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Abstract. The Object Constraint Language (OCL) provides a set of powerful
facilities for navigating and querying models in the MOF metamodelling archi-
tecture. Currently, OCL queries can be expressed only in the context of MOF
metamodels and UML models. This adds an additional burden to the develop-
ment and use of Domain Specific Languages, which can also benefit from an
instance-level querying mechanism. In an effort to address this issue, we report
on ongoing work on defining a rigorous approach for aligning the OCL querying
and navigation facilities, with arbitrary Domain Specific Languages to support
instance-level queries. We present a case-study that demonstrates the usefulness
and practicality of this approach.

1 Introduction

The MOF metamodelling architecture is a four-level integrated architecture for defin-
ing, persisting and managing modelling languages and models. At its meta-meta-model
level (M3), lies the Meta Object Facility (MOF) [13], a self-defined language for build-
ing modelling languages (metamodels). At the metamodel-level (M2) exist languages
defined using MOF. The most prominent example of an M2 metamodel is the Unified
Modeling Language (UML) [16]. Models expressed in M2-languages are considered to
belong to the model-level (M1) while instances of M1 models are placed at the instance-
level (M0) (or system-level according to [11]).

The Object Constraint Language (OCL) [15] is a language originally developed
to support capturing constraints in models of the MOF metamodelling architecture.
However, due to its expressive and efficient model navigation and querying facilities,
OCL has also been used extensively as a query language both for expressing stand-alone
queries [5], and in the context of model management languages for tasks such as model
transformation (e.g. QVT [14], ATL [9], YATL [17]), code generation (e.g. MOFScript
[2]) and model merging (e.g. EML [6]). The navigation and querying facilities of OCL
operate at two levels: at the metamodel-level (M2), it can be used to define queries in
the context of the abstract syntax of a modelling language. Metamodel-level queries can
then be evaluated on M1 models. Similarly, at the model-level (M1), it can be used to
define queries in terms of model-specific constructs that can then be evaluated on M0
instances.

OCL is currently aligned with MOF and UML. Due to the MOF-OCL alignment,
OCL queries can be expressed at the metamodel level and evaluated at the model-level



for all MOF-based languages. By contrast, instance-level queries are supported only for
UML models, since OCL is not aligned with any other MOF-based languages. The rea-
son for this is the absence, to our knowledge, of appropriate techniques in the literature
and the tool-market, for aligning OCL with arbitrary DSLs to support instance-level
queries. As a result, in practice, alignment needs to be implemented manually for each
DSL within the context of a specific OCL execution engine. This is certainly not a trivial
task, as it requires significant expertise with the internals of the engine. Moreover, even
if the alignment is successfully implemented for a specific engine, the alignment speci-
fication will be highly coupled with the architecture and platform of the engine and thus
hard to port or reuse in a different context. In our view, the absence of a generic high-
level technique for using OCL to express instance-level queries in DSL models limits
the expressive power of DSLs and consequently their usefulness as viable alternatives
to UML in a practical software development environment.

To address this issue, in this paper we introduce a generic technique for aligning the
OCL navigational and querying facilities with arbitrary modelling languages to support
instance-level queries. The remainder of the paper is organized as follows. In Section
2 we discuss the problem of aligning OCL with arbitrary DSLs in detail and identify
the key-challenges. In Section 3 we introduce our technique and discuss its rationale
as well as the architecture of the infrastructure that allows us to realize it in practice.
In Section 4 we provide a case study that demonstrates a working example of aligning
a DSL with OCL. Finally, in Section 5 we conclude and discuss interesting issues for
further research.

2 Background and Motivation

The principal difficulty in aligning OCL with arbitrary DSLs lies in the two different
instantiation mechanisms used in the context of the MOF architecture, as also discussed
in [10]. To illustrate this problem we discuss the two different instantiation mechanisms
involved in UML 1.5. As illustrated in Figure 1, an object (e.g.: Customer) in a
UML model is an instance of theObject metaclass defined in the UML metamodel.
Similarly, a class (e.g.Customer) is an instance of theClass metaclass. Moreover,
although both instances are contained in the same (M1) model, the: Customer object
is conceptually an instance ofCustomer class. By convention, instances produced
with that implicit instantiation mechanism belong to the M0 level but from a strict
technical perspective, both Objects and Classes are M1 instances (instances of meta-
classes defined in the M2 level). While theM2 → M1 instantiation mechanism is
well-defined in the MOF specification [13], there is no consensus on the semantics of
theM1→M0 mechanism[12].

The presence of a loosely-definedM1 → M0 instantiation mechanism renders
alignment of OCL with custom DSLs to support instance-level queries particularly
challenging. The reason is that an OCL engine needs to be aware of the instantiation
mechanism to support built-in OCL features such asallInstances, oclIsTypeOf()
andoclIsKindOf(). A work-around for this problem is to use OCL expressions at the
M2 level (where the instantiation mechanism is well-defined) to query M0 instances like
any other M1 model elements. In this way, if we wanted to query all adult customers



Fig. 1.Demonstration of explicit and implicit instantiation relationships in the MOF architecture

in our UML model of Figure 1, we would have to write the OCL query displayed in
Listing 1.1 (or a similar one). The complexity of the OCL expression needed for such a
simple query illustrates that while this approach makes querying models at the instance-
level feasible, it does not scale for complex queries. By contrast, an OCL engine that is
aware of the UMLM1 → M0 instantiation mechanism allows us to specify the same
query in a much more compact and meaningful manner, as displayed in Listing 1.2.

Listing 1.1. Querying an M1-level UML model with M2-level OCL

1 Object.allInstances->
2 select(o :Object | o.classifier.name->includes(’Customer’))->
3 select(o :Object | o.slot->exists(aL :AttributeLink |
4 aL.attribute.name = ’age’ and aL.value.toInteger() > 18))

Listing 1.2. Quering an M1-level UML model with M1-level OCL

1 Customer.allInstances->select(c:Customer|c.age > 18)

Apart from theM1→M0 instantiation mechanism, a UML-OCL execution engine
needs to be aware of the semantics of thepoint (.) navigational operator to calculate
the result of expressions such as thec.age in Listing 1.2. The semantics of the point
operator consist of three parts; the navigation path that must be followed (in terms of
M2), the multiplicity of the returned value (single value or collection) and the type of



the returned value (Integer, String, Boolean, some other user-defined type etc). Consider
the M2-level query in Listing 1.1. The navigation path is defined in lines 1-4 (Object -¿
slot -¿value). The multiplicity is defined by accessing a single-valued feature (aL.value).
This indicates that the result should be a single value rather than a collection. The return
type is defined via explicit cast of the value of the slot to an Integer. This is done via the
built-in toInteger() operation in line 4.

In summary, in order for an OCL engine to support instance-level queries for a
new DSL, it must be aware of at least: the semantics of theM1 → M0 instantiation
mechanism and the semantics of the point navigation mechanism for the instance-level.
Currently these semantics can be specified using the programming language in which
the OCL engine is implemented (e.g. Java) and this is how UML-aware OCL engines,
such as [3, 4, 19, 1], have been implemented so far. However, as discussed in [7], 3rd
generation languages (3GL) are not particularly efficient for model navigation. More-
over, by adopting this approach, the specification of the semantics becomes bound to
the proprietary architecture and platform of the OCL engine. Finally, from a technical
perspective, modifying an OCL engine to support a new DSL is by far not a trivial task
and this is partly justified by the fact that there is no published work, to our knowledge,
on aligning an OCL engine with languages other than UML and MOF.

To address this issue in the following section we propose a generic and platform
independent mechanism for specifying the required semantics: OCL itself.

3 Proposed Approach

In this section we demonstrate how we can specify the semantics of theM1 → M0
instantiation mechanism and the instance-level point operators using OCL itself as the
specification mechanism.

For practical reasons, in this work instead of using pure OCL we are using the Ep-
silon Object Language (EOL) [7], an OCL-based model management language. The
reason we use EOL and not pure OCL is that from our experiments, we have found
that the OCL expressions needed to specify the semantics of the instantiation mech-
anism and the point operator tend to be rather complex and consequently difficult to
test and debug when expressed in pure OCL. This is because OCL does not support
statement sequencing and therefore expressing complex queries requires deep nesting
of expressions (includingif-elseexpressions and variable declarations usinglet expres-
sions) in a single statement. Instead, in EOL, complex expressions can be decomposed
into sequences of simpler expressions that are both easier to read, understand and de-
bug. However, we should stress that in principle, exactly the same functionality can be
implemented in pure OCL.

3.1 Relationship between EOL and OCL

EOL supports almost all the navigational and querying facilities of OCL. However, it
also supports additional features and also deviates from OCL in some aspects. There-
fore, in this section we provide a brief discussion of the additional or deviant features
we are using in the EOL listings that follow, for readers that are already familiar with



OCL. For a detailed discussion on EOL and its differences with OCL, readers can refer
to [7].

Statement sequencing:In OCL, there is no notion of statement sequencing and, as
already discussed, this can lead to extremely complex expressions that are difficult to
read and debug. By contrast, in EOL statements can be separated using the semi-column
(;) delimiter (similarly to Java,C++ and C#). In our view, this feature greatly enhances
readability and renders it easier to debug a fragment of code.

Variable definition: The latest version of OCL (2.0) provides thelet expression for
creating temporary variables in the context of a single query. Similarly, EOL supports
thedef statement for defining variables in the context of a block of statements.

Helpers: OCL supports definition of custom operations (helpersaccording to the OCL
specification) on meta-classes. Since OCL does not support statement sequencing, the
body of an OCL helper is a single OCL expression. By contrast, in EOL, the body of a
helper operation is a sequence of statements and values are returned using thereturn
statement.

Style: In EOL, theOcl prefix has been removed from the names of features such as
OclAny, oclIsTypeOf or oclIsKindOf (in EOL they are calledAny, isTypeOf ,
isKindOf ). Moreover, built-in operations such asselect() andsize() that are acces-
sible using the→ operation in OCL, are also accessible using the point operator in
EOL.

3.2 Contents and Structure of an Alignment Specification

To align EOL with a DSL, we need to construct analignment specification. Such a
specification consists of the following operations (orhelpersin OCL terms) that operate
at the meta-model level and define the required semantics:

operation String allOfType() : SequenceTheallOfType operation applies to a String
that specifies the name of the type under question and returns all the model elements
that are direct instances of the type. This is needed both to be able to calculate the result
of theisTypeOf operation at the instance-level.

operation String allOfKind() : SequenceTheallOfKind operation applies on a String
that specifies the name of the type under question and returns all the model elements that
are either direct or indirect (through some kind of inheritance in the M1 level) instances
of the type. TheallOfKind method is needed to be able to calculate the result of
theisKindOf and theallInstances operations at the instance-level. The existence of
both theallOfKind and theallOfType operations allows us to support inheritance in
the model-level (if the DSL supports such a feature).



operation Type getProperty(property : String) : AnyFor eachType of instance at the
instance-level, agetProperty operation must be defined that specifies the semantics
of the point navigational operator in the model-level. As discussed in Section 2, a
getProperty operation must define: the navigation path for retrieving the value of the
property, the multiplicity and the type of the returned value.

3.3 Implementation Architecture

A basic design principle of EOL was that it should be able to manage models of diverse
metamodels and technologies. This principle is implemented in the underlying Epsilon
Model Connectivity (EMC) layer. The basic concept of EMC is theEolModel interface
to which all EOL-compatible models must conform. Implementations ofEolModel
include theMdrModel, EmfModel andXmlDocument that allow EOL to manage
MDR [18] and EMF-based [8] models as well as XML documents. In the aforemen-
tioned implementations ofEolModel, the required methods (e.g.allOfType, allOfKind)
are specified using Java.

To align with custom DSLs we have defined a new specialization ofEolModel
namedEolM0Model that delegates calls to its methods to the underlying alignment
specification (instead of implementing them in Java). For example, if the instance-
level query contains theX.allInstances expression, the EOL engine will invoke the
allOfKind(X) Java-method of theEolM0Model that will in its turn delegate the
call to theallOfKind(X) EOL operation defined in the alignment specification. This
is illustrated in Figure 2.

Fig. 2.Architecture of the alignment mechanism



Using this approach, to align with a new DSL, engineers do not need to be aware
of the internals of the execution engine, the modelling framework (EMF, MDR etc) or
write code in the implementation language of the engine (Java) at all. Instead, they need
only provide a high-level alignment specification, in EOL, that implements the required
operations.

4 Case Study

Having outlined our approach in Section 3, in this section we present a case-study of
aligning OCL with a DSL for modelling Relational Databases. The metamodel of the
Relational DSL (constructed using EMF) is presented graphically in Figure 3. There, a
Database consists of many tables and eachTable consists of a number ofColumns.
All Database, Table andColumn have aname andColumn also has atype. Re-
lated columns are linked each other using foreign-keys. EachForeignKey defines a
parent and achild column and also if the relationship is one-to-one or one-to-many
(oneToMany). In the shaded part of the metamodel theM0 constructs1 appear. A
TableData contains a set ofRows that represent exemplar data of the relatedtable.
Finally, aRow contains many cells and eachCell corresponds to acolumn of the table
and also has avalue.

Fig. 3.The abstract syntax of a DSL for Relational Databases

1 By M0 constructsof the metamodel, we refer to metamodel constructs, instances of which
belong to the M0 level



A visualized version of an instance of the Relational DSL is illustrated in Figure 4.
There, the two shapes on the top represent instances ofTable and the two shapes at the
bottom represent instances ofTableData.

4.1 Defining theM1 → M0 instantiation semantics

In our DSL, aRow is conceptually an instance of aTable. Therefore, the expression
Customer.allInstances should return all the rows in the model that belong to the
TableData that has an associatedTable with the nameCustomer. This is formally
defined by theallOfKind operation of Listing 1.3. In Listing 1.3, theallOfType
operation is also defined. The fact that they both return the same result indicates that
there is no notion of inheritance in our DSL.

Listing 1.3. Specification of the allOfType and allOfKind operations
1 operation String allOfType() : Sequence(Row) {
2 return Row.allInstances().
3 select(r|r.tableData.table.name = self );
4 }
5
6 operation String allOfKind() : Sequence(Row) {
7 return self .allOfType();
8 }

Fig. 4.An instance of the Relational DSL

4.2 Defining the point operator semantics

Having defined theM1 → M0 instantiation semantics, we must now define the se-
mantics of the point operator for the instance level. To provide better understanding,



we first describe the semantics informally through a set of small examples: Letc be
the first row of the Customer table-data displayed in Figure 4. In this case, the expres-
sionc.age should return anInteger (25). Similarly,c.details should return aString
(George). Moreover,c.invoice should return a collection of all the rows of the Invoice
table-data where the value ofcustomerId is equal to the value ofc.id. This is dictated
by the foreign key that relates the repsective columns in the model. The complete for-
mal semantics of the point operator are captured in thegetProperty(name : String)
operation of Listing 1.4. ThegetProperty operation delegates the task of defining the
navigation path and the multiplicity of the returned result to thegetRowsOrCell() op-
eration. Finally, thegetV alue() operation (lines 12-23), casts the string values of cells
to the respective OCL data-types (Boolean, String, Integer and Real) according to the
thetype of the respectiveColumn (BIT, VARCHAR, INT and REAL).

Listing 1.4. Specification of the getProperty operation
1 operation Row getProperty(name : String ) : Any {
2 def ret : Any;
3 ret := self .getCellOrRows(name);
4 if (ret.isTypeOf(Cell)){
5 return ret.getValue();
6 }
7 else {
8 return ret;
9 }

10 }
11
12 operation Cell getValue() : Any {
13 if (cell.column.type = ’INT’){
14 return cell.value.asInteger();
15 }
16 if (cell.column.type = ’BIT’){
17 return cell.value.asBoolean();
18 }
19 if (cell.column.type = ’REAL’){
20 return cell.value.asReal();
21 }
22 return cell.value.asString();
23 }
24
25 operation Row getCellOrRows(name : String ) : Any {
26
27 def cell : Cell;
28
29 -- First try to find a cell with that name
30 cell := self .cell.select(c|c.column.name = name).first();
31
32 if (cell.isDefined()){
33 -- If a cell with that name exists, return it
34 return cell;
35 }



36 else {
37 -- Try to find a foreign child-key with that name
38 def childKeyCell : Cell;
39
40 childKeyCell := self .cell.select
41 (c|ForeignKey.allInstances().
42 exists(fk|fk.child.participant =
43 c.column and fk.parent.name = name)).first();
44
45 if (childKeyCell.isDefined()) {
46 def ck : ForeignKey;
47 ck := ForeignKey.allInstances().
48 select(fk|fk.child.participant = childKeyCell.column)
49 .first();
50 return Row.allInstances().
51 select(r|r.cell.exists(c|c.column = ck.parent.participant
52 and c.value = childKeyCell.value)).first();
53 }
54 else {
55 -- Try to find a foreign parent-key with that name
56 def parentKeyCell : Cell;
57 parentKeyCell := self .cell.select
58 (c|ForeignKey.allInstances()
59 .exists(fk|fk.parent.participant = c.column
60 and fk.child.name = name)).first();
61
62 if (parentKeyCell.isDefined()) {
63 def pk : ForeignKey;
64 pk := ForeignKey.allInstances().
65 select(fk|fk.parent.participant = parentKeyCell.column)
66 .first();
67 def rows : Sequence(Row);
68 rows := Row.allInstances().
69 select(r|r.cell.exists(c|c.column = pk.child.participant and
70 c.value=parentKeyCell.value));
71 if (pk.oneToMany){
72 return rows;
73 }
74 else {
75 return rows.first();
76 }
77 }
78
79 }
80
81 }
82 throw ’Undefined property: ’ + name;
83 }



4.3 Running instance-level queries on the model

Having defined the alignment specification, we can now express and evaluate OCL
instance-level queries on our model. The OCL expression of Listing 1.5 returns aCollection
of thedetails of all the customers in our model that have an age under 18 (’Nick’). In a
more complex query, Listing 1.6 prints a message for every customer that has unpayed
invoices, the sum of which exceed his/her credit.

Listing 1.5. Instance-level query for retrieving under-aged customers
1 Customer.allInstances.select(c|c.age < 18).collect(c|c.details);

Listing 1.6. Instance-level query for retrieving customers in debt
1 for (c in Customer.allInstances){
2
3 def balance : Real ;
4
5 balance := c.invoice.select(i|i.payed = false)
6 .collect(i|i.total).sum();
7
8 if (balance > c.credit){
9 (’Customer ’ + c.details + ’ has a negative balance’).println();

10 }
11 }

5 Conclusions and Further Work

In this paper we have presented a novel technique for aligning OCL with custom Do-
main Specific Languages to support instance-level queries. Moreover, we have pre-
sented a working example of applying this technique in a DSL for modelling Relational
Databases that demonstrates its practicality and usefulness. However, we plan to con-
tinue our experiments with diverse metamodels to further validate or refine (where this
is required) our approach.

As discussed in Section 3, we are using EOL instead of pure OCL for defining the
alignment specification. This is primarily due to the practical difficulties involved in
capturing complex expressions such as this displayed in thegetRowOrCells opera-
tion of Listing 1.4 using pure OCL. However, we realize that expressing the alignment
specification in that way renders re-use from plain OCL engines impossible. Therefore,
we are considering developing a transformation from EOL to pure OCL that will be
able to translate sequential EOL statements into a single OCL-compatible statement.
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