperationProperty

Type

kmf::kel:bridge

qualifier+

*
{ordered}

parameter+

*
{ordered}

argument+
*

{ordered}

0..1
{qualifier [name,parameter],read}

0..1 {qualifier [name,qualifier], read}

 
Figure 2 – Bridge Concepts 

5 On Models 
The OCL standard does not only provide a library of primitive and collection types 

and define a text based navigation language. It also alters the type hierarchy of the 
target execution model. That is to say, the OCL language makes an assertion that all 
types in the model extend types in the OCL standard library – e.g. OclAny and 
OclModelElement. 

These types contain useful operations such as testing for equality or checking the 
type of an object. The assumption in OCL is that these operations are not provided by 
the model, and thus a common super type, that does provide these operations, is 



required. This probably arose initially due to OCL being “added” to UML as an 
afterthought. We would argue that it is an unusual policy. 

A more usual approach is to provide a common super type and ensure that every 
model type does extend it. For instance, common OO programming languages such as 
Java [4] and C# [1] have common super types of ‘java.lang.Object’ and 
‘’System.Object’; all classes defined in these languages automatically extend the 
common super type, it is not added as an afterthought by the expression part of the 
language. 

We propose that the same approach should be taken in the modelling world. All 
models must specify the type in the model that is the ‘common super type’ of the 
model; this type could be provided by a standard library, but may be replaced by an 
alternative. 

The OCL standard library thus becomes a ‘model’ just like any other. However, 
this model will probably be included (imported) by specific domain models, 
providing a standard set of primitive and collection types and a standard common 
super type. 

5.1 UML + OCL 
The current situation of UML + OCL can be mimicked using the techniques 

discussed above as follows: 
• The current OCL standard library is provided as a UML package and 

classes. 
• A specific Domain Model includes the OCL standard library and defines 

the OclModelElement class as the root type for the model. 
• The ‘new’ standard library will contain a type ‘Expression’. 
• Iterator operations are defined on the collection classes, taking parameters 

of type Expression. 

5.2 A New Standard Library 

..

Expression

.
Set, ...

Collection

String, ...

ModelElementPrimitive

Any

A Standard Library

 
Figure 3 – A possible Standard Library 



• Expression: An expression type enables us to pass expressions as 
parameters to operations. 

• Primitive: A Primitive type is distinguished from other types as primitive 
objects can be constructed from string constants (e.g. by the OCL 
compiler). 

• ModelElement: Within UML, a Model Element object embodies some 
notion of containment (i.e. composite/part structure indicated with black 
diamonds) and its type is given as a class in the model. This provides a 
candidate for the “inheritance root” of Models. 

• Collection: A collection object does not require a notion of containment. 

6 Conclusion 
We have proposed an approach to “detaching” the OCL standard library from the 

navigation and expression part of the language. This moves the standard library (and 
types) to the same position as all other model elements, thus facilitating the extension 
or replacement of the standard types. 

Our initial experiments based on the Kent OCL library have shown that this 
approach to providing OCL support has some merit; in particular we have found it 
very useful to be able to extend and replace the standard types. 

An outcome of these experiments has been the production of a Java library that 
supports all the OCL iterator operations as operations on a collection classes; we have 
found that this library is very useful as a target for OCL code generation tasks, in 
addition to simply being a useful library for use within straightforward Java 
programmes. 

We are currently experimenting with “bridging” the OCL-based navigation 
language to alternative object-based DSLs, alternative implementations of UML/MOF 
and with alternative libraries of primitive and collection types. 

References 
1. Microsoft: Visual C#. http://msdn.microsoft.com/vcsharp/
2. OCL-team: Kent OCL library. www.cs.kent.ac.uk/projects/ocl
3. OMG: UML 2.0 OCL Specification version 2.0. Object Management Group, 
pct/05-06-06 (June 2005) 
4. Sun: Java Technology. http://java.sun.com/
 
 

http://msdn.microsoft.com/vcsharp/
http://www.cs.kent.ac.uk/projects/ocl
http://java.sun.com/

	Introduction
	Basic requirements
	Navigation Paths
	Iterator Expressions
	Alternative Paths
	Sub Expressions

	Syntax and Literal Values
	A Simple Navigation Language Meta-Model
	On Models
	UML + OCL
	A New Standard Library

	Conclusion
	References

